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Abstract
Since image set classification has strong power to overcome various variations in illumination, expression, pose, and so on,

it has drawn extensive attention in recent years. Noteworthily, the point-to-point distance-based methods have achieved the

promising performance, which aim to compute the similarity between each gallery set and the probe set for classification

purpose. Nevertheless, these existing methods have to face the following problems: (1) they do not take full advantage of

the between-set discrimination information; (2) they ideally presume that the importance of different gallery sets is equal,

whereas this always violates objective facts and may degenerate algorithm performance in practice; (3) they tend to have

high computational cost and several parameters, though explicit sparsity can enhance discrimination. To address these

problems, we propose a novel method for face image set classification, namely self-weighted latent sparse discriminative

learning (SLSDL). Specifically, a novel self-weighted strategy guided discrimination term is proposed to largely boost the

discrimination of different gallery sets, such that the effect of true sets can be boosted while the effect of false sets can be

weakened or removed. Moreover, we propose a latent sparse normalization to reduce computational complexity as well as

the number of trade-off parameters. In addition, we propose an efficient optimization algorithm to solve the final SLSDL.

Comprehensive experiments on four public benchmark datasets demonstrate that SLSDL is superior to the state-of-the-art

competitors.
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1 Introduction

With the rapid improvement in computer vision, it is

greatly easy to collect multiple faces images in real-life

application [1]. Hence, image set model becomes one of

the research hotspots in recent years, where each set con-

sists of multiple images corresponding to a subject. The-

oretically, image set can utilize more face information of

the same subject to effectively decrease the impact of a

mount of appearance variations about expression, pose,

illumination, and so on [2, 3], thereby enhancing the

robustness and discriminant ability for classification pur-

pose. Accordingly, image set classification aims to model

an image set by leveraging appropriate technologies and

then calculate the similarity between the probe image set

and each gallery set to accomplish classification using

some distance criterion [2, 4–7]. Obviously, image set

classification is very different from traditional single face

image classification [1, 7–9]. What’s more, since image set

can provide us more comprehensive information to

describe faces than single image, naturally, it has obtained

more promising performance than the traditional classifi-

cation methods under single face image in real-world

applications. However, due to different variations, it is still
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a great challenge to correctly classify each image set by

effectively exploiting the discriminative information

[10–14]. For instance, we choose four training sets from

the YouTube Celebrities dataset and illustrate the projec-

tion map of them on the top three principal directions [6],

which is shown in Fig. 1. As we can see, the data distri-

bution does not follow the class labels and is incomplete

concentrated. In this case, it is a challenge that image set

classification effectively improves classification

performance.

Over the last decade, plentiful image set classification

methods [2, 4, 6, 15–23] have been proposed to address

two key problems, which largely determine the perfor-

mance of face recognition: constructing model of image set

and defining appropriate distance criterion to calculate

similarity between a pair of image sets. Based on plenty of

literature review, it is well understood that the point-to-

point distance-based methods have gained the most widely

attention among all the existing methods [24, 25]. These

methods utilize nearest points distance as image sets clas-

sifiers to obtain between-set similarity for image set clas-

sification. However, these existing methods have to face

the following problems: (1) they do not make full use of the

rich discriminant information between the whole gallery

set and each gallery set to encode image sets; (2) most of

the existing methods follow an ideal assumption that the

importance of different gallery sets is equal, which is not

adapted in practical applications; and (3) they usually

introduce the sparse coding coefficients to enhance the

representation capability of the homogeneous images and

reduce that of inhomogeneous sets images. In short, the

first two ones hinder the performance breakthrough, and

the latter brings out computational burden and multi-

parameters.

To address the above drawbacks of point-to-point dis-

tance-based methods, this paper presents an efficient and

effective face image set classification method, termed self-

weighted latent sparse discriminative learning (SLSDL).

In summary, our SLSDL has the following strengths and

contributions:

– To make full use of the encoding information between

different gallery sets and improve discrimination of the

representation model, it simultaneously minimizes the

nearest distance between the probe set and the whole

gallery set, and the distances between each independent

gallery set and the whole gallery set.

– To find a more precise nearest point in the gallery sets,

it proposes a self-weighted strategy to control the

contribution of each gallery set, such that each gallery

set can be treated differently to improve its discriminant

ability.

– It proposes a latent sparse normalization with capped

simplex constraint to approximate the sparse constraint

term for reducing the involved trade-off parameters and

computational complexity; meanwhile, it can preserve

the robustness of sparse representation.

– It obtains excellent performance by experimenting on

four public benchmark datasets.

