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Abstract
Recently, numerous meta-heuristic-based approaches are deliberated to reduce the computational complexities of several

existing approaches that include tricky derivations, very large memory space requirement, initial value sensitivity, etc.

However, several optimization algorithms namely firefly algorithm, sine–cosine algorithm, and particle swarm opti-

mization algorithm have few drawbacks such as computational complexity and convergence speed. So to overcome such

shortcomings, this paper aims in developing a novel chaotic sine–cosine firefly (CSCF) algorithm with numerous variants

to solve optimization problems. Here, the chaotic form of two algorithms namely the sine–cosine algorithm and the firefly

algorithms is integrated to improve the convergence speed and efficiency thus minimizing several complexity issues.

Moreover, the proposed CSCF approach is operated under various chaotic phases and the optimal chaotic variants

containing the best chaotic mapping are selected. Then numerous chaotic benchmark functions are utilized to examine the

system performance of the CSCF algorithm. Finally, the simulation results for the problems based on engineering design

are demonstrated to prove the efficiency, robustness and effectiveness of the proposed algorithm.

Keywords CSCF � Engineering design problems � Variants � Chaotic maps � Optimization function

1 Introduction

In recent decades, numerous algorithms have been pro-

posed to overcome various optimization problems in the

field of engineering [1]. These optimization problems

determine the value of a few parameters under specific

circumstances for optimizing the objective function. In

general, the objective function is a specific characteristic

that provides a minimal or maximal solution based on the

problem. Therefore, to attain best optimistic solutions, the

optimizations are broadly utilized in various applications

such as industrial design, manufacture design, design

analysis and engineering design [2]. There occur several

optimization problems while obtaining optimal solution,

and these optimization problems are categorized into sev-

eral types namely dynamic or static, continuous or discrete,

single-objective or multi-objective as well as constrained

or unconstrained. Hence, to enhance the accuracy and the

efficiency of such optimization problems, several research

scholars depend upon meta-heuristic algorithms for easy

implementation, gradient information and to avoid or

bypass local optimization problem [3].

At the same time, the meta-heuristic algorithm plays a

significant role in engineering field due to its wide range of

challenges. But the nature-inspired meta-heuristic algo-

rithms are relatively straight forward and are inspired

mostly by unsophisticated ideas. Normally, the meta-

heuristic algorithms are divided into four main categories

namely swarm-based algorithm, evolutionary-based algo-

rithm; human behaviour-based algorithm as well as physic-

based algorithm [4]. Optimization algorithms such as dif-

ferential evolution (DE) algorithm [5], evolution strategy

(ES) algorithm [6], backtracking search optimization

algorithm [7, 8], and genetic algorithm (GA) [9] are cate-

gorized under evolutionary-based technique [10–12]. Few

algorithms namely firefly (FF) algorithm [13–15], particle

& Bryar A. Hassan

bryar.hassan@kissr.edu.krd

1 Kurdistan Institution for Strategic Studies and Scientific

Research, Sulaimani, Iraq

2 Department of Computer Networks, Technical College of

Informatics, Sulaimani Polytechnic University, Sulaimani,

Iraq

123

Neural Computing and Applications (2021) 33:7011–7030
https://doi.org/10.1007/s00521-020-05474-6(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05474-6&amp;domain=pdf
https://doi.org/10.1007/s00521-020-05474-6


swarm optimization (PSO) algorithm [16, 17], artificial bee

colony (ABC) algorithm [18] are categorized under swarm

intelligence approach; gravitational search (GS) algorithm

[19], black hole (BH) algorithm [20] are few algorithms

that are characterized under physic-based techniques. The

human-based behaviour comprises of Mine Blast (MB)

algorithm [21] and League Championship (LC) algorithm

[22]. The evolutionary algorithm imitates the behaviour of

evolutionary processes thereby producing a global optimal

offspring value. Then the candidate solutions are enhanced

and the iterative processes are continued until it satisfies

the terminating criteria [23, 24].

In the present study, a novel chaotic sine–cosine firefly

(CSCF) algorithm is developed with numerous variants to

solve optimization problems. Then, the chaotic form of two

algorithms namely the sine–cosine algorithm (SCA) and

the firefly (FF) algorithms is integrated to improve the

convergence speed and efficiency thereby minimizing

several complexity issues. In addition to this, the proposed

CSCF approach is operated under various chaotic phases

and the optimal chaotic variants containing the best chaotic

mapping is selected to determine the efficiency of the

system.

This research study fulfils four main objectives

• Demonstrating a novel chaotic sine–cosine firefly

(CSCF) algorithm to improve the convergence speed

and efficiency thereby minimizing several complexity

issues.

• Developing numerous variants such as Variant-I, Vari-

ant-II, Variant-III, Variant-IV and Variant-V of the

novel CSCF algorithm for chaotic tuning of numerous

parameters.

• Utilizing numerous chaotic benchmark functions to

examine the system performance of the CSCF

algorithm.

• Demonstrating engineering design problems to prove

the efficiency, robustness and effectiveness of the CSCF

algorithm.

The rest of the paper is structured as follows. Section 2

provides the basics of two different types of algorithms

namely firefly (FF) algorithm and sine–cosine algorithm

(SCA). Section 3 describes the proposed CSCF algorithm

by forming diverse variants to tune the parameters. Then

Sect. 4 demonstrates the chaotic and benchmark functions

to determine the efficiency of the system; the comparative

analysis of various approaches with the proposed CSCF

algorithm and finally the engineering design problems are

solved. Section 5 concludes the article.

2 Related literal works

2.1 Improved firefly (IFF) algorithm

2.1.1 Standard firefly algorithm

The Firefly algorithm was first developed by Xin-She at the

University of Cambridge. The firefly algorithm imitates the

characteristics of the firefly as well as its locomotion

activities [25]. This firefly algorithm is considered to be a

more efficient approach in finding solutions for various

crucial engineering related issues because of very high

exploration capability, its brightness and flashlight capa-

bility. Also, the firefly algorithm works under the principle

of bionics [26]. The most effective firefly algorithm is

selected to obtain the best optimal value despite the com-

plex and nonlinear design. In general, each individual

firefly has the capability to flash its light to attract the

adjacent firefly thereby providing arbitrary solutions.

