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Abstract
The main scope of this study is to propose a novel methodology aiming at enhancing the computational efficiency of the

approaches used for solving structural topology optimization (STO) problems. The methodology is based on machine

learning combined with the idea of using multiple finite element (FE) models of reduced order. The capability of deep

belief networks (DBNs) in discovering multiple representational levels of data nonlinearity in pattern recognition problems

recently triggered the development of the DLTOP methodology by the authors Kallioras et al. (Struct Multidiscip Optim,

2020, https://doi.org/10.1007/s00158-020-02545-z), that is based on DBNs and the solid isotropic material with penal-

ization (SIMP) approach. In this study, a FE model order upgrading scheme integrated with the DLTOP methodology is

proposed for accelerating further the SIMP-based solution procedure of the STO problems with no scalability limitations,

labeled as DL-SCALE. The framework of DL-SCALE is based on a combined implementation of DBNs and SIMP into a

sequentially implemented ‘‘model-optimize-and-order-upgrade’’ scheme. DL-SCALE efficiency is validated over several

benchmark topology optimization test-examples. The results obtained for the test-examples clearly prove its computational

advantages; the computing time is reduced by almost one order of magnitude while the corresponding reduction in terms of

iterations is more than one order of magnitude compared to the ones originally required by SIMP, without any loss with

respect to objective function value. It is also concluded from the results obtained that the proposed methodology can

escalate to various finite element mesh discretizations, while optimized layout information transfer is possible, contributing

also in accelerating further the STO procedure.

Keywords Topology optimization � Order upgrading � Deep learning � Computational efficiency � SIMP approach �
Deep belief networks

1 Introduction

Structural optimization has been a key research topic in

engineering for several decades resulting to the develop-

ment of various methodologies and formulations for deal-

ing with such problems [2–7]. Applied structural

optimization can also be considered as an added value to

structural engineering design, since the advantages of

performing structural optimization are rather significant in

terms of performance, cost, performance-to-cost ratio and

of course environmental responsibility [8]. Topology

optimization (TO), a subfield of structural optimization,

deals with the optimal distribution of specific volume

percentage within the design domain while respecting

performance criteria. The main approaches are proposed in

modern literature for dealing with topology optimization

problems with some of them being the solid isotropic

material with penalization (SIMP) [9–11], level-

set [12, 13], evolutionary (ESO) and bidirectional evolu-

tionary structural optimization (BESO) [14–16].

Recent advances in the field have contributed signifi-

cantly toward making the transition from the research

domain to the productivity one. Some of the important

challenges that need to be fully addressed in order for
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structural topology optimization (STO) to be incorporated

into everyday procedures of engineering design are the

computational demand required for dealing with STO

problems since solution approaches are highly dependent

on the finite element mesh discretization, the con-

structability of the optimized structures that are dependent

on construction methods like 3D printing and the transla-

tion of optimized domains to CAD drawings with respect

to curve reproduction, etc. In the current work, the focus is

on assisting the computational efficiency of STO solution

approaches via machine learning and model order

upgrading. In up-to-date literature, several approaches can

be found that deal with the above-mentioned computational

demand issue with the use of either parallel program-

ming [17–22] or reduced order models [23].

Several years have passed since the first time that soft

computing methods have been introduced [24]. As the core

of such methods relies on heuristics and not calculus, they

were received with suspicions; however, they have proven

their ability to solve efficiently among other NP hard

problems [25]. Some of the most widely known soft

computing methods that fall under the category of machine

learning are neural networks and metaheuristic search

algorithms. Although the use of such methods and espe-

cially neural networks was deprecated in the years until

2006, the achieved breakthrough of successfully training

deeper architectures along with the ability to have access to

massive amount of data led to a large increase in research

interest in the field. Deeper architectures and big data have

offered the ability to researchers to handle a large number

of problems that were not solvable regardless of methods

used. Such problems vary from computer vision [26] to

natural language processing [27] or medical diagnosis [28]

and several others.

With respect to structural optimization, a large number

of applications of shallow neural networks [29–31] and

other soft computing methods like kriging [32] can be

found in modern literature. On the contrary, the exploita-

tion of modern machine learning methodologies like deep

learning has not been thoroughly examined. In detail, a

work of applying deep convolutional neural networks in 2D

STO problems can be found [33], while also, DLTOP, a

method for reducing the computational load of STO

problems with the use of deep belief networks can be

found [1].

In this work, a new methodology labeled as DL-SCALE

is presented, that aims to reduce the computational cost

required for solving topology optimization problems with

the use of deep learning combined with a reduced order

modeling framework. Topology optimization procedures

are quite computationally demanding as they require a

large number of solutions of the finite element equilibrium

equations. It is also worth noticing that the necessary

computational load depends on the finite element mesh

discretization used, especially when the discretization gets

finer. The adoption of structural optimization procedures

and their transformation from academic to real-life practice

tools demand that the corresponding computational effort

is significantly reduced; in this direction, DL-SCALE

methodology is proposed in this work. Although several

contributions have attempted to deal with the problem of

the increased computational demands, e.g., implementation

of parallel computing techniques for accelerating the

topology optimization procedures, there are very few

studies where the capabilities of machine learning are

examined. Although suspicions still remain with respect to

the effectiveness of machine learning methods in compu-

tationally demanding applications where accuracy in the

calculations is also a requirement, in this work, a combi-

nation of machine learning methods is proposed to prove

their efficiency in multiple benchmark test cases from the

literature.

DL-SCALE relies on a pretrained deep belief network

able to accelerate the application of the SIMP approach.

More specifically, a topology optimization problem is

translated into a series of lower order in terms of finite

element mesh discretization but identically formulated TO

problems, and DLTOP methodology is applied in a

sequential manner along with a convolutional filter. As it

was proven in a previous work by the authors [1], DLTOP

depicts remarkable generality features with respect to its

training and testing limits, the search algorithms used by

SIMP, the type of loading, the filter used, the objective

function adopted, etc., and therefore, all these features of

DLTOP are inherited to the proposed DL-SCALE

methodology.