2 Related work

Recently, an excellent point-to-point distance model is

attracted extensive attention from scholars, which calcu-

lates distance of the between-set points to obtain between-

set similarity. Up to now, numbers of typical methods have

been proposed one after another [2, 3, 6, 15–23, 26]. For

instance, affine hull-based image set distance (AHISD)

[15] and convex hull-based image set distance (CHISD)

[15] are proposed to compute distance between two

affine/convex hulls of image sets and then obtain the

similarity of image sets. However, this can lead to per-

formance degradation because of the overlarge of

affine/convex hulls. For getting rid of the problem, sparse

approximated nearest points (SANP) [16] put forward the

sparsity constraint on sample coefficients and achieve

better accuracies. However, SANP can bring into high

computational complexity; hence, regularized nearest

points (RNP) [17] are proposed to model the image set as

regularized affine hull for more concise and lower time

consumption, whereas these methods [27, 28] only con-

sider between-set relation in the training phase and ignore

discriminative information between a probe set and the

whole gallery set. Nowadays, more and more methods

based on collaborative representation [29] have been pro-

posed for overcoming this issue as follows: regularized hull
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Fig. 1 Choosing four training sets from the YouTube Celebrities

dataset. Projection map of them on the top three principal directions is

drawn in four different colors dots
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based collaborative representation (RH-ISCRC) [18], col-

laborative regularized nearest points (CNRP) [19], and

joint regularized nearest points (JRNP) [22]. Furthermore,

prototype discriminative learning (PDL) [20] also achieves

nice performance by simultaneously learning the prototype

set and a linear projection matrix, which keeps a prototype

set from a same class closer and different classes farther.

Based on this idea, dual linear regression classification

(DLRC) [30] just focuses on the related class subspace. As

a development of DLRC, pairwise linear regression model

(PLRC) [21] considers a new unrelated subspace as well.

On the basis of PLRC, the recently proposed discriminative

residual analysis (DAR) [31] obtains discriminant features

and then projects the gallery set and probe set into the

discriminant subspace for improving the classification

performance. Recently, deep learning (e.g., DRM-MV)

[32] is also gradually applied to image set classification

tasks. Though there are some breakthroughs in these

approaches, they have still some defects to defeat (see

Sect. 1).

In general, the relationship between our SLSDL and the

related methods is that both of them are point-to-point

distance model. The difference is that the existing point-to-

point methods unwittingly ignore the important discrimi-

nation information between each gallery set and whole

gallery set, and usually introduce explicitly several sparse

coding coefficients to enhance discrimination and robust-

ness. Moreover, these methods ideally assume that the

importance of different gallery sets is equal, which is not

adapted in practical applications. Conversely, our SLSDL

utilizes the weighted value to adjust precisely the coding

coefficient errors and further enhance the correlation

between the whole gallery set and the ground truth gallery

set and the repellency between the heterogeneous sets. For

SANP [16], RNP [17], and CRNP [19], in a broad sense,

the weighted value between the probe set and each gallery

set is set to 1, and they consider each gallery to be equally

important. Meanwhile, SLSDL also proposes a latent

sparse normalization for representation sparsity, thereby

reducing the number of trade-off parameters and running

time. Note here that latent sparse discriminative learning

(LSDL) [33] is a conference version of this paper, which

treats each different gallery set indistinguishably, i.e., all

weighted values of gallery sets are fixed to 1.

3 Proposed method

In this section, we present the objective function, the

optimization algorithm, and the classification criterion of

the proposed SLSDL method.

3.1 Problem formulation

Point-to-point image set classification method models each

image set as virtual point, and calculate the similarity

between each gallery set and the probe set1 by appropriate

distance criterion. Mathematically, the whole gallery sets

are denoted as X ¼ ½X1; . . .;Xm�, which consisted of m

different classes, and the probe set is denoted as Y. The size

of each image set is presented as d. Inspired by [18, 34], it

can thus be known that sparse representation can produce

sparsity to enhance robustness, thereby resisting noise and

even outliers. According to the above idea, we assume that

the virtual point Xa of whole gallery sets is not only close

to the virtual point Yb of the probe set, but also close to

that of ground truth gallery set (i.e., fXicigmi¼1). Yb can

produce a better approximation of Xa by collaborative

representation and adjust coding errors. However, the idea

is too ideal because the ground truth gallery set corre-

sponded to label is unknown. In summary, our ideas can be

summarized as follows: (1) To measure the similarity

between the probe set and the gallery ones, we model the

query set as a regularized hull collaboratively over all the

gallery sets. (2) In order to enhance the discriminative

power of all gallery sets, we propose a discrimination term

to minimize the distance between the whole gallery set and

an unknown ground truth gallery set. (3) To obtain sparse

solutions to enhance robustness, we introduce the sparsity

constraint on coding coefficients to suppress the contribu-

tions of the unnecessary samples. Further, sparsity con-

straint can enhance the representation capability of the

homogeneous image sets and reduce that of inhomoge-

neous image sets. Regarding the mentioned above, our

model can be written as follows

min
a;b;c

kXa� Ybk22 þ k1kak1 þ k2kbk1

þ k
Xm

i¼1

kXa� Xicik22 þ k3kcik1
ð1Þ

where k, k1, k2, and k3 are the trade-off parameters, a and b

are the sparse coefficients, and ci ¼ ½cTi1; cTi2; . . .; cTim�
T
is the

sparse coefficient correspond to the ith gallery set. In

summary, the first term with collaborative representation

minimizes the distance between the virtual points of a pair

of sets, which are the probe set and the whole gallery set.

The fourth term aims to enhance the discriminative power

of all gallery sets. By minimizing the distance between the

1 For image sets classification tasks [16], image set can be divided

into two parts, including the gallery set and the probe set, where the

gallery set with label is used to train and the probe set is used to test.

Usually, each set may contain large variations in pose, illumination,

and scale. Images in each set contained a same subject are collected

from video-based face recognition systems, multiple cameras, or

personal photo album.