A Purpose for flashing light

• Attracting the partner for mating since every firefly

is unisexual in nature

• The attracting capability is proportional to the

brightness. The firefly also utilizes its flashing light

capability to attract the prey for survival.

• Moreover, the firefly uses its flashing light to

protect themselves from other enemies [27].

B Light intensity variation and attraction capability

The light intensity variation and the attraction capability

play a significant role in the firefly algorithm. The fitness

value is determined by the light intensity. It also has the

capability to deal with several multi-optimization problems

and are highly nonlinear [28]. Here, the firefly with high or

low intensity gets attracted with the neighbouring firefly

having high or low intensity [29]. Let us consider, DXY be

the distance among two fireflies namely X and Y . Fur-

thermore, the intensity of the light diminishes concerning

the distance from the source; also the media absorbs the

light. Then as per the law of square inverse, the expression

for the intensity of the light is represented in Eq. (1).

IðDÞ ¼ IS
D2

XY

ð1Þ

From Eq. (1), the source intensity is represented as IS.

Then the expression for the intensity of the light IL that

varies concerning the distance DXY is mentioned in Eq. (2).

Therefore,

IL ¼ I0e
�bDXY ð2Þ
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From the above equation, b is the absorption coefficient

of the fixed light. The initial intensity of the light is denoted

as I0.

Each firefly contains a very strong attractive capability.

This implies the strong attracting behaviour of a firefly over

neighbouring firefly groups. Based on the distance between

the two fireflies namely X and Y , the attractive capability is

varied. We know that the attractive capability of the firefly

is directly proportional to the intensity of the light of the

neighbouring fireflies. Therefore, the expression based on

the attractive function is delineated in the following

equation.

a ¼ a0e
�bD2

XY ð3Þ

From Eq. (3), the attractive capability at distance DXY ¼
0 is denoted as a0. For a fixed, characteristic length

becomes

W ¼ b� 1=M ! 1;M ! 1 ð4Þ

The Cartesian distances among two different fireflies

X and Y are denoted as PX and PY correspondingly.

Therefore, the Cartesian distance formula for two fireflies

is expressed in the following expression.

DX;Y ¼ PX � PYk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xa

R¼1
ðPR

X�
q

PR
YÞ

2 ð5Þ

Then the movement of attraction from one fly to another

fly, i.e., X and Y are characterized in Eq. (6). The deter-

mination of firefly movement with respect to the attracting

capability is defined as,

PRþ1
X ¼ PR

X þ a0e
�bD2

XY ðPY � PXÞ þ Jg ð6Þ

From Eq. (6), a0e
�bD2

XY ðPY � PXÞ be the attractive term
and Jg be the term containing random variable ranges from

[0, 1].

2.1.2 Improved firefly algorithm

In the firefly algorithm, the best optimal value provides the

firefly with very high brightness. The model of other

classical approaches suffers from the trapping of local

minima due to the nonlinear design strategy. Therefore

improved firefly algorithm was developed to improve the

trapping of local minimum value. Here, an additional term

is added to the standard firefly algorithm to achieve better

randomness and efficiency of the firefly. Then the differ-

ence among the arbitrary firefly and the Xth position of the

firefly is obtained thereby achieving the effective ran-

domness of the firefly [30].

The brightest firefly found among the firefly group is

said to be known as best firefly BF . The random number is

denoted as R4 and the value ranges from [0,1]. Even though

the computational complexity is high in case of improved

firefly optimization, the local trapping quality is good for

tuning the J and K parameter value. Therefore, the modi-

fied firefly algorithm is referred to as improved firefly

algorithm. Then the updated expression is determined in

the following section.

PRþ1
X ¼ PR

X þ a0e
�bD2

XY ðPY � PXÞ þ Jgþ KðPA � PXÞ
ð7Þ

where A 6¼ X and Y : KðPA � PXÞ be the term containing

random variable ranges from [0, 1]. The pseudo-code for

improved firefly algorithm is delineated as follows.

2.1.3 Chaotic firefly algorithm

The fireflies are also referred to as lighting bugs that are

found during the night time particularly in the summer

season [31]. In chaotic optimization approaches, the

chaotic firefly variables replace the random variables [32].

The chaotic firefly algorithm selects the initial population

of the search algorithm. The absorption coefficient b found

in the solution space and the firefly positions is updated by

employing the chaotic sequence demonstrated by the

chaotic maps that are represented in Table 1. From Eq. (6),

the step size J affects the random vector g and the chaotic

time series replaces the third term and the mathematical

expression is obtained as follows.
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Table 1 Chaotic Mapping (CM)

description and its functions
No Name of the maps Mapping functions

Chaotic Map 1 Logistic ZJþ1 ¼ AZJð1� ZJÞ
Chaotic Map 2 Tent

ZJþ1 ¼
b� ZJ ; ZJ\0:5
bð1� ZJÞ; 0:5� ZJ

�

Chaotic Map 3 Sinusoidal ZJþ1 ¼ AZ2
J sin p ZJð Þ

Chaotic Map 4 Gauss
ZJþ1 ¼

0; ZJ ¼ 0
1

ZJ
Modð1Þ; ZJ 2 ½0; 1�

(

Where, 1
ZJ
Modð1Þ ¼ 1

ZJ
� 1

ZJ

h i

Chaotic Map 5 Circle
ZJþ1 ¼ ZJ þ B� A

2p

� �

sin 2pJð Þmod ð1Þ;

where A ¼ 0:5 and B ¼ 0:2

Chaotic Map 6 Sinus ZJþ1 ¼ 2:3ðZJÞ2 sinðpZJÞ
Chaotic Map 7 Iterative ZJþ1 ¼ sin Ap