The rest of this work is organized as follows: In the

second section, named as ‘‘Deep Belief Networks,’’ a short

description of deep belief networks adopted in this study is

presented. In the third one, labeled as ‘‘Accelerated

Structural Topology Optimization,’’ the topology opti-

mization problem along with the SIMP approach and the

DLTOP methodology are described. In the fourth section,

the proposed DL-SCALE scheme is presented in detail,

while in the fifth section, named as ‘‘Numerical Tests,’’ the

performance of DL-SCALE is examined through its

application to typical topology optimization problems

taken from the literature.

2 Deep belief networks

Deep belief networks [34, 35] (DBNs) played a significant

part in the breakthrough of deep learning practices around

2006 as they were the one of the first deep architectures

that were successfully trained and managed to perform
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better than traditional machine learning algorithms in

classification problems and better than principal compo-

nent analysis (PCA) in order reduction problems [36].

DBNs can be considered as probabilistic generative mod-

els, which consist of a population of stochastic, latent

variables that function as feature detectors. Feature detec-

tors are trained to identify hidden higher-order correlations

that exist in datasets.

From the networks architecture point of view, DBNs

consist of a number of sequentially connected restricted

Boltzmann machines (RBMs) [37]. In this network, the

nodes of each layer are fully and symmetrically connected

to all nodes of the next layer in a directed manner except

for the last two layers which are connected in an undirected

manner [38]. It is also worth mentioning that in the above

architecture the hidden layer of RBMi�1 acts in the same as

the visible layer of RBMi. A simple example of a DBN

containing four RBMs can be viewed in Fig. 1, where

RBM1 is defined by layers L1 and L2 and the rest RBMs

are defined accordingly. Additionally, L2 acts as the hidden

layer of RBM1, while it acts as well as the visual layer of

RBM2.

In order to overcome the inability of training DBNs, a

new training procedure was proposed, which follows a

two-step procedure [36]. During the first step, each RBM

existing in the DBN is separated from the rest and for each

one unsupervised training is performed with by means of

contrastive divergence algorithm. In this procedure, the

weights of the connections of each RBM are updated as

follows: [36, 39]:

o log pðv; hÞ
owij

¼ vihj
� �

input
� vihj
� �

model

wnew
ij ¼ wij þ eDwij

ð1Þ

where e is a parameter defining the desired range of weight

change, known as weight learning rate. The DBN is

reassembled by the pretrained RBMs and for the second

step supervised training is performed for the DBN with the

use of backpropagation [40] and the conjugate gradient

algorithm [41] where the initialization values of the net-

work parameters are the ones that were defined through the

pretraining step.

3 Accelerated structural topology
optimization

The goal of topology optimization is to distribute specific

material volume inside the design domain in an optimal

manner with respect to performance criteria (e.g., compli-

ance) under given boundary and loading conditions [42].

Fig. 1 A simple example of

DBN
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The broad spectrum of topology optimization applications

contains several productivity and construction sectors like

aerospace design, implants manufacturing, architectural

design, material design, fluid mechanics, structural design

and more [43–48].

Ever since the presentation of the homogenization

method [49], a number of other approaches have been

proposed with the basic ones being [42]: (1) density

method, (2) level-set method, (3) topological derivative

method, (4) phase field method and (5) evolutionary

method. Density method and its most well-known repre-

sentative, solid isotropic material with penalization

(SIMP), was firstly introduced around 1990 [9–11]; SIMP

uses power law for simplifying the homogenization

method, while the formulation of the TO problems can be

summarized through the following expressions:

MinimizeFðxÞ
with respect to :

K � U ¼ F

gðxÞ� 0

0� x� 1

ð2Þ

where F(x) is the objective function, usually corresponding

to the compliance of the system, x is the density variable

vector, K is the global stiffness matrix, F and U are the

loading and displacement vectors, respectively, and g(x) is

the problem constraint.

3.1 Solid isotropic material with penalization
approach

SIMP approach is one of the most established approaches

in structural topology optimization (STO). The most

commonly used performance indicator adopted by STO

problem formulations is the compliance C of the structural

system, and without loss of the generality, the proposed

method is adopted in the current presentation. As the

domain X is discretized into n finite elements, the distri-

bution of material is expressed by the density values xi
where i 2 ½1; . . .; n� and xi 2 ð0; 1� with xi ¼ 0, indicating

that no material is present on the ith finite element and

xi ¼ 1 indicating that the ith finite element is fully filled

with material. As a result of the above, Eq. 2 is transformed

as follows:

Minimize CðxÞ ¼ FT � UðxÞ

with respect to :

KðxÞ � UðxÞ ¼ F

VðxÞ
V0

¼ Vt

0\x� 1

ð3Þ

where C(x) is the system’s compliance for a given density

vector x, K(x) is the global stiffness matrix, F and U(x) are

the loading conditions vector and the global displacements

vector, respectively, and VðxÞ;V0;Vt are the volumes cor-

responding to density vector x, the initial volume for x ¼ x0
and the targeted volume of the optimized domain (x ¼ T).

In the SIMP approach, Young’s modulus E is correlated via

power law to the density value of each finite element as

follows:

ExðxiÞ ¼ xpi E
0 () KxðxiÞ ¼ xpi K

0 ð4Þ

where p is a penalization parameter usually setting p ¼ 3.

The above correlation is used for pushing SIMP toward

generating density values xi close to the lower or upper

bound of x [50]. In Eq. 3, the compliance can be calculated

as follows:

CðxÞ ¼ FT � UðxÞ ()

CðxÞ ¼ UTðxÞ � KðxÞ � UðxÞ ()

CðxÞ ¼
Xn

i¼1

xpi U
T
i K

0
i Ui

ð5Þ

Accordingly, Eq. 3 can be rewritten as follows:

Minimize CðxÞ ¼
Xn

i¼1

xpi U
T
i K

0
i Ui

with respect to :

KðxÞ � UðxÞ ¼ F

VðxÞ
V0

¼ Vt

0\x� 1

ð6Þ

In the literature, the optimization problem described in

Eq. 6 is handled either by the moving asymptotes algorithm

(MMA) or the optimality criteria (OC) one.