Neural Computing and Applications (2023) 35:12283–12295 12285

123



virtual points of the whole gallery set and an unknown

ground truth gallery set to adjust coding errors, the probe

set can obtain a better approximation. In addition, the rest

terms are constrained by the l1 norm to obtain sparse

solutions (Fig. 2).

However, problem (1) has the following disadvantages.

Firstly, the explicit sparsity inevitably results in high

computational complexity; moreover, three parameters, k1,
k2, and k3, need to be tuned, whereas it is very not user-

friendly for tuning these parameters. To overcome this

disadvantage, we normalize 1Ta ¼ 1, 1Tb ¼ 1, and 1Tci ¼
1 to make the sparsity terms to ablate. Naturally, it can

produce the sparsity on the coefficients because the nor-

malizations can choose a few samples in probe set to

approximate the samples of probe set. That is, the nor-

malizations 1Ta ¼ 1, 1Tb ¼ 1, and 1Tci ¼ 1 are equivalent

to the latent sparse constraints on a, b, and ci, respectively;

moreover, the normalizations can enhance the discrim-

inability by finding the homogeneous set in the gallery sets

to represent the probe set. By doing so, we can obtain the

sparse and the discriminated solutions simultaneously.

Secondly, we can see that the used spare constraints may

produce some negative coefficients because of no non-

negative constraint on the coding coefficient vectors.

Obviously, the non-negative coefficients are mathemati-

cally explainable and physically meaningful, and the con-

structed virtual face images are more likely to be real faces.

Therefore, we introduce some non-negative constraints on

a, b, and ci simultaneously, i.e., a� 0, b� 0, and ci � 0.

Finally, it is not reasonable that each gallery set is treated

equally. To overcome this disadvantage, a new self-

weighted strategy is introduced to update the weight value

between the whole gallery set and each gallery set itera-

tively. Therefore, the weight value can control the contri-

bution of each gallery set, which makes explicitly the

whole gallery virtual point closer to the nearest point of

estimated correct class. Ideally, the correct gallery set has a

larger weighted value, and the incorrect sets have the lower

weighted values. Regarding the discussions mentioned

above, problem (1) can be upgraded to

min
a;b;c;w

kXa� Ybk22

þ k
Xm

i¼1

wikXa� Xicik22

s.t. a� 0; 1Ta ¼ 1; b� 0; 1Tb ¼ 1;

ci � 0; 1Tci ¼ 1;w� 0; 1Tw ¼ 1

ð2Þ

where w ¼ ½w1; . . .;wm� is the weighted vector and k is the

trade-off parameter. Note that each set Xi could be replaced

with a dictionary with k atoms, such as KSVD [18].

Compared to the existing methods, our method has a

concise formulation and latent sparsity. Note here that only

one parameter k. Concretely, our SLSDL method has the

following benefits over the regular ones: (1) it minimizes

the distance between the probe set and the whole gallery set

by using collaborative representation; meanwhile, it pro-

poses a novel discrimination term to minimize the distance

between the whole gallery set and an unknown ground

truth gallery set. In the objective function of SLSDL, the

collaborative representation term plays the main role, while

the discrimination term assists with enhancing discrimi-

nation by adjusting the coding coefficient errors. Hence,

SLDSL can make the best use of the comprehensive

information between different gallery set to improve the

discriminability of face image sets. (2) It proposes a self-

weighted strategy, which can control the contribution of

each gallery set to enhance the correlation between the

whole gallery set and the ground truth gallery set, such that

the nearest point can be obtained exactly. Based on the

self-weighted strategy, a novel self-weighted strategy gui-

ded discrimination term is proposed to largely boost the

discrimination of different gallery sets, such that the effects

of true sets can be boosted while the effects of false sets

can be weakened or removed. (3) Instead of using explicit

sparse constraint, it proposes a latent sparse normalization

with capped simplex constraint to produce sparsity solu-

tion, thereby reducing the number of involved trade-off

parameters and computational complexity. Meanwhile, our

SLSDL can obtain sparse solutions to enhance robustness,

as the traditional sparse constraint.

3.2 Optimization

Due to only several ‘2-norm regularization constraints in

problem (2), the convergence is proved easily. Corre-

spondingly, a, b, and c can be solved alternatively.

Step 1: Update a, we fix b, and c First, a can be solved

by using the following problem when fixing the other

coefficients, i.e.,

min
a

kXa� Ybk22 þ k
Xm

i¼1

kXa� Xicik22

s.t. a� 0; 1Ta ¼ 1

ð3Þ

Then, this problem can be rewritten as

min
a
ðkXak22 þ kXicik

2
2Þ

� 2tr aTXT Ybþ k
Pm

i¼1 Xici
mkþ 1

� �� � ð4Þ

For simplicity, we introduce an auxiliary variable

P ¼ 1
mkþ1

ðYbþ k
Pm

i¼1 XiciÞ, and transform (4) to
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â ¼ argmin
a

kXa� Pk22 s.t. a� 0; 1Ta ¼ 1 ð5Þ

Step 2: Update b, we fix c, and a b can be solved by using

the following problem when fixing other coefficients, i.e.,

b̂ ¼ argmin
b

kXa� Ybk22 s.t. b� 0; 1Tb ¼ 1 ð6Þ

Step 3: Update c, we fix b, and a Similar to problem (6),

while fixing other variables, each ci can be directly updated

via problem (7), i.e.,

bci ¼ argmin
ci

kXa� Xicik22 s.t. ci � 0; 1Tci ¼ 1 ð7Þ

Interestingly, problems (5), (6), and (7) derive the same

optimization manner. We call such the problem capped

simplex projection problem (CSPP), which adopt affined

constraint and the non-negative to output a narrow solution.