ZJ

� �

; A 2 ½0; 1�

Chaotic Map 8 Chebyshev ZJþ1 ¼ 2:3ðZJÞ2 sinðpZJÞ
Chaotic Map 9 Henon ZJþ1 ¼ 1� PðZJÞ2 þ QZJ � 1

Chaotic Map 10 Intermittency

ZJþ1 ¼
dþ ZJ þ BZN

J ; 0\ZJ �P

ZJ � P

1� P
; P\ZJ � 1

8

<

:

9

=

;

Chaotic Map 11 Singer ZJþ1 ¼ að7:8ZJ � 23:3Z2
J þ 28:7Z3

J � 13:3Z4
J Þ

Chaotic Map 12 Sine ZJþ1 ¼ A
4
sin pZJð Þ; 0\A� 4
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gX ¼ CHAOSKX ð8Þ

From Eq. (8), the chaotic maps are represented by

CHAOSKX ; where the superscript K represents the type of

chaotic map to be determined. In a similar way, the

attractive term a0 from Eq. (6) is substituted by the chaotic

term that is represented in the following equation.

a0 ¼ a0CHAOS
K
X ð9Þ

The random motion of the firefly plays a significant role

in determining the candidate [where a0 (attractive term)

relies on b (light absorption coefficient)] from the popu-

lation. In addition to these two limiting cases ðb ! 0; a !
a0Þ are formulated while determining b. Therefore, the

entire fireflies can spot one another and they start moving

randomly when b becomes 1.

PRþ1
X ðT þ 1Þ ¼ PR

XðTÞ � a0e
�bD2

XY PXðTÞ ð10Þ

The light absorption coefficient then employs in char-

acterizing the dissimilarities in the attractiveness as well as

the values are vitally imperative to determine the conver-

gence capability and the speed of the firefly algorithm.

2.2 Sine–cosine (SC) algorithm

In general, the optimization approach based on population

initiates its optimization method containing a random

solution. The sine–cosine algorithm was first developed by

Mirjalili in the year of 2016 for solving several optimiza-

tion issues [33]. The SC algorithm utilizes sine and cosine

functions to determine the best optimal solution. In SCA,

the distance and the movement among each feature solu-

tion and the best member are affected. Therefore, the SCA

employs a balance equation utilizing two phases namely

the exploration phase and the exploitation phase. The

solutions are changed randomly in the exploration case

whereas, in the exploitation phase, the random variables

are less.

The updating equation for both the exploitation and the

exploration phase is expressed in the following equation.

PTþ1
X ¼ PT

X þ R1 sin ðR2Þ R3Z
T
X � PT

X

�

�

�

� ð11Þ

PTþ1
X ¼ PT

X þ R1 cos ðR2Þ R3Z
T
X � PT

X

�

�

�

� ð12Þ

From Eqs. (11) and (12), PT
X signifies the position of the

current solution, where X represents the dimension and T

represents the iteration. The random numbers are repre-

sented as R1;R2 and R3. The position of the destination

point in Xth dimension is represented as ZX; || represents

the absolute value.

Then the combined equation based on sine–cosine

algorithm is represented as follows. Therefore,

PTþ1
X ¼

PT
X þ R1 sin ðR2Þ R3Z

T
X � PT

X

�

�

�

�; R4 \0:5

PT
X þ R1 cos ðR2Þ R3Z

T
X � PT

X

�

�

�

�; R4 � 0:5

(

ð13Þ

From Eq. (13), the random number is denoted by R4

and the random values may range from [0, 1]. From

Eqs. (11)–(13), the region of next position that present in

between the destination and the solution is denoted by R1;

the movement outwards the destination is represented by

R2. The random weight is represented utilizing two dif-

ferent constraints determined in the following equation.

if R3 [ 1; stochastically emphazized

if R3\1; stochastically deemphazized

�

ð14Þ
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Moreover, the exploration and the exploitation phase of

the algorithm are to be balanced for finding the search

space region. Therefore, Eqs. (11) to (12) are modified for

balancing both the phases that are determined in the fol-

lowing equation. Therefore,

R1 ¼ A� T
A

t
ð15Þ

From Eq. (15), the maximum iteration number and the

current iterations are represented by t and T , respectively,

and the constant term is denoted as A.

The general procedure of the sine–cosine algorithm is

represented in the following section.

2.2.1 Chaotic sine–cosine algorithm

In this section, the parameters R1, R2 and R3 of Eq. (13) are

modulated using chaotic maps during iterations that are

described in Sect. 3 [Eqs. 18 to 20]. The meta-heuristic

algorithms use a conventional method to find the best

optimal solutions that are based on iteration; also it relies

on random solutions to replicate the naturally occurring

phenomenon [34]. More clear that, there occurs a major

shortcoming based on the solution outcome and the con-

vergence speed since these solutions rely upon random

parameters. Consequently, the random parameters are

replaced with the chaotic parameters also; numerous

chaotic mapping functions are employed to enhance the

overall performances of the optimization approach [35]. In

addition to this, new parameters are introduced to replace

the random numbers and functions with various deter-

ministic numbers [36]. Also, the standard distributive

functions namely Gaussian distribution [37] and uniform

distributions are replaced with the non-standard distribu-

tive functions namely chaotic-based optimization algo-

rithms. Moreover, the chaotic forms of the sine–cosine

algorithms are employed in boosting the performances of

the sine–cosine algorithm [38].

3 Proposed CSCF algorithm

Numerous meta-heuristic-based approaches are deliberated

to eliminate the computational complexities of several

existing approaches namely complex and tricky deriva-

tions, the requirement of very large memory space, initial

value sensitivity etc. In general, the meta-heuristic-based

approaches are deliberated to reduce the computational

complexities of several existing approaches that contain

complex and tricky derivations, the requirement of very

large memory space, initial value sensitivity etc. However,

several optimization algorithms such as firefly algorithm,

sine–cosine algorithm, particle swarm optimization algo-

rithm have few drawbacks such as computational com-

plexity and convergence speed. So to overcome such

shortcomings, this paper aims in developing a novel

chaotic sine–cosine firefly (CSCF) algorithm with numer-

ous variants to solve optimization problems.