3.2 Deep learning-assisted topology
optimization (DLTOP)

The capability of deep belief networks (DBNs) in discov-

ering multiple representational levels of data nonlinearity

in pattern recognition problems triggered the development
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of the methodology proposed by the authors recently [1],

DLTOP, based on DBNs and SIMP. More specifically, a

DBN is calibrated on transforming the input data contain-

ing density fluctuation pattern of the finite element (FE)

discretization provided by a number of initial steps of the

SIMP approach to a new higher-level representation. This

representation corresponds to the final density value dis-

tribution over the domain as obtained by SIMP. DLTOP is

a specially tailored methodology for accelerating SIMP

approach in STO problems. For this reason, the DBN is

used for predicting a close-to-optimal density value for

each FE of the initial domain, according to initial densities

produced in SIMP early iterations. In order for the pre-

diction to be accurate, the DBN is trained once on a typical

topology optimization problem before being applied to any

STO problem regardless of differences in mesh and domain

dimensions, mesh type, loading conditions, desired final

density, filter value, etc.

Assuming, without loss of generality, that a structured

FE mesh discretization of nex; ney; nez FEs per axis is

implemented on a 3D rectangular domain, ne ¼ nex �
ney � nez is the number of finite elements used for the

mesh discretization. In the initialization step of the SIMP

approach, a density value di is assigned to each nei FE,

while this density di of each element is updated in every

iteration of SIMP until convergence is achieved. The

fluctuation of density value di of the ith FE with respect to

the iteration step t can be expressed as follows:

di ¼ FðtÞ 8 i 2 ½1; ne� ð7Þ

Figure 2 presents several cases of the density fluctuation of

a number of FEs with respect to SIMP iterations. It can be

witnessed that there are several different patterns in density

fluctuation of each FE. These different patterns can be

explained due to different FE locations in the design

domain, loading and support conditions, SIMP parameters,

etc. Density fluctuation can be regarded as a discrete-time

data history for each FE in the domain, which represents

the optimization history of each element.

DLTOP methodology can be described as a two-phase

procedure. In the first step, SIMP performs a small number

of initial iterations which are used as input data for DBN.

Based on the input provided, DBN proposes an optimized

domain at the end of the first phase. In the second phase,

SIMP performs fine-tuning on the DBN-proposed opti-

mized domain. A population of initial iterations (e.g.,

thirty-six [1]) of SIMP are executed for creating the nec-

essary DBN input vectors of density per iteration per FE.

The trained DBN evaluates the given input of initial den-

sity values of each FE and performs a discrete jump from

the thirty-sixth iteration to a close-to-optimal density per

FE. After that, SIMP is used in order to perform fine-tuning

in the DBN proposed domain until convergence is

achieved.

A flowchart of DLTOP methodology is presented in

Fig. 3, while the application of the two-phase methodology

in the case of a single finite element is shown in Fig. 4. The

abscissa of Fig. 4 denotes the iterations performed by

SIMP, while the ordinate corresponds to the density value

of the single finite element.

The basic advantage of DLTOP methodology is its

ability to generalize well. This means that it only needs to

be trained once on a typical TO problem, and then, it can

be applied to any TO problem formulated with different

parameters without presenting a need for retraining. This

advantage is owed to the fact that DLTOP does not need

any information with respect to the geometrical position of

each FE, the type of the mesh, the loading and support

types and conditions, the filter used, etc. The only infor-

mation needed by DLTOP is the density fluctuation in the

initial iterations of SIMP.

Classification problems are a challenging area of pre-

dictive modeling. Contrary to regression predictive mod-

eling, classification models require information also on the

complexity of a sequence dependence among the input

parameters. In the case of STO, the early density values

represent the sequence dependence information that needs

to be provided as inputs to the proposed classification

methodology. The sequence of discrete-time data, i.e., the

density value for every FE and the T iterations, are gen-

erated by SIMP approach and stored in matrix Sd presented

below:

Sd ¼

d1;1 d1;2 . . . d1;T

d2;1 d2;2 . . . d2;T

..

. ..
. . .

. ..
.

dne;1 dne;2 . . . dne;T

2

6666664

3

7777775

ð8Þ

where T denotes the maximum iterations needed by SIMP

to achieve convergence. The above matrix is needed when

setting-up the training data of a DBN for TO problems. A

small part of the optimization procedure is equal to the first

t iterations is transformed into time-series input data for

training the DBN, while the vector of the density in the

final iteration of SIMP approach corresponding to the Tth
column of density matrix Sd is used as the target vector of

DBN training. The training of the DBN focuses on dis-

covering higher-order correlations between the training

sample and the target as seen below:
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d1;1 d1;2 . . . d1;t d1;tþ1 . . . d1;T�1 d1;T

d2;1 d2;2 . . . d2;t d2;tþ1 . . . d2;T�1 d2;T

..

. ..
. . .

. ..
. ..

. . .
. ..

. ..
.

dne�1;1 dne�1;2 . . . dne�1;t dne�1;tþ1 . . . dne�1;T�1 dne�1;T

dne;1 dne;2 . . . dne;t dne;tþ1 . . . dne;T�1 dne;T

2

6666666664

3

7777777775

Training Sample Not Used Target

ð9Þ

4 The DL-SCALE methodology

The proposed DL-SCALE methodology aims to reduce the

computational time required for solving structural topology

optimization problems. DL-SCALE is based on a reduced

order modeling scheme, introducing a new framework of

combining SIMP and DBNs. In previous work by the

authors [1], the combination of SIMP with DBNs labeled

as DLTOP was found to perform remarkably well when

applied to the full-scale order model both in terms of

acceleration of the process, while its applicability was

Fig. 2 Fluctuation of density of various finite elements with respect to SIMP iterations

Fig. 3 Flowchart of DLTOP

methodology

7130 Neural Computing and Applications (2021) 33:7125–7144

123



found to be very general. In this work, a new framework is

presented, that is based on the exploitation of the fast

results that can be derived from coarser discretized models

for assisting the optimization of higher-order models. The

new DL-SCALE methodology integrates DLTOP in a

sequential ‘‘model-optimize-and-upgrade’’ framework that

is presented in detail below.

Similar to any structural optimization problem, in

structural topology optimization multiple finite element

analyses are performed during the iterative solution pro-

cess. As a result, the execution time is highly dependent on

the size of the problem, i.e., the finite element mesh dis-

cretization adopted for the problem at hand. As the evo-

lution of hardware capabilities is specific, research is

focused on methods for reducing the computing time

required for solving the structural topology optimization

problem. Most efforts are focused on implementing parallel

computing techniques either in CPU or in

GPGPU [19, 21, 52, 53] or reduced order model meth-

ods [23]. The proposed DL-SCALE methodology suggests

the transfer of knowledge from optimal topologies

achieved when using lower-order models to higher-order

ones.