The solution process of CSPP is presented in Sect. 3.4 for

better understand and description.

Step 4: Update w, we fix a, b, and c We can obtain w via

min
w

Xm

i¼1

wikXa� Xicik
2
2 s.t. w� 0; 1Tw ¼ 1 ð8Þ

Then, the values of the weighted vector w can be calculated

by Theorem 1, i.e.,

wi ¼
1

2kXa� Xicik2 þ f
ð9Þ

where f is infinitely close to zero. The detail of Theorem 1

is shown in Sect. 3.3.

Therefore, according to the above theoretical analysis,

we can update a, b, c, and w alternately. Hereto, the

pseudo-code is depicted in Algorithm 1. The demo code

will be released on our Github homepage https://github.

com/renzhenwen.

3.3 Determine the value of weight w

Recall that the optimization problem (8) can be simplified

as below

min
w

Xm

i¼1

wikz� gðiÞk22 s.t. w� 0; 1Tw ¼ 1 ð10Þ

where z ¼ Xa and fgðiÞgmi¼1 ¼ fXicigmi¼1. The value of

vector w can be calculated via Theorem 1.

Theorem 1 Motivated by iteratively re-weighted technique,

a transition problem without w is redefined as follows

min
z

Xm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kz� gðiÞk22

q

s.t. w� 0; 1Tw ¼ 1; z 2 W

ð11Þ

The Lagrange function of (11) is
Pm

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kz� gðiÞk22

q
þ Uðn; zÞ, where n is the Lagrange

multiplier, and Uðn; zÞ indicates the indicator function of z

from the domain W (i.e., z 2 W). By setting this Lagrange

function w.r.t. z as zero, we can obtain

Xm

i¼1

bwi
okz� gðiÞk22

oz
þ oUðzÞ

oz
¼ 0 ð12Þ

where bwi ¼ 1=ð2kz� gðiÞk2Þ. It is easy to see that Eq. (12)

is the same as the derivation of the Lagrange function of

problem (10). Thus, bwi can be viewed as the wi in (10). To

avoid the denominator being zero in theory, bwi can be

rewritten as

wi ¼
1

2kz� gðiÞk2 þ f
ð13Þ

where f is infinitely close to zero. The proof is completed.

h

Fig. 2 Illustration of our SLSDL. For instance, five dashed boxes

represent four gallery sets fXig4i¼1 and a probe set Y. The solid

patterns and hollow patterns substitute the true images and the virtual

points, respectively. The arrows substitute distance between the

virtual points of image sets. The weighted value wi stands for the

contribution of the i-th gallery set
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3.4 Solve capped simplex projection problem

We adopt the accelerated projected gradient (APG) method

to optimize the resultant CSPP. For the convenience of

notations, problem (6) and W are defined as uðbÞ and the

capped simplex constraint domain, respectively. Without

loss of generality, by taking the b-problem as an example,

we define CSPP as below

min
b2W

uðbÞ ¼ kx� Ybk22 ð14Þ

For obtaining easier paradigm, an auxiliary variable g is

introduced to solve problem (14). We can approximatively

solve b by alternately iterating of g.

b0 is solved from problem (1) when setting k2 ¼ 1 and

fixing a and ci without considering the capped simplex

constraint. And then starting the alternative optimization

by initializing g0 ¼ b0. Now, we define the initial value of

Newton acceleration coefficient as c and g at iteration t as

gt , and it can be updated at each iteration.

When the t-th iteration, Taylor expansion up to second

order is used to approximate b. i.e.,

bt ¼ argmin
b

f ðgt�1Þ

þ ðb� gt�1ÞTu0ðbt�1Þ þ L

2
kb� gt�1k2F

ð15Þ

Problem (15) can be replaced with a more compact form

after ignoring the irrelevant terms. As a consequence, (15)

can be rewritten as

bt ¼ argmin
b2W

L

2
kb� ðgt�1 � 1

L
u0ðgt�1ÞÞk22 ð16Þ

Let e ¼ ðgt�1 � 1
Lu

0ðgt�1ÞÞ. Problem (16) can be abbrevi-

ated to

bt ¼ argmin
1

2
kb� ek22 s.t. b� 0; 1Tb ¼ 1 ð17Þ

Analogously to [35, 36], the Lagrangian function of

problem (17) is rewritten as

Lðz;w; pÞ ¼ 1

2
kz� ek22 � pð1Tz� 1Þ � wTz ð18Þ

where w is a Lagrangian coefficient vector and p is a scalar.

Suppose the Lagrange coefficient vectors are w� and p�,
respectively, and the optimal solution of (18) is z�.
According to the Karush–Kuhn–Tucker (KKT) conditions

[37, 38], for 8j, we havePr
m¼1 z

�
j �

Pr
m¼1 e

m
j � w�

j � p� ¼ 0, z�j � 0, w�
j � 0 and

z�j w
�
j ¼ 0. Evidently, we also have

rz� �
Pr

m¼1 e
m � w� � p�1 ¼ 0.