In this paper, the improved firefly algorithm and the

sine–cosine optimization algorithms are integrated to form

a sine–cosine firefly approach. Then the integrated algo-

rithm aims in hybridizing the chaotic algorithm [i.e. chaotic

sine–cosine firefly (CSCF) approach] containing various

chaotic mapping functions. The proposed CSCF approach

is operated under various chaotic phases and the optimal

chaotic variants containing the best chaotic mapping are

selected. The general architecture of the proposed CSCF

algorithm is represented in Fig. 1. The initial step involves

in parameter initialization followed by the random initial-

ization of the function. Then the fitness function is evalu-

ated and if the trial is less than the limit, the chaotically

tuned Jth and Kth of the firefly algorithm is formulated to

obtain the best optimal solution; else the chaotically tuned

R1, R2 and R3 of the sine–cosine algorithm are formulated

to obtain the best optimal solution. The boxes that are

highlighted characterize the new variants of the original

algorithm. The diverse variants of CSCF approaches are

delineated in the following section.

3.1 Variants of CSCF approach

The following subsections describe numerous variants of

the CSCF (sine–cosine algorithm and firefly algorithm)

approach in accordance with the tuned parameters.

3.1.1 Variant-I

The parameter J of Eq. (7) is modified by chaotic maps

(CM). Therefore, the new version of Eq. (7) is determined

in the following equation.

PRþ1
X ¼ PR

X þ a0e
�bD2ðPY � PXÞ þ JCHAOSð:ÞðgÞ þ KðPA

� PXÞ
ð16Þ

From Eq. (16), the chaotic random movement of the

firefly is denoted as JCHAOSð:Þ and are determined by

JCHAOSð:Þ ¼ J:CMI . Here, J is a fixed value in standard

firefly, while in variant-I, it evolves chaotically.

3.1.2 Variant-II

In this version, the parameter K of Eq. (7) is modified such

that it is changed chaotically using the chaotic maps (CM).

Therefore,
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PRþ1
X ¼ PR

X þ a0e
�bD2ðPY � PXÞ þ JðgÞ þ KCHAOSð:ÞðPA

� PXÞ
ð17Þ

From the above equation, KCHAOSð:Þ represents the

chaotic fractional difference between the arbitrary fireflies.

The standard firefly optimization algorithm generates the

random position, whereas the chaotic firefly generates

according to the chaotic maps.

3.1.3 Variant-III

The parameter R1 of Eq. (13) is modulated using chaotic

maps during iterations. Thus Eq. (13) is changed to,

PTþ1
X ¼

PT
X þ R

CHAOSð:Þ
1 sin ðR2Þ R3Z

T
X � PT

X

�

�

�

�; R4 \0:5

PT
X þ R

CHAOSð:Þ
1 cos ðR2Þ R3Z

T
X � PT

X

�

�

�

�; R4 � 0:5

(

ð18Þ

From Eq. (18), in standard sine–cosine algorithm, R1 is

created randomly between 0 and 1, while in variant III, it is

a chaotic number between 0 and 1.

Fig. 1 Flow chart representation

of a CSCF algorithm
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3.1.4 Variant-IV

In this version, R2 the parameter is modified such that it is

chaotically altered using CM. Then,

PTþ1
X ¼

PT
X þ R1 sin ðRCHAOSð:Þ

2 Þ R3Z
T
X � PT

X

�

�

�

�; R4 \0:5

PT
X þ R1 cos ðRCHAOSð:Þ

2 Þ R3Z
T
X � PT

X

�

�

�

�; R4 � 0:5

(

ð19Þ

where in the standard SC algorithm, the random number

varies from 0 to 1, while in variant IV, it is a chaotic

number between 0 and 1.

3.1.5 Variant-V

The parameter R3 of Eq. (13) is modulated using chaotic

maps during iterations. Thus Eq. (13) becomes,

PTþ1
X ¼

PT
X þ R1 sin ðR2Þ R

CHAOSð:Þ
3 ZT

X � PT
X

�

�

�

�

�

�
; R4 \0:5

PT
X þ R1 cos ðR2Þ R

CHAOSð:Þ
3 ZT

X � PT
X

�

�

�

�

�

�
; R4 � 0:5

8

>

<

>

:

ð20Þ

From the above equation, R
CHAOSð:Þ
3 is the chaotic ran-

dom value that ranges from 0 to 1.

4 Result and discussions

In this section, various experiments are conducted to

evaluate the efficiency and the performances of the chaotic

sine–cosine firefly (CSCF) algorithm. Owing to its hypo-

thetical nature, various chaotic functions and benchmark

functions are discussed to obtain better optimal results. In

addition to this, the proposed CSCF algorithms are com-

pared with several other optimization algorithms such as

firefly (FF) algorithm [30], sine–cosine algorithm (SCA)

[33], particle swarm optimization (PSO) approach [39],

artificial bee colony (ABC) optimization algorithms [40] to

evaluate the effectiveness of the CSCF algorithm. Fur-

thermore, followed by the comparison of optimization

algorithms, a detailed description of the real-time engi-

neering applications is delineated in the following sec-

tion. The experimental analysis is carried out under the

platform of MATLAB R2016a by using the operating

system as Windows 10. The simulations are done on a

central processing unit containing Intel Core (TM) i7-

6700HQ CPU @ 2.60 GHz with 8G of memory. Then the

chaotic benchmark functions and the test functions are

explained as follows.

4.1 Chaotic mapping (CM) and benchmark
functions

In this section, numerous chaotic benchmark functions are

utilized to improve the system performance of the CSCF

algorithm [41]. The complex operations, its nature and

several other possessions of these chaotic functions are

obtained easily from the definitions. Then the chaotic

benchmark functions for CSCF algorithm is obtained in

Table 1. Table 2 represents the benchmark functions with

three different models namely uni-modal test function,

multi-modal test function and three fixed dimensions multi-

modal test function. Here 20 benchmark functions are

employed to investigate the system performances. In

Table 2, Fn represents the test functions, DM and FOV

signify the dimensional value and the optimal value,

respectively.