DL-SCALE’s framework can be described as a multi-

stage iterative applications of the DLTOP methodology.

The idea is to use DLTOP for solving lower-order struc-

tural topology optimization problems and up-scale the

knowledge obtained through the solution of the lower-order

problems to higher-order ones before reapplying DLTOP.

In DLTOP, a small number of iterations of SIMP are used

as input for a trained DBN network which then predicts a

close-to-optimal topology. The procedure terminates once

this topology is fine-tuned by SIMP. The idea that gener-

ated DL-SCALE is based on combining low computational

times required for solving coarse discretized domains in

SIMP approach and the iterations reduction capabilities of

DLTOP methodology. The goal of DL-SCALE is to

achieve a significant reduction of computational times of

fine-meshed domains. The performance of DL-SCALE is

examined with the use of a number of typical test-examples

taken from the literature that are presented in the following

section.

4.1 The STO problem and FE mesh discretization

As it can be concluded from the description of the STO

problem provided in the previous section, the definition of

a topology optimization problem TOP0, where 0 refers to a

reference STO problem, requires the following parameters

to be provided:

– Dimensions of the design domain Lxyz
– Number of FEs in the mesh ne

– Support conditions Sc

Fig. 4 Implementation of DLTOP methodology to a single FE

Neural Computing and Applications (2021) 33:7125–7144 7131

123



– Loading conditions Pc

– Target volume Vt

Therefore, complementary to the formulation of the STO

given in Eq. 6, it can be said that the parameters of TOP0

can be summarized as: ½Lð0Þxyz; neð0Þ; S
ð0Þ
c ; P

ð0Þ
c ; V

ð0Þ
t �. In

case that the computational time required for solving the

optimization problem TOP0 is equal to t0, it can be stated

that the execution time for solving TOP1 problem with

parameters ½Lð0Þxyz; neð1Þ; S
ð0Þ
c ; P

ð0Þ
c ; V

ð0Þ
t � with respect to t0

depends on the ratio: neð0Þ

neð1Þ
. In order for the two problems

(i.e., TOP0 and TOP1 problems) to be comparable, they

vary only with respect to the finite elements used for dis-

cretizing the design domain (i.e., neð0Þ and neð1Þ, respec-
tively). An indication for this statement can be seen from

the results of Table 1 where the dependence of computa-

tional time per iteration and FE mesh discretization is

presented for the case of the bridge 3D design domain [48]

discretized with different number of finite elements,

neð0Þ ¼ 406; 456 finite elements and neð1Þ vary from 4000

to 63,480. The specifications of the computing environ-

ment used for carrying out the optimization runs are an

Intel Xeon E5-1620 at 3.70 GHz quad-core and 16 GB

RAM, while the SIMP code used is the 3D version of the

88-line code [51]. As it can be seen in Table 1, the FE

mesh discretization is critical for the execution time

required for solving the STO problems, indicatively for one

order of magnitude coarser mesh (i.e., neð1Þ ¼ 63; 480)

compared to the one used for solving TOP0 problem, and

the computing time ratio is almost equal to 13. For

underlining the importance of mesh discretization worth

mentioning that even if the optimization runs for the TOP1
problems relying on the coarser discretizations where

implemented sequentially, such a case would require

computing time td that is equal to the sum of t
ð1Þ
i 8 i 2

½1; 5� that refer to the computing time required for solving

all the five TOP1 problems using coarser discretizations

with ne
ð1Þ
i FEs. The remarkable observation for this case is

the value of the corresponding ratio: tð0Þ

tðdÞ
¼ 7:12. Thus,

performing several iterations using models with coarse

mesh discretizations can be more economical in terms of

computation time than performing even a single iteration of

fine discretized domain, while coarser mesh discretizations

might require less iterations than fine meshed ones.

4.2 Workflow of DL-SCALE methodology

The workflow of DL-SCALE can be summarized as fol-

lows: let us consider the case that a TOPf problem is to be

solved; the design domain of the problem is discretized

with nef finite elements and its parameters are

½Lðf Þxyz; neðf Þ; S
ðf Þ
c ; P

ðf Þ
c ; V

ðf Þ
t �, where f stands for fine mesh

discretization and denotes STO problem. In addition, a set

of nprobs auxiliary STO problems is defined as TOPRi where

i 2 ½1; nprobs� that rely on reduced order models compared

to the TOPf one. The nprobs reduced order model-based

optimization problems TOPi are identical to the reference

one TOPf with respect to all parameters except for neðiÞ.

Thus, the ith reduced order model-based TOPRi problem

can be described as ½Lðf Þxyz; ne
ðRÞ
i ; S

ðf Þ
c ; P

ðf Þ
c ; V

ðf Þ
t �, denoted

with the notation (R), i.e., reduced. Regarding the FE mesh

discretization adopted for defining the set of nprobs prob-

lems, it must be pointed out that very coarse meshes are

used, compared to the neðf Þ FE mesh used for the formu-

lation of the reference TOPf problem:

ne
ðRÞ
1 \ne

ðRÞ
2 \ne

ðRÞ
3 \ne

ðRÞ
4 \ � � �\neðRÞnprobs

\\neðf Þ

ð10Þ

It is worth pointing out that while all parameters for the

nprobs TOP
ðRÞ
i problems are defined, the initial material

distribution over the design domain D for each TOPðRÞ

should be provided in order to implement SIMP approach.