We obtain p� ¼ ðr �
Pr

m¼1 1
Tem � 1Tw�Þ=n according

to 1Tz� ¼ 1. At this time, we formulate the optimal solution

z� as
Pr

m¼1 e
m

r
þ 1

n
�
Pr

m¼1 1
Tem1

rn
� 1Tw�1

rn
þ w�

r
ð19Þ

Defining g ¼
Pr

m¼1 e
m=r þ 1=n�

Pr
m¼1 1

Tem1=ðrnÞ and

ŵ� ¼ 1Tw�=ðrnÞ, Eq. (19) can then be simplified to

z� ¼ g� ŵ�1þ w�

r . For 8j, the result can be written as

z�j ¼ gj � ŵ� þ
w�
j

r
¼ bgj � ŵ�cþ ð20Þ

Similarly, w�
j ¼ rbŵ� � gjcþ is derived in the same way.

Because of ŵ� ¼ 1Tw�=ðrnÞ, ŵ� can be written as

ŵ� ¼ 1
n

Pn
j¼1bŵ� � gjcþ. Then, an auxiliary function is

defined as Eq. (21) to solve the self-dependent ŵ�, i.e.,

HðŵÞ ¼ 1

n

Xn

j¼1

bŵ� � gjcþ � ŵ ð21Þ

Note that ŵ� 0 and H0ðŵÞ� 0, and H0ðŵÞ is a piecewise

linear and convex function, we can use Newton method to

find the root ŵ� when HðŵÞ ¼ 0, i.e.,

ŵtþ1 ¼ ŵt �
HðŵtÞ
H0ðŵtÞ

ð22Þ

3.5 Classification

The latent sparse coding coefficients â, b̂ and fĉigmi¼1 can

be obtained by the optimal solving (2). Then, we compute

the similarity between each gallery set and the probe set by

distance criterion, which can be represented as follows

ri ¼ðkXik� þ kYk�Þ � kXiâi � Yb̂k22=kâik
2
2 ð23Þ

where kXik� and kYk� are the nuclear norm of Xi and Y,

respectively. And the nuclear norm can be obtained by the

sum of the singular values. kXiâi � Yb̂k22 represents the

point-to-point distance of each gallery set and the probe

set. kXik� þ kYk� can avoid the influence of irrelevant

class information between image sets. In the end, we can

recognize the identity of the probe image set Y to that of

minimum residual distance via

identity ðYÞ ¼ argmin
i
frig ð24Þ

3.6 Computational complexity

Obviously, the computational complexity of the proposed

SLSDL mainly depends on the complexity of Algorithm 1,

which consists of four steps (i.e., updating a, b, c, and w).
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Note here that the optimization problems of a, b, c have the

same optimization manner, i.e., the proposed CSPP. As

present in Sect. 3.4, the computational complexity of

solving CSPP is OðldÞ, where l is the iterators of Newton

method for solving CSPP, and d is the dimension of sam-

ple. Therefore, the updating problems of a, b, c cost

OðlmdÞ, OðldÞ, and OðlmdÞ, respectively. Moreover, the

updating of w costs OðmÞ. In summary, the computational

complexity of Algorithm 1 is Oðtð2 � lmd þ ld þ mÞÞ,
where t is the number of iterations of Algorithm 1. Since l

and m are very small numbers, the computational com-

plexity of our SLSDL can be approximately complexity

OðtdÞ.

4 Experiments

To verify the performance of our proposed method, we

make the comparison with some baseline methods on four

benchmark image set datasets. All comparison experiments

are performed by MATLAB 2017b on the PC with an Intel

Core i7 (2.9GHz) CPU and 32GB RAM. Numerous

experimental results of this section demonstrate the supe-

riority of our proposed method.

4.1 Experimental setup

We perform experiments on the four common benchmark

face set datasets, which are the Honda/UCSD (Honda)

[17, 18], CMU Mobo (Mobo) [18, 39], YouTube Celebri-

ties (YTC) [18, 39, 40] datasets, and Labeled Faces in the

Wild Dataset (LFW) [41, 42], as shown in Fig. 3. Note

here that we extract the traditional features and deep fea-

tures successively for comprehensive evaluation of the

proposed method. In our experiment, we set the numbers of

dictionary atoms as k ¼ 20 if there are no special instruc-

tions. According to the following parameter sensitivity

analysis, the trade-off parameter k is set as k ¼ 1 for Mobo

dataset and k ¼ 0:01 in three remaining benchmark data-

sets for simplicity.

Our SLSDL is compared to several representative clas-

sification methods for face image set. They were, respec-

tively, AHISD [15], CHISD [15], SANP [16], ISCRC-‘1
[18], ISCRC-‘2 [18], RNP [17], DRM-WV [32], PLRC

[21], PDL [20], and LSDL [33]. To obtain the average

classification accuracies and standard deviations, we adopt

classical approaches which set the size [50, 100, 200] in

the first three experiments, respectively. The latest exper-

iment performs with the various resolutions and the deep

feature. To observe the effect by using the deep features,

we add several comparison methods, such as DLRC [30]

and DAR [31]. All comparison methods are performed

adopted the source codes, which are given by the authors’

homepage. And we use the recommended parameters

provided in their original papers for best performance.