4.2 Comparison of CSCF with sine–cosine firefly
algorithm

In this section, the chaotic sine–cosine firefly is compared

with sine–cosine and firefly algorithms by using four dif-

ferent parameters namely mean (l) standard deviation (r),
best (B) and worst (W) values. For each functions, the size

of the population is predetermined as 20 and the subse-

quent dimensional values may range from 20, 50 and 100,

respectively. In addition to this, the maximum iteration

value is set as 500. This paper adopts the technique of

scientific notations and the optimal value for various

optimization algorithms are represented in bold. The

comparative analyses of CSCF and sine–cosine firefly

algorithms are mentioned in Table 3. From the table, the

comparative analysis reveals that the proposed CSCF

algorithm provides better performances when compared

with SCF approach. Then Table 4 provides the comparative

analysis of CSCF with SCF for different dimensions

namely D = 20, D = 50, D = 100. Then the convergence

curve is compared for the proposed CSCF and SCF algo-

rithms for various dimensions and the graphical analysis

for four functions namely Fn5, Fn10, Fn15 and Fn20 for

D = 50 is mentioned in Fig. 2. The analysis reveals that the

proposed CSCF approach enhances the solution to a very

less value. Also, these function curves signify the

exploitation capability of the proposed CSCF approach.

4.3 Comparison of CSCF with various
optimization algorithms

This section demonstrates the comparative analysis of the

proposed CSCF algorithm with various other optimization

algorithms such as firefly (FF) algorithm [30], sine–cosine
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Table 2 Benchmark functions

Fn Mathematical equations DM Ranges FOV

Fn1

Fn1 ¼ �20Exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

J

XJ

K¼1
P2
M

r

 !

�Expð1
J

X

J

K¼1

COSð2pPIÞ þ 20þ E

20 ½�30; 30� 0

Fn2

Fn2 ¼ 1
4000

P

J

K¼1

P2
K �

QJ
K¼1 cos

P1
ffiffiffi

K
p
� �

þ 1
20 ½�600; 600� 0

Fn3

Fn3 ¼ 30þ
P

J

K¼1

PKb c
20 ½�5:12; 5:12� - 6J ? 30

Fn4

Fn4 ¼
P

J

K¼1

sin ð10 LogðPKÞÞ
20 ½0:25; 10� - J

Fn5

Fn5 ¼
P

J

K¼1

P5
K � 3P4

K þ 4P3
K þ 2P2

K � 10PK � 4
�

�

�

�

20 ½�10; 10� 0

Fn6 Fn6 ¼ P2
K

20 [- 100, 100] 0

Fn7

Fn7 ¼
P

J

K¼1

P

K

K�1

PK

� �2 20 [- 100, 100] 0

Fn8

Fn8 ¼
P

J

K¼1

PK þ 0:5j jð Þ2
20 [- 10,10] - 3.214

Fn9

Fn9 ¼
P

J

K¼1

�PK sin
ffiffiffiffiffiffiffiffiffi

PKj j
p
	 
 20 [- 5.12, 5.12] 0

Fn10

Fn10 ¼
P

J

K¼1

P2
K � 10 cos ð2pPKÞ

	 


þ 10
� � 20 [- 200, 200] 0

Fn11 Fn11 ¼ 4P2
1 � 2:1P4

1 þ 1
3
P6
1 þ P1P2 � 4P2

2 � 4P4
2

20 [- 5, 5] - 1.6428

Fn12 Fn12 ¼ ½1þ ðP1 þ P2 þ 1Þ2ð19� 14P1 þ 3P2
1

� 14P2 þ 6P1P2 þ 3P2
2Þ�

� ½30þ ð2P1 � 3P2Þ
2ð18� 32P1

þ 12P2
1 þ 48P2 � 36P1P2 þ 27P2

2Þ�

20 [- 3, 3] 3

Fn13

Fn13 ¼ �
P

10

K¼1

P� YIð ÞðP� ZKÞT þ ZK
� ��1 20 [0, 20] - 10.4673

Fn14

Fn14 ¼
P

J

K¼1

KP4
K þ Random ½0; 1Þ

20 [- 1.28,1.28] 0

Fn15

Fn15 ¼
P

J

K¼1

�PI sin ð
ffiffiffiffiffiffi

PK

p
Þ

20 [- 500, 500] 0

Fn16 Fn16 ¼ Max PKj j; 1�K � Jf g 20 [- 600, 600] 1

Fn17 Fn17 ¼
PJ¼1

K¼1 ½100ðPK¼1 � P2
KÞ

2 þ ðPK � 1Þ2� 20 [- 65, 65] - 209

Fn18

Fn18 ¼ 1
25

P

6

K¼1

P2
I �

Q6
K¼1 cos ð P1

ffiffiffi

K
p Þ þ 1

20 [0, 1] - 3.33

Fn19

Fn19 ¼ p
J 10 sin ðpP1Þ þ

P

N

I¼1

ðPK � 1Þ2½1þ 10 sin2ððpPK�1Þ�þ

ðPJ � 1Þ2 þ
X

N

K¼1

UðPK ; 10; 100; 4Þ

8

>

>

<

>

>

:

9

>

>

=

>

>

;

20 [- 50, 50] 0

Fn20

Fn20 ¼ 0:1

sin2ð3pP1Þ þ
X

J

K¼1

ðPI � 1Þ2½1

þ sin2ð3pP1 þ 1Þ
þðPJ � 1Þ2½1þ sin2ð2pPJÞ�

þ
X

J

K¼1

UðPK ; 5; 100; 4Þ

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

20 [- 50, 50] 0
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Table 3 Comparative analysis of CSCF with SCF algorithm