Only for TOP
ðRÞ
1 the material distribution is uniform, which

is a common practice for STO problems; for the rest ones,

it originates from the optimized topology achieved in the

previous reduced order model-based TOPðRÞ problem. The

hierarchy of the nprobs STO problems starts with the one

using the coarser mesh discretization to the finer one;

therefore, the auxiliary problems are solved sequentially

initiating from the one using the coarser mesh to the finer

one. Once the definition of the five TOPðRÞ problems is

completed, the next step required by the proposed DL-

SCALE methodology is the application of DLTOP on the

first lower-order model, i.e., that adopted for the TOP
ðRÞ
1

problem. Hence, SIMP performs 36 iterations for the TOPR1
problem, and then, the density values per iteration per FE

are used by the trained DBN [1] for predicting a final

density value for each FE of the mesh discretization of the

design domain adopted for TOP
ðRÞ
1 problem. It must be

pointed out that since the input and output used in DL-

SCALE are identical with the ones used in DLTOP, in

Table 1 Mesh discretization and execution time ratio for SIMP

neð0Þ neð1Þ

ne 406,456 63,480 32,368 16,200 8064 4000

neð0Þ

neð1Þ
1.00 6.40 12.56 25.09 50.40 101.61

tð0Þ

tð1Þ
1.00 12.89 27.72 59.35 137.00 374.70
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addition the procedure followed for creating a database,

training and calibrating the DBN model is exactly the

same, while the DBN architecture is also identical with the

one used in DLTOP. Therefore, none of these operations

need to be performed again; the trained DBN model is

obtained ready to be used from the previous work by the

authors [1].

4.2.1 The convolution step on the optimized domain

When the optimized domain by the TOP
ðRÞ
1 problem is

obtained, a convolution step for the optimized domain is

performed. The mathematical expression of the convolu-

tion step via filtering can be expressed as follows [38]:

Dcði; jÞ ¼ ðD� f Þði; jÞ ð11Þ

This convolution step is performed according to Eq. 11,

while the filter used is a Gaussian blur filter [54]. The

dimensions ½af ; bf � of the filter f are chosen with respect to

the elements per axis of the design domain D (i.e., ½nex; ney�
for the case of 2D STO problems). An example of the filter

f for a [7, 7] filter can be seen in Eq. 12:

f ¼

0 0 0 0:01961 0 0 0

0 0:01961 0:07059 0:12549 0:07059 0:01961 0

0 0:07059 0:25098 0:39216 0:25098 0:07059 0

0:01961 0:12549 0:39216 0:39216 0:39216 0:12549 0:01961

0 0:07059 0:25098 0:39216 0:25098 0:07059 0

0 0:01961 0:07059 0:12549 0:07059 0:01961 0

0 0 0 0:01961 0 0 0

2

666666
6666666
64

3

777777
7777777
75

ð12Þ

For implementing the convolution step, the size parameters

of f are chosen accordingly in order for the convolved

matrix Dc to be equal to the ones of the initial matrix D.

Once convolution is performed, the convolved matrix Dc is

normalized in the range of [0, 1]. It is worth mentioning

that although above are referring to the case of 2D

domains, the same procedure can be applied to 3D domains

as well. The Dc matrix represents an optimized domain for

the TOP
ðRÞ
1 problem. The DL-SCALE procedure continues

with the translation of the result obtained for TOP
ðRÞ
1

problem to be the initial domain for the TOP
ðRÞ
2 one. This is

achieved by reassigning the densities of each FE of the

initial problem (i.e., TOP
ðRÞ
1 ) to the FEs of the more densely

meshed problem (i.e., TOP
ðRÞ
2 ) as it can be seen in 5. As

coordinates x
ð1:kÞ
i ; y

ð1:kÞ
i of the k edges of each ith FE in

TOP
ðRÞ
1 and TOP

ðRÞ
2 are known, the geometric center of

each FE can be calculated according to:

xci ¼
1

k

Xk

j¼1

xji

yci ¼
1

k

Xk

j¼1

yji

ð13Þ

4.2.2 The DLTOP step

Before describing the next steps of DL-SCALE, it is worth

mentioning that for the needs of this study the number

nprobs of auxiliary STO problems was set equal to five. In

the next step of DL-SCALE, DLTOP is applied again for

the next TOP
ðRÞ
2 problem, i.e., t ¼ 36 iterations of SIMP are

performed for the TOP
ðRÞ
2 problem in order to generate the

input for the second application of the trained DBN. The

DBN proposes the optimized density distribution for each

FE of mesh discretization of the design domain adopted for

the TOP
ðRÞ
2 problem. Subsequently, similar to the procedure

followed for the DBN-proposed optimized domain for the

TOP
ðRÞ
1 problem, the one proposed by DBN for TOP

ðRÞ
2 is

re-meshed according to the FE mesh discretization with

ne
ðRÞ
3 elements of the TOP

ðRÞ
3 problem and is assigned to the

elements of TOP
ðRÞ
2 based on proximity rules as previously

described. The above-mentioned procedure is repeated for

TOP
ðRÞ
3 ; TOP

ðRÞ
4 and TOP

ðRÞ
5 in a sequential manner. At the

final step of DL-SCALE, the DBN-proposed density dis-

tribution for the TOP5 problem is re-meshed according to

the mesh discretization of nef FEs adopted for the reference

TOPf problem. Initial densities for each of the nef FEs are

set equal to the density of the closer element of the mesh

discretization adopted for the TOP
ðRÞ
5 problem as defined

with respect to geometrical center distance. After applying

convolution, as described previously, the produced output

is used as SIMP initialization state for TOPf and SIMP

performs 36 needed iterations followed by a DBN-based

prediction, as in DLTOP, of a close-to-optimal topology.

The final output is produced after fine-tuning by SIMP

performing the necessary iterations until convergence. A

flowchart of DL-SCALE can be seen in Fig. 6.

4.2.3 From DLTOP to DL-SCALE

DL-SCALE methodology, as it can be seen in Fig.6, is

initialized based on a rather low-order model (OM) (i.e.,

sparse FE mesh discretization); DLTOP is applied to this

initial layout of the design domain where the aforemen-

tioned sparse FE mesh discretization is used and a DBN-

proposed topology layout is acquired. The new layout is re-

meshed using a denser FE mesh discretization, DLTOP is
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applied to the new layout and a newer DBN-proposed

topology layout is achieved. This procedure represents the

core of the DL-SCALE methodology, and it is repeated

using incrementally denser FE mesh discretizations to the

newer topology layouts achieved. At the last part of DL-

SCALE methodology, DLTOP is applied to the final layout

obtained, discretized using the finest FE mesh

discretization chosen for the problem at hand and the

optimized design is extracted.