4.2 Results on the Honda/UCSD dataset

Honda/UCSD dataset possesses 59 video sequences

involving 20 different subjects. Each sequence about 12–

645 frames constitutes an image set, which has large

variations. We use histogram equalization to eliminate the

influences of the illumination and then resize all face

images to 20� 20. Randomly, dividing all image sets into

two parts: 20 image sets are used to train and remaining 39

ones are used to test.

The experimental results are listed in Table 1 when the

gallery image sets have different number of frames. The

best results are shown in boldface. As can be seen, the

proposed SLSDL has the highest performance than other

(a) Honda/UCSD (b) CMU Mobo (c) YouTube Celebrities (d) Labled Faces in the
Wild

Fig. 3 Sample images of the four datasets. These faces contain high intra-class variations in the form of different poses, illumination variations,

expression deformations, and occlusions
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comparison methods. Both methods achieve much more

stable results in all instances and achieve the most perfect

classification accuracies, delightfully. However, the com-

parison methods can achieve better classification effect

only if the number of frames is 200. Notably, our methods

outperform the second best, DRM-MV, by over 3.1% and

0.7% when the number of frames is 50 and 100%,

respectively. The results are excellent demonstrations of

the superiority of our method, and it shows that our method

further enhances the robustness and discrimination.

4.3 Results on the CMU Mobo dataset

Mobo dataset contains 96 video sequences involving 25

persons, which walk on a treadmill. They implement var-

ious kinds of patterns, such as inclined, slow, fast, or car-

rying a ball. Histogram equalization also is adopted, and

then, all face images are resized to 30� 30. We randomly

choose an image set to train and the rest three ones to test

from each subject. For the sake of fairness, we perform

tenfold cross-validation experiments.

The experimental results of all methods are revealed in

Table 1, and the best results are shown in boldface. Notice

that overall the proposed SLSDL has slightly higher

accuracies than ISCRC and LSDL. More importantly,

SLSDL performs higher than ISCRC by 0.6% and 0.4%

when set size is 50 and 100, respectively, which is difficult.

4.4 Results on the YouTube Celebrities dataset

In YTC dataset, there are 1910 videos involving 47 actors

and politicians. Notice that it was collected from YouTube

Web site under uncontrolled real-life circumstance, and

these face image set tend to have large pose or expression

variation, and motion blur. Due to low quality of images

and highly compressed, apparently, the face recognition

task will be more challenging. Each face grayscale image is

resized to 30� 30. Randomly, choose three image sets to

train and six image sets to test, and conduct fivefold cross-

validation experiments.

The comparisons between all methods are summarized

in Table 2, and the best results are shown in boldface.

Notice that overall the LSDL and SLSDL both outperform

other methods. Even though LSDL already achieves very

high performance, SLSDL further improves performance

about accuracy and robustness. It is worth mentioning that

our SLSDL method gets the best performance reported so

far and achieves the accuracies up to 74.0%, 78.1%, and

76.0% in different size length. Specially, even though

image frames are only 50, our SLSDL has more perfect

performance than all comparison methods with different

numbers of image frames. This further demonstrates that

our method is superior to the comparison methods and has

great discriminability and robustness. Clearly, our method

can resist noise and even outliers for face image set clas-

sification under complex conditions. Compared to DRM-

MV, 11.7%, 9.9%, and 5.7% improvements are achieved

when frame is 50, 100, and 200, respectively, which is a

very surprising result. Meanwhile, we notice that our

average classification accuracies fluctuate with the increase

in the frame number, probably because more extra infor-

mation of faces description interferences when the set size

is 200.

4.5 Results on the labeled faces in the wild
dataset

LFW dataset covers more than 13,000 face images gath-

ered from the Internet. It uses two or more different images

of 1680 people as the image set. In LFW database, there are

Table 1 Classification

performance (%) of different

methods on the Honda/UCSD

and CMU Mobo datasets

Method Honda/UCSD CMU Mobo

Set size 50 Set size 100 Set size 200 Set size 50 Set size 100 Set size 200

AHISD [15] 82.0 84.6 89.4 91.6 ± 2.8 94.1 ± 2.0 91.9 ± 2.6

CHISD [15] 82.0 87.2 92.3 91.2 ± 3.1 93.8 ± 2.5 96.0 ± 1.3

SANP [16] 84.6 92.3 94.9 91.9 ± 2.7 94.2 ± 2.1 97.3 ± 1.3

RNP [17] 87.2 94.9 97.4 91.9 ± 2.5 94.7 ± 1.2 97.4 ± 1.5

ISCRC-‘1 [18] 89.7 97.4 100.0 93.5 ± 2.8 96.5 ± 1.9 98.7 ± 1.7

ISCRC-‘2 [18] 89.7 94.8 100.0 93.5 ± 2.8 96.4 ± 1.9 98.4 ± 1.7

PLRC [21] 87.2 97.4 100.0 92.1 ± 1.6 94.6 ± 1.9 97.5 ± 1.8

PDL [20] 87.2 94.9 97.4 92.5 ± 2.3 94.8 ± 1.9 96.6 ± 2.6

DRM-MV [32] 96.9 99.3 100.0 92.9 ± 1.7 96.2 ± 0.9 98.1 ± 0.8

LSDL [33] 100.0 100.0 100.0 93.5 ± 2.2 96.5 ± 1.8 98.5 ± 0.6

Our SLSDL 100.0 100.0 100.0 94.1 ± 2.1 96.8 ± 1.8 98.4 ± 1.4

The best results are shown in bold
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faces images with various illumination, poses and partially