Test fn CSCF SCF

l r B W l r B W

Fn1 1.23E?02 3.27E?03 5.27 E?03 6.37 E?02 7.37 E?02 2.17 E?05 6.38 E?02 9.52E?02

Fn2 2.46 E?03 2.49E?04 2.38 E?05 3.49 E?02 5.27 E?01 3.49 E?06 5.30 E?02 7.39 E?05

Fn3 2.62 E?03 6.38E?05 1.56 E?06 4.58 E?03 4.32 E?03 1.23 E?06 2.47 E?02 2.37 E?06

Fn4 1.47 E?04 4.50E?03 2.59 E?07 1.38 E?04 2.48 E?04 2.48 E?06 2.58 E?03 5.33 E?02

Fn5 3.65 E?02 3.59E?03 1.27 E?06 2.50 E?04 4.48 E?03 3.47 E?07 4.58 E?04 2.45 E?03

Fn6 2.47 E?02 1.49 E?04 2.50 E?04 5.37 E?05 6.58 E?05 4.45 E?08 5.68 E?05 4.57 E?04

Fn7 1.69 E?02 5.49 E?03 3.67 E?03 4.39 E?06 8.37 E?04 2.24 E?03 2.49 E?06 3.27 E?06

Fn8 1.50 E?02 1.37 E?03 4.28 E?03 2.54 E?07 3.28 E?04 1.34 E?02 7.48 E?04 1.36 E?07

Fn9 2.47 E?02 2.59 E?02 7.38 E?07 2.11 E?08 2.49 E?05 3.46 E?03 5.39 E?04 4.56 E?08

Fn10 3.46 E?02 5.28 E?02 3.31 E?02 4.87 E?02 1.25 E?02 4.61 E?02 3.18 E?02 6.27 E?02

Fn11 1.56 E?02 4.68 E?02 6.38 E?08 5.82 E?08 1.39 E?06 2.48 E?02 2.12 E?04 7.38 E?07

Fn12 2.15 E?04 7.47 E?06 2.46 E?09 7.95 E?23 2.68 E?07 4.57 E?03 3.34 E?07 3.27 E?06

Fn13 1.48 E?03 3.48 E?05 1.46 E?09 2.59 E?02 1.38 E?07 6.46 E?02 5.23 E?05 6.38 E?07

Fn14 2.48 E?05 1.37 E?07 2.27 E?07 1.22 E?11 2.59 E?07 4.68 E?02 2.37 E?07 3.27 E?09

Fn15 1.59 E?06 4.56 E?08 1.49 E?05 3.54 E?10 3.78 E?05 6.39 E?03 1.36 E?06 2.49 E?08

Fn16 1.67 E?05 3.28 E?07 3.48 E?05 4.28 E?08 2.40 E?05 7.35 E?05 1.48 E?04 1.27 E?05

Fn17 2.59 E?05 2.47 E?10 2.83 E?04 2.19 E?07 4.39 E?03 2.13 E?05 1.25 E?02 3.29 E?04

Fn18 3.86 E?07 1.39 E?09 2.49 E?07 1.37 E?04 2.59 E?03 1.46 E?03 2.49 E?02 2.19 E?03

Fn19 2.69 E?05 5.39 E?02 1.48 E?06 2.28 E?03 3.50 E?02 1.58 E?02 3.59 E?05 2.40 E?07

Fn20 1.78 E?05 3.28 E?03 5.30 E?05 1.38 E?02 2.28 E?06 1.30 E?02 4.37 E?07 1.38 E?05

Table 4 Comparative analysis

of CSCF with SCF for various

dimensions

Test fn D = 20 D = 50 D = 100

CSCF SCF CSCF SCF CSCF SCF

Fn1 7.48 E?04 2.59 E?05 2.47 E?10 2.46 E?09 3.49 E?06 5.30 E?02

Fn2 5.27 E?03 2.74 E?02 5.82 E?08 1.39 E?06 2.48 E?02 2.58 E?03

Fn3 4.58 E?04 1.22 E?11 3.48 E?04 3.34 E?07 7.47 E?06 2.46 E?09

Fn4 4.57 E?03 3.54 E?02 2.59 E?07 5.39 E?04 3.48 E?05 1.46 E?09

Fn5 5.23 E?05 3.48 E?05 1.48 E?04 1.38 E?02 1.37 E?07 2.27 E?07

Fn6 7.38 E?07 1.37 E?02 1.25 E?02 6.38E?05 1.56 E?06 4.58 E?03

Fn7 4.67E?03 2.47 E?10 2.83 E?04 2.19 E?07 5.39 E?04 4.56 E?08

Fn8 3.48 E?05 6.46 E?02 5.39 E?04 6.38 E?07 7.47 E?06 2.46 E?09

Fn9 2.54E?03 4.68 E?02 2.12 E?04 3.27 E?09 3.48 E?05 1.46 E?09

Fn10 5.28 E?02 5.82 E?08 4.48 E?03 3.47 E?07 4.58 E?04 2.49 E?02

Fn11 2.49 E?03 1.37 E?04 2.59 E?03 2.49 E?08 1.37 E?07 2.27 E?07

Fn12 1.59 E?03 4.56 E?02 1.46 E?04 5.39 E?02 7.38 E?05 2.59 E?05

Fn13 1.67 E?05 3.28 E?07 2.27 E?07 2.46 E?07 7.95 E?23 2.49 E?08

Fn14 2.62 E?03 6.38E?02 4.28 E?04 2.40 E?05 7.35 E?05 1.48 E?04

Fn15 8.37 E?03 2.24 E?03 2.83 E?04 7.37 E?02 2.49 E?02 7.35 E?05

Fn16 3.28 E?03 1.34 E?02 7.39 E?05 5.27 E?01 3.59 E?05 2.13 E?05

Fn17 4.28 E?08 2.47 E?02 2.37 E?06 4.32 E?03 2.13 E?05 1.25 E?02

Fn18 2.19 E?03 2.58 E?03 5.33 E?04 6.38 E?07 1.46 E?03 2.49 E?02

Fn19 3.86 E?03 1.39 E?02 2.49 E?04 3.27 E?09 1.58 E?05 3.59 E?05

Fn20 7.95 E?03 5.49 E?03 3.67 E?04 4.39 E?06 7.38 E?07 2.11 E?08

Total 12 10 11 5 9 3
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algorithm (SCA) [33], particle swarm optimization (PSO)