The differences between DLTOP and DL-SCALE

methodologies described previously are more evident when

comparing the corresponding workflows where it can be

seen that DLTOP represents a basic component of the DL-

SCALE methodology. DLTOP relies on information

Fig. 5 Example of densities reassignment, transition from coarse to finer mesh discretization

Fig. 6 Flowchart of DL-SCALE

methodology
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extracted from the first iterations of the original SIMP

approach applied to solve the STO problem; thus, no

variation of layout information is neither introduced nor

extracted. Only the fluctuation of the material density value

of the finite elements observed during the first 36 iterations

is needed. The deep network is trained once on several

density fluctuation patterns and learns to recognize them

with respect to the final density distribution proposed by

SIMP. As a result, the application of the trained network to

the same input will always conclude to the same output. On

the contrary, DL-SCALE methodology incorporates

DLTOP’s ability to accelerate the solution procedure of

STO problems in conjunction with an OM upscaling

scheme. Thus, DL-SCALE can take advantage of the lay-

out information provided by a series of OMs contrary to

DLTOP that uses only one. It is also worth pointing out that

the selection of FE mesh discretizations used in the five

different OMs used can differentiate the final topology

obtained by the proposed methodology. Apart from the

final topology differentiation ability, DL-SCALE method-

ology can be escalated to any FE mesh discretization with

respect to the initial OMs chosen.

5 Numerical tests

The performance of DL-SCALE methodology is investi-

gated against the conventional implementation of SIMP

approach over a number of topology optimization bench-

mark problems. More specifically, SIMP is applied on five

2D test-examples that are chosen from literature until

convergence. For each optimization run performed by

SIMP, the executed iterations until convergence, the opti-

mal objective function value (i.e., compliance value) and

the necessary execution time are recorded. Once the con-

ventional SIMP-based optimization runs are completed,

DL-SCALE is applied on all test-examples as well. DL-

SCALE methodology requires performing iterations on

nprobs ¼ 5 reduced order models before performing the

optimization run for the reference FE mesh discretization

for the problem at hand. Due to the nature of DL-SCALE

methodology, i.e., FE models of different order are

involved in the optimization runs required, the comparison

of SIMP is mainly based on the total execution time than

the number of iterations; however, the iterations performed

for the reference TOPf problem that is based on the model

having mesh discretization of nef FEs are recorded as well.

The objective function value is recorded in order to vali-

date the quality of the solution provided by DL-SCALE,

while the number of iterations needed in both cases is

recorded for validating the acceleration achieved by DL-

SCALE. The recorded time starts from the definition of the

TOP
ðRÞ
1 problem and terminates at the end of the final

iteration of the optimization run performed for the TOPf
problem. The iterations recorded in DL-SCALE are the 36

iterations performed prior to DBN application along with

the ones performed following DBN output until the con-

vergence of the solution runs for the TOPf problem. As

previously stated, DL-SCALE requires the use of nprobs ¼ 5

different discretizations of the design domain with reduced

number of FEs. For testing generality and that even very

coarse FE models can be used efficiently, for this reason

two different sets with the auxiliary STO problems ½TOPRi �
of are examined. In the first one, each of the ne

ðRÞ
i ’s for the

coarse meshes is equal to ½1000; 2000; 3000; 4000; 5000�
finite elements, respectively, while in the second case, each

of the ne
ðRÞ
i ’s is equal to ½3000; 4000; 5000; 7000;

10; 000� finite elements, respectively. Regarding the num-

ber of the FEs used to discretize the design domain for the

reference STO problem of each test-example, four different

discretizations for defining the reference optimization

TOPf problem are examined in order to evaluate the per-

formance of DL-SCALE, specifically neðf Þ is equal to

½20; 000; 50; 000; 75; 000; 100; 000� finite elements. A

detailed description of the five test-examples used in the

comparison can be found below.

5.1 Test-example description

In test-example A, the support conditions refer to fully

fixed boundary condition along the x-axis ending at the half

of the x dimension and the loading condition refers to one

concentrated force P along the y-axis and applied in the

fourth of the y dimension. The ratio of nex to ney is equal to

0.5, while the volume fraction is equal to 35%. In test-

example B, the support conditions refer to two fixed joints

placed at both left and right lower-end corners of the

domain and the loading conditions refer to one concen-

trated force P along the y-axis, applied in the middle of the

y dimension at the base of the structure. The ratio of nex to

ney is equal to 1/3, while the volume fraction is equal to

35%. In test-example C, the support conditions refer to two

fixed joints placed at the two right corners of the domain

and the loading conditions refer to two concentrated forces

P along the x-axis and applied in the left and right middle

of the span in the y dimension. The ratio of nex to ney is

equal to 0.5, while the volume fraction is equal to 40%. In

test-example D, the support conditions refer to fully fixed

boundary conditions along the x-axis, starting at the 3:8ths

of the x dimension and the loading conditions refer to four

concentrated forces P along the y axis and applied at

intermediate distances equal to 1:3 of the x dimension. The

ratio of nex to ney is equal to 0.5, while the volume fraction
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is equal to 50%. In test-example E, the support conditions

refer to two fixed joints placed at both left and right lower-

end corners of the domain, and the loading conditions refer

to one concentrated force P along the y, applied at the half

of the y dimension at the top of the structure. The ratio of

nex to ney is equal to 1/3, while the volume fraction is equal

to 35%. It is worth pointing out that a sensitivity filter with

a radius equal to 3 was chosen in all cases as SIMP filter. A

schematic representation of all test-examples can be seen in

Fig. 7.

5.2 Performance of the DL-SCALE methodology

DL-SCALE methodology performance is examined with

reference to the total execution time required by the

methodology until convergence. In addition, the reduction

of the SIMP iterations needed, the improved objective

function value and optimized domain achieved are also

collected for every test-example considered. For the pur-

poses of the current study, two sets of auxiliary ½TOPRi �
problems are examined: SET1 ¼ ½1000; 2000; 3000;
4000; 5000� and SET2 ¼ ½3000; 4000; 5000; 7000;
10; 000�. The performance of the DL-SCALE methodology

is decomposed into two parts: in the first one the efficiency

of the two sets of auxiliary STO problems is examined in

two test-examples and then the chosen set is applied to

three additional test-examples. Convolution over the opti-

mized design achieved from the implementation of DLTOP

for the auxiliary ½TOPRi � problems is major important step

of DL-SCALE methodology; for this reason, for the case of

test-cases A and D the optimized domains generated by the

DBN for each one of the five auxiliary TOPi problems and

the ones obtained through the convolution stage are shown.