obscured. We perform the alignment version LFW-a

[31, 42]. Similar to way [30], we resize all face images to

90� 78. The subset of LFW-a is composed of the classes

with more than 20 pictures, and it has 3032 images of 62

subjects. In addition, we want to see how effectively it

performs on the recent deep features. Hence, we select the

VggFace2 pretrained version of ResNet-50 (VggFace2-

ResNet-50) [31] to capture deep feature, and its feature

dimensions is 2048. We resize the raw grey-scale images of

the LFW-a dataset to 10� 10, 15� 10 and 30� 15, and

we utilize VggFace2-ResNet-50 to experiment. The raw

images and deep feature are used to evaluate the perfor-

mance. All images are randomly divided into gallery set

and probe set. we perform experiments by setting d ¼ 5

and k ¼ 3. And thirty-fold cross-validation experiments are

conducted.

As shown in Table 3, our SLSDL gains the best scores

in accuracy and standard deviation than other comparison

methods in LFW-a dataset. We also discover the accuracies

improvement when deep features are used. Clearly, the

resolution the can improve recognition accuracies from

Table 3. However, it is limited to the increase in accuracy

compared with that of deep features. These indicate that

deep features have more discrimination and robustness for

noisy variations than raw pixels. Excitedly, the accuracies

of our SLSDL can even be up to 100%. We also notice that

our SLSDL gains best recognition accuracies than all other

methods in low resolution. Compared to DAR-PE, 6.3%,

3.4%, and 2.1% improvements are achieved under different

resolutions, respectively. In addition, our extension SLSDL

method is further improved on the basis of LSDL. It

indicates that our SLSDL method can enhance effective-

ness and robustness.

4.6 Running time comparison

As a real-world application, time cost is another notewor-

thy. Whereupon, we set the number of images per set to 50

and perform experiments about running time on YTC

dataset. As we can see from the last column of Table 2, the

running time of LSDL is slightly lower and is only 0.54 s.

Table 2 Classification

performance (%) and running

time of the compared methods

on the YTC dataset

Method Set size 50 Set size 100 Set size 200 Running time (Set size 50)

AHISD [15] 57.1 ± 8.1 59.7 ± 6.4 57.1 ± 8.1 0.92 ± 0.01

CHISD [15] 57.9 ± 6.8 62.7 ± 7.2 64.2 ± 7.5 1.64 ± 0.02

SANP [16] 56.7 ± 5.5 61.9 ± 8.1 65.4 ± 6.8 8.55 ± 0.94

RNP [17] 58.4 ± 6.9 63.2 ± 8.4 65.4 ± 7.2 0.22 ± 0.00

ISCRC-‘1 [18] 62.3 ± 6.2 65.6 ± 6.7 66.7 ± 6.4 0.08 ± 0.00

ISCRC-‘2 [18] 57.4 ± 7.2 60.7 ± 6.5 61.4 ± 6.4 0.04 ± 0.00

PLRC [21] 61.7 ± 8.2 65.6 ± 7.9 66.8 ± 7.5 6.21 ± 0.88

PDL [20] 63.9 ± 6.8 65.7 ± 7.7 67.1 ± 7.6 62.54 ± 5.26

DRM-MV [32] 62.3 ± 5.5 68.2 ± 6.2 70.3 ± 4.8 376.44 ± 15.79

LSDL [33] 72.2 – 8.7 77.2 – 9.0 75.7 – 10.5 0.54 ± 0.01

Our SLSDL 74.0 – 9.0 78.1 – 9.2 76.0 – 10.6 1.05 ± 0.01

The best results are shown in bold

Table 3 Classification

performance (%) of the

compared methods on the LFW-

a dataset

Method 10� 10 15� 10 30� 15 Deep Features

AHISD [15] 39.8 ± 1.1 42.2 ± 1.1 44.6 ± 1.0 95.6 ± 0.5

CHISD [15] 39.5 ± 1.0 42.0 ± 1.1 44.2 ± 1.0 95.6 ± 0.5

DLRC [30] 39.3 ± 1.0 42.0 ± 1.1 44.3 ± 1.0 97.3 ± 0.4

RH-ISCRC [18] 61.8 ± 1.1 66.2 ± 1.0 68.7 ± 1.0 98.1 ± 0.4

KCH-ISCRC [18] 44.1 ± 1.0 37.8 ± 1.2 56.0 ± 1.2 97.4 ± 0.5

PLRC [21] 42.4 ± 1.1 46.1 ± 1.1 48.1 ± 0.9 96.7 ± 0.3

PDL [20] 58.3 ± 1.3 63.2 ± 1.1 61.7 ± 1.3 98.2 ± 0.3

DAR-TE [31] 55.0 ± 1.1 63.8 ± 1.1 71.3 ± 1.0 98.6 ± 0.3

DAR-PE [31] 63.4 ± 1.1 69.0 ± 1.0 73.8 ± 1.0 99.7 ± 0.1

LSDL [33] 67.5 ± 1.2 71.6 ± 1.0 75.8 ± 1.2 99.4 ± 0.2

Our SLSDL 69.7 ± 1.0 72.4 ± 1.1 75.9 ± 1.1 100.0 ± 0.0

The best results are shown in bold
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And our SLSDL is slightly higher time cost about 1.05 s.