approach [39], artificial bee colony (ABC) optimization

algorithms [40] to evaluate the effectiveness of the CSCF

algorithm. Here, the dimension value range is assumed to

be D = 100, where each algorithm is implemented by using

20 benchmark functions. Moreover, the size of the initial

population is set as 20. Therefore, the comparative analysis

of various optimization approaches with respect to mean

(l) standard deviation (r) is explained in Table 5. Also, the

comparative analysis for various optimization approaches

with respect to best value (B) and worst value (W) is

explained in Table 6. The experimental analysis based on

average rank testing of the CSCF approach is compared

with FF, SCA, PSO and ABC in Table 7. Therefore, the

experimental results for two different types of tests namely

Wilcoxon’s rank-sum (R-S) test and Wilcoxon’s multiple

problem (M-P) tests for the proposed CSCF algorithm

based on twenty benchmark functions are described in

Table 7. In order to determine the statistical differences

among other optimization algorithm and the proposed

CSCF algorithm, the Wilcoxon’s (R-S) test is employed.

To confirm the validity generated in the above tables are

determined by the Wilcoxon’s (M-P) tests. In addition to

this, the value of P\ðe ¼ 0:1 and 0:05Þ and rþ and r�

values are greater for all respective cases.Thus the analysis

reveals that the proposed CSCF algorithm provides better

performances when compared to all other approaches [42].

4.4 Real-time engineering design problem
for CSCF

In order to evaluate the metaheuristic approaches, it is

necessary to implement the proposed algorithm on to the

real-time engineering problem. Also, these real-time

engineering problems constitute numerous equality and

inequality constraints and hence it is necessary to evaluate

the constrained problem. In this section, the efficiency and

the performances of the proposed CSCF algorithm are

solved by evaluating three different types of engineering

design problems namely welded beam design ðWBDÞ,
pressure vessel design ðPVDÞ and tension–compression

spring design ðT � CSDÞ. These engineering design

Fig. 2 Convergence curve for various functions a Fn5, b Fn10, c Fn15 and d Fn20 with D = 50
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Table 5 Comparative analysis

of various optimization

algorithms with respect to mean

(l) standard deviation (r)

Test functions FF SCA PSO ABC CSCF

Fn1

l 5.82 E?08 5.68 E?05 7.21 E?02 2.57 E?02 1.56 E?02

r 2.40 E?07 7.11E?02 4.32 E?03 1.23 E?06 1.78 E?05

Fn2

l 1.38 E?05 4.56 E?08 7.22 E?02 5.33 E?02 3.59E?03

r 4.21 E?04 6.27 E?02 4.45 E?08 2.45 E?03 5.49 E?03

Fn3

l 2.24 E?03 7.46 E?02 7.31 E?02 6.38 E?02 3.65 E?04

r 3.56E?04 5.30 E?02 2.38 E?05 3.49 E?02 3.28 E?07

Fn4

l 8.37 E?04 2.47 E?02 2.14 E?04 3.34 E?07 3.46 E?02

r 1.06 E?06 1.56 E?06 4.58 E?03 7.21 E?02 3.65 E?02

Fn5

l 1.45 E?06 3.20E?07 7.06 E?02 5.27 E?03 3.86 E?07

r 3.04E?07 1.38 E?04 6.58 E?05 4.64 E?02 6.38E?05

Fn6

l 4.28 E?03 2.54 E?07 3.91E?07 3.59 E?05 4.50E?03

r 3.71 E?01 7.45 E?02 3.28 E?04 4.37 E?07 3.28 E?03

Fn7

l 1.37 E?04 7.38 E?07 1.49 E?05 3.54 E?10 7.47 E?06

r 6.39 E?03 3.71 E?07 2.83 E?04 2.19 E?07 1.49 E?04

Fn8

l 1.34 E?02 2.13 E?05 1.48 E?04 3.41 E?07 2.49E?04

r 4.57 E?04 2.72E?02 3.51 E?07 7.35 E?05 2.46 E?03

Fn9

l 3.27 E?06 6.46 E?02 6.72 E?07 4.24 E?02 2.62 E?03

r 3.67 E?03 4.39 E?06 1.27 E?06 7.48 E?04 3.25 E?03

Fn10

l 2.17 E?05 2.42 E?02 2.50 E?04 2.48 E?02 2.69 E?05

r 4.57 E?03 4.04 E?02 2.37 E?07 4.76 E?02 2.59 E?05

Fn11

l 9.52E?02 5.37 E?05 4.01 E?02 1.27 E?05 1.69 E?02

r 7.39 E?05 3.27 E?06 3.47 E?07 1.25 E?03 1.50 E?02

Fn12

l 2.59 E?03 2.40 E?05 5.30 E?05 1.38 E?02 2.47 E?02

r 1.36 E?07 4.29 E?02 4.39 E?03 2.47 E?02 2.59 E?02

Fn13

l 2.49 E?06 2.49 E?02 2.19 E?03 3.33E?07 3.48 E?05

r 3.50 E?02 2.28 E?03 5.27 E?01 3.49 E?06 1.39 E?09

Fn14

l 2.28 E?06 4.48 E?03 1.59 E?06 3.27 E?09 1.67 E?05

r 2.46 E?09 7.95 E?23 3.29 E?04 5.39 E?04 5.28 E?02

Fn15

l 1.39 E?06 3.31 E?02 4.87 E?02 2.49 E?08 4.68 E?02

r 1.47 E?04 6.38 E?08 5.82 E?08 2.48 E?06 2.47 E?10

Fn16

l 4.61 E?02 4.33 E?02 6.37 E?02 7.37 E?02 2.15 E?04

r 2.37 E?06 4.54 E?02 1.23E?02 2.49 E?07 1.48 E?03
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problems are described briefly in the following sec-

tion. Here, the initial size of the population is set as 20 and

the maximum size of the population is set as 100.