5.2.1 Assessing the two sets of auxiliary STO problems

The data collected for all optimization runs performed for

test-example A can be found in Table 2 for the case of

SET1 and in Table 3 for the case of SET2. As it can be

observed, for test-example A, the maximum reduction on

the computational time achieved by DL-SCALE compared

to the conventional implementation of SIMP is almost

equal to 82%. This reduction corresponds to the case that

100,000 finite elements were used for the discretization of

the design domain for the reference TOPf problem, while

the objective function value was also improved achieving a

better reduction of 0:94%. The optimized domains

achieved by the conventional implementation of SIMP for

the case of nef ¼ 20;000 and nef ¼ 100;000 along with the

ones obtained by DL-SCALE can be seen in Fig. 8. The

optimized domains generated by the DBN for each one of

the five auxiliary TOPi problems for the case of SET1 and

Fig. 7 Schematic representation

of the test-examples
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the ones obtained through the convolution stage can be

seen in Fig. 9a, b, respectively, hierarchically starting from

the coarser to the finer one.

Similar to test-example A, the data collected for all

optimization runs performed for test-example B can be

found in Table 4 for the case of SET1 and in Table 5 for the

case of SET2. As it can be observed, for test-example B,

the maximum reduction on the computational time

achieved by DL-SCALE compared to the conventional

implementation of SIMP is almost equal to 77%. This

reduction corresponds to the case that 100,000 finite ele-

ments were used for the discretization of the design domain

for the reference TOPf problem, while the objective

function value was also improved achieving a reduction of

0:87%. The optimized domains achieved by the conven-

tional implementation of SIMP for the case of nef ¼

Table 2 Acceleration achieved via DL-SCALE in test-example A for SET1

ne SIMP DL-SCALE Acceleration (%) Reduction (%)

Iterations Obj. Value Time Iterations Obj. Value Time

20,000 220 144.36 68.03 65 141.31 33.23 51.16 2.11

50,000 322 139.14 259.31 60 136.73 62.32 75.97 1.73

75,000 403 139.46 499.28 59 137.41 88.45 82.28 1.47

100,000 375 138.16 631.16 57 136.86 113.85 81.96 0.94

Table 3 Acceleration achieved via DL-SCALE in test-example A for SET2

ne SIMP DL-SCALE Acceleration (%) Reduction (%)

Iterations Obj. Value Time Iterations Obj. value Time

20,000 220 144.36 68.03 62 140.19 40.78 40.07 2.89

50,000 322 139.14 259.31 80 137.84 88.09 66.03 0.93

75,000 403 139.46 499.28 86 136.90 131.78 73.61 1.83

100,000 375 138.16 631.16 82 136.48 167.22 73.51 1.22

Fig. 8 Test-example A:

optimized domains achieved by

a SIMP and b DL-SCALE

methodology for the case of

nef ¼ 20;000 and nef ¼
100;000 when SET1 is used
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20;000 and nef ¼ 100;000 along with the ones obtained by

DL-SCALE can be seen in Fig. 10.

For the two test-examples A and B when SET1 of

auxiliary STO problems was used, the computational effi-

ciency was improved compared to the one achieved for the

case of SET2 auxiliary STO problems. In STO problems,

the reduction of the material volume represents the most

common criterion adopted in literature. For this reason, as

slightly better optimization results in terms of objective

function value were obtained by SET2, it was adopted

instead of SET1 for performing the optimization runs pre-

sented in the next section.

5.2.2 Testing the chosen set of auxiliary STO problems

The data collected for all optimization runs performed for

test-example C can be found in Table 6 for the case of

SET2. As it can be observed, for test-example C, the

maximum reduction on the computational time achieved by

DL-SCALE compared to the conventional implementation

of SIMP is almost equal to 82%. This reduction corre-

sponds to the case that 100,000 finite elements were used

for the discretization of the design domain for the reference

TOPf problem, while the objective function value was also

improved achieving reduction of 0:40%. The optimized

domains achieved by the conventional implementation of

SIMP for the case of nef ¼ 20;000 and nef ¼ 100;000

along with the ones obtained by DL-SCALE can be seen in

Fig. 11.

Similar to the previous test-examples, the data collected

for all optimization runs performed for test-example D can

be found in Table 7 for the case of SET2. As it can be

observed, also for test-example D, the maximum reduction

on the computational time achieved by DL-SCALE com-

pared to the conventional implementation of SIMP is

almost equal to 83%. This reduction corresponds to the

case that 100,000 finite elements were used for the dis-

Fig. 9 Test-example A: optimized domains generated for each

auxiliary TOPi problem by: a DBN and b convolution step for the

case of SET1

Table 4 Acceleration achieved via DL-SCALE in test-example B for SET1

ne SIMP DL-SCALE Acceleration (%) Reduction (%)

Iterations Obj. value Time Iterations Obj. value Time

20,000 219 18.48 69.70 53 18.13 30.13 56.77 1.89

50,000 245 19.00 198.54 64 18.77 68.42 65.54 1.21

75,000 277 19.22 342.51 64 18.99 100.65 70.62 1.20

100,000 321 19.38 540.44 60 19.21 126.45 76.60 0.87
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cretization of the design domain for the reference TOPf
problem, while the objective function value was also

improved achieving a better reduction of 1:65%. The

optimized domains achieved by the conventional imple-

mentation of SIMP for the case of nef = 20,000 and nef =

100,000 along with the ones obtained by DL-SCALE can

be seen in Fig. 12. The optimized domains generated by

the DBN for each one of the five auxiliary TOPi problems

and the ones obtained through the convolution stage can be

seen in Fig. 13a, b, respectively, hierarchically starting

from the coarser to the finer one.