Note here that the running time of our SLSDL has same

order of magnitude as that of ISCRC and RNP about 1 s.

Clearly, we perform a self-weighted strategy for improving

image set classification performance without sacrificing too

much computation time.

4.7 Latent sparse property analysis

As we make a point in Sect. 3.1, SLSDL has the latent

sparse property. Here proving this point from experiments.

We conduct experiments by setting k ¼ 50 and d ¼ 10 on

Honda dataset. Coding coefficients of the gallery sets a are

on the left and that of the probe set b are on the right from

Fig. 4. It is clearly that red coefficients correspond to the

correct class, and the coefficients solutions a and b of our

method have the sparsity. The experimental results of

reconstructed face images and residuals are shown in

Fig. 5. All Xiai denote the virtual point of each gallery

image set. The reconstruction residual is simplified to

kXiai � Ybk22. The smallest residual between the probe

image set and the gallery image sets is highlighted with a

red color, which represents that they are the same subject.

This demonstrates that our SLSDL can not only have

sparse solutions to enhance robustness but also reduce

computational complexity.

4.8 Convergence analysis

By the previous description, our SLSDL is clearly convex,

and it has closed-form solutions on the basis of the men-

tioned in Sect. 3.2. By evaluating on the Honda, Mobo,

YTC, and LFW-a datasets, the convergence curves of the

proposed SLSDL method are shown in Fig. 6. It shows that

SLSDL converges fast and the objective function value

achieves stable state about 15–20 iterations, even as long as

5 iterations on the first two databases.

4.9 Parameter sensitivity

Pleasantly, our SLSDL has only one parameter, which

needs to be adjusted. For obtaining its optimum perfor-

mance of parameter k, we set adjustment range varied from

f10�7; . . .; 101g, and fix d ¼ 50. For the sake of simplicity,

we perform experiment as representativeness in Mobo and

YTC. The performance curves are revealed in Fig. 7. We

observe that the classification accuracy fluctuates with k,
and the best effects are achieved at the appropriate values.

The recognition accuracies decrease rapidly when k ¼ 10,

because it plays a supporting role. Obviously, SLSDL can

obtain the more perfect classification accuracies when k ¼
1 and k ¼ 0:01 on two benchmark datasets, respectively.

This further indicates that the latent sparse normalization

and a self-weighted term can enhance the discrimination.

Overall, we suggest to set k as a relatively small value

within the range of f10�3; . . .; 1g for different datasets.
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Fig. 4 Coding coefficients of the gallery sets (i.e., a) are on the left

and that of the probe set (i.e., b) are on the right, produced by the

proposed SLSDL method. Honda dataset contains 20 subjects, and

k ¼ 10

Fig. 5 Virtual faces produced by our SLSDL method on the Honda/UCSD dataset. Xa, Yb, and Xiai represent the virtual face point of the whole

gallery sets X, the probe set Y, and the i-th gallery set Xi, respectively
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4.10 Ablation analysis

In our method, a new discriminative strategy is proposed to

control the contribution of each gallery set, such that each

gallery set can be treated differently. It can adjust the

coding coefficient errors to enhance the set discrimination.

We dub it as latent sparse representation (LSR) when

LSDL does not have a discriminative term, i.e., k ¼ 0. In

order to demonstrate this, we perform experiments by

setting k ¼ 0 and d ¼ 50 in the first three datasets, and

setting k ¼ 3 in the LFW-a. Table 4 shows that perfor-

mance decreases without the discriminative term on Mobo,

YTC, and LFW-a. Hence, it clearly shows that the dis-

criminative term can boost the discrimination power. In the

addition, we can see easily that the correct gallery (the red

mark) has a larger weight value, and the incorrect galleries

have lower weight values from Fig. 8. Clearly, the

weighted value can boost the correlation power of homo-

geneous sets while limiting the correlation power of

heterogeneous sets.

5 Conclusion

This paper proposes a novel SLSDL method for image set

classification. SLSDL considers the differences of contri-

butions between the whole gallery sets and each gallery set

and proposes a self-weighted strategy to reflect the corre-

lation between the whole gallery set and each gallery set,

which is different from the existing point-to-point distance-

based methods; moreover, SLDSL proposes a latent sparse

normalization with capped simplex constraint to avoid high

running time as well as enhancing robustness. A large

number of experiments on four public benchmark face set

datasets demonstrate that SLSDL is superior to the com-

petitors about computational speed and classification

performance.

Although SLSDL has achieved promising performance,

some aspects still deserve to study in the future. (1) We

will integrate hash learning and deep learning [43] for

large-scale image set classification. (2) We will introduce

multiple kernel learning [37] for handling the problem of

nonlinear image set classification.
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