In accordance with the previous test-examples, the data

collected for all optimization runs performed for test-ex-

ample E can be found in Table 8 for the case of SET2. As it

can be observed, for test-example E, the maximum

reduction on the computational time achieved by DL-

SCALE compared to the conventional implementation of

SIMP is almost equal to 78%. This reduction corresponds

to the case that 100,000 finite elements were used for the

discretization of the design domain for the reference TOPf
problem, while the objective function value was increased

by 2:14%. The optimized domains achieved by the con-

ventional implementation of SIMP for the case of nef =

Table 5 Acceleration achieved via DL-SCALE in test-example B for SET2

ne SIMP DL-SCALE Acceleration (%) Reduction (%)

Iterations Obj. value Time Iterations Obj. value Time

20,000 219 18.48 69.70 61 18.00 41.91 39.87 2.62

50,000 245 19.00 198.54 49 18.71 66.38 66.57 1.56

75,000 277 19.22 342.51 54 19.01 100.07 70.78 1.06

100,000 321 19.38 540.44 59 19.23 136.06 74.82 0.76

Fig. 10 Test-example B:

optimized domains achieved by

a SIMP and b DL-SCALE

methodology for the case of

nef ¼ 20;000 and nef ¼
100;000 when SET1 is used

Table 6 Acceleration achieved via DL-SCALE in test-example C

ne SIMP DL-SCALE Acceleration (%) Reduction (%)

Iterations Obj. value Time Iterations Obj. value Time

20,000 299 20.40 105.74 66 20.08 47.50 55.08 1.54

50,000 308 21.24 289.37 73 21.07 95.82 66.89 0.82

75,000 396 21.71 583.18 77 21.53 143.91 75.32 0.85

100,000 439 21.94 882.32 63 21.85 161.19 81.73 0.40
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Fig. 11 Test-example C:

optimized domains achieved by

a SIMP and b DL-SCALE

methodology for the case of

nef ¼ 20;000 and

nef ¼ 100;000

Table 7 Acceleration achieved via DL-SCALE in test-example D

ne SIMP DL-SCALE Acceleration (%) Reduction (%)

Iterations Obj. value Time Iterations Obj. value Time

20,000 49 110.04 17.27 56 106.40 43.68 -153.01 3.31

50,000 147 109.02 131.83 61 107.03 82.11 37.71 1.83

75,000 131 109.84 183.52 90 108.11 155.90 15.05 1.58

100,000 438 111.53 845.44 59 109.70 146.61 82.66 1.65

Fig. 12 Test-example D:

optimized domains achieved by

a SIMP and b DL-SCALE

methodology for the case of

nef ¼ 20;000 and

nef ¼ 100;000
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20,000 and nef = 100,000 along with the ones obtained by

DL-SCALE can be seen in Fig. 14.

6 Conclusions

In this work, the so-called DL-SCALE methodology for

reducing the computational effort required for solving

structural topology optimization (STO) problems is pre-

sented. The proposed methodology relies on the exploita-

tion of knowledge gained from reduced order model-based

optimal topologies together with the use of the DLTOP

framework for accelerating the optimization procedure of a

large-scale topology optimization problem. DLTOP is

based on solid isotropic material with penalization (SIMP)

approach in collaboration with deep belief networks

(DBNs) and is used for making discrete jumps from the

initial stage of the optimization procedure to the close-to-

optimal stage. DL-SCALE is formulated by an iterative

application of DLTOP on five auxiliary topology opti-

mization problems formulated based on reduced order

models; these models are generated as coarse mesh dis-

cretization of the original design domain. The hierarchy of

the five STO problems starts with the one using the coarser

mesh discretization to the finer one. The optimal topologies

achieved by the five auxiliary STO problems with the

reduced model are used as the initial topology of the next

one until the reference STO problem that is using the fine

discretized model is optimized.

The proposed methodology is compared with the con-

ventional SIMP in five typical 2D benchmark test-exam-

ples obtained from the literature. All tests were performed

on the same computer as the comparison is based on the

total computational time required by SIMP and DL-

SCALE from the problem definition to the final iteration

performed. For comparing the quality of the solutions

achieved, apart from the time required, the optimized

topology along with the objective function value is also

collected. By reviewing the results of DL-SCALE, as it

was expected the acceleration achieved depends on the

Fig. 13 Test-example D: optimized domains generated for each

auxiliary TOPi problem by: a DBN and b convolution step

Table 8 Acceleration achieved via DL-SCALE in test-example E

ne SIMP DL-SCALE Acceleration (%) Reduction (%)

Iterations Obj. value Time Iterations Obj. value Time

20,000 186 20.88 59.61 58 20.67 40.45 32.15 0.97

50,000 205 20.95 165.86 59 21.21 72.14 56.50 -1.26

75,000 306 21.04 382.83 57 21.44 97.53 74.52 -1.94

100,000 321 21.17 569.66 56 21.62 125.12 78.04 -2.14
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number of the finite elements of the mesh of the problem.

As DL-SCALE methodology uses information gained from

optimization runs performed over reduced order models,

the denser the discretization of the domain is, the bigger the

gain of DL-SCALE is. As it can be seen, for the test-

examples considered, the acceleration achieved for the

reference models discretized using 100,000 FEs is around

80%. It is also worth mentioning that the proposed

methodology presents improvements with reference to the

conventional implementation of SIMP in terms of objective

function value as in almost all cases examined the value

achieved by DL-SCALE is slightly lower than the one

achieved by SIMP alone. The generality of the proposed

methodology is also proved as in all test-examples pre-

sented, DL-SCALE performed remarkably well.

In the presented benchmark tests, it can be seen that DL-

SCALE manages to reduce the computational time by at

least one order of magnitude while this reduction increases

as mesh density increases as well. The efficiency of the

proposed methodology is also remarkable in terms of both

objective function value and final layout achieved. It is

worth underlying that the implementation of the DL-

SCALE methodology to all test-examples requires no DBN

retraining, and DBN was initially trained once over initial

database. While DL-SCALE presents significant advan-

tages on the reduction of the computational effort required

for solving STO problems, there exist several ideas for

future research. The first one focuses on the implementa-

tion of DL-SCALE to other topology optimization

approaches apart from SIMP (i.e., BESO, level set, etc.).

The second topic is related to the deep neural network

used; although the training part is performed once, a more

successfully trained network could assist even more in the

reduction of the computational effort. For this reason, a

state-of-the-art transfer function (SPOCU) [55] is going to

be tested with respect to its performance.
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