A Illustration 1: problem based on welded beam design

ðWBDÞ

This section illustrates problem based on the design of a

welding beam ðWBDÞ[43], where the minimum cost

function is subjected to several constraints namely the

beam’s end deflection ðBEDÞ, beam’s bending stress

ðBBSÞ, shear stress ðSSÞ and buckling load of the bar

ðBBLÞ. Moreover, the ðWBDÞ comprises of four different

types of variables namely HðZ1Þ, LðZ2Þ, TðZ3Þ and BðZ1Þ,
respectively. The structural model for the problem based on

a welding beam ðWBDÞ is represented in Fig. 3.

The mathematical expression based on the design for the

problem based on a welding beam ðWBDÞ is formulated in

the following section.

Minimize : FðZÞ
¼ 1:1047LZ2

1Z2 þ 0:04811Z3Z4ð14:0þ Z2Þ
ð21Þ

Subject to :

G1ðZÞ ¼ SSðZÞ � SMAX
S � 0 ð22Þ

G2ðZÞ ¼ BBSðZÞ � BBMAX
S � 0 ð23Þ

G3ðZÞ ¼ Z � 1� Z4 � 0 ð24Þ

G4ðZÞ ¼ 1:1047LZ2
1 þ 0:04811Z3Z4ð14:0þ Z2Þ � 5:0� 0

ð25Þ
G5ðZÞ ¼ 0:125� Z1 � 0 ð26Þ

G6ðZÞ ¼ BEDðZÞ � BEMAX
D � 0 ð27Þ

G7ðZÞ ¼ p� BBLðZÞ� 0 ð28Þ

Therefore, the expression for several constraints and

variables based on the problem based on the design of a

welding beam ðWBDÞ is delineated in the following

section.

SSðZÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S
0
S

	 
2þ2S
0
SS

00
S

Z2
2r

þ S
00
S

	 
2

r

ð29Þ

From the above equation,

S
0

S ¼
p
ffiffiffi

2
p

Z1Z2
; S

00

S ¼
Jr

M
; J ¼ P lþ Z2

2

� �

; BBSðZÞ ¼
6pl

Z4 Z
2
3

BEDðZÞ ¼
4pl3

eZ4 Z
3
3

; M ¼ 2
ffiffiffi

2
p

Z1Z2
Z2
2

12
þ Z1 þ Z3

2

� �2
" #

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z2
2

4
þ Z1 þ Z2

2

� �2
s

; BBLðZÞ ¼
4:013e

ffiffiffiffiffiffiffi

Z2
3
Z6
4

36

q

l2
1� Z3

2l

ffiffiffiffiffiffi

e

4F

r

� �

p ¼ 6000LB; l ¼ 14 in ; e ¼ 30� 106 psi; F ¼ 12� 106 psi

SMAX
S ¼ 1360 psi BBMAX

S ¼ 3000 psi BEMAX
D ¼ 0:25 psi

Table 8 provides the best solutions for various approa-

ches such as FF, SCA, PSO, ABC and proposed CSCF

approaches. Table 9 provides the statistical analysis for the

mean (l) standard deviation (r), best value (B) and worst

value (W).

B. Illustration 2: problem based on pressure vessel design

ðPVDÞ

The problem based on pressure vessel design ðPVDÞ
aims in minimizing the manufacturing cost function [44].

The structural design of the pressure vessel is represented

in Fig. 4 that contains the working pressure and the volume

of about 3000 psi and 750 ft3. In addition to this, the

pressure vessel design ðPVDÞ comprises of four different

variables namely the shell thickness ST as Z1, Head

thickness HT as Z2, inner radius IR as Z3, the cylindrical

Table 5 continued
Test functions FF SCA PSO ABC CSCF

Fn17

l 4.21 E?02 3.48 E?05 2.49 E?05 1.48 E?06 3.27E?03

r 4.28 E?08 2.50 E?04 1.23E?02 1.25 E?02 4.56 E?08

Fn18

l 5.23 E?05 3.18 E?02 1.25 E?02 1.58 E?02 5.39 E?02

r 2.68 E?07 2.59 E?07 1.38 E?04 2.48 E?04 1.37 E?03

Fn19

l 1.38 E?07 3.46 E?03 2.12 E?04 7.38 E?07 1.69 E?02

r 2.59 E?07 1.46 E?09 2.59 E?02 2.58 E?03 1.50 E?02

Fn20

l 6.38 E?07 2.27 E?07 1.22 E?11 4.58 E?04 1.37 E?07

r 4.68 E?02 1.46 E?03 3.78 E?05 1.30 E?02 2.48 E?05
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Table 6 Comparative analysis

of various optimization

algorithms with respect to best

value (B) and worst value (W)

Test functions FF SCA PSO ABC CSCF

Fn1

B 6.12E?05 2.09 E?08 5.64 E?08 4.51 E?08 1.38 E?04

W 4.10 E?08 2.48 E?02 4.13 E?08 3.33 E?02 7.38 E?07

Fn2

B 1.32E?02 1.11E?05 2.59 E?04 7.12E?05 1.27 E?06

W 1.59 E?06 3.27E?03 6.77E?05 3.34E?05 6.37 E?02

Fn3

B 7.37 E?02 2.17 E?05 3.34 E?07 1.78 E?02 2.83 E?04

W 2.32 E?08 2.22 E?07 2.49 E?05 6.07E?05 1.48 E?06

Fn4

B 2.48 E?04 2.48 E?06 2.89 E?08 6.46 E?02 2.38 E?05

W 7.13E?04 3.78 E?05 6.39 E?03 2.47 E?02 5.37 E?05

Fn5

B 5.49 E?03 1.37 E?03 4.13 E?08 2.19 E?03 1.37 E?04

W 2.49 E?06 1.38 E?05 2.49E?04 7.47 E?06 1.27 E?06

Fn6

B 7.58 E?04 1.48 E?04 1.27 E?05 3.48 E?05 1.49 E?05

W 1.37 E?07 1.25 E?02 3.29 E?04 7.11 E?04 3.48 E?05

Fn7

B 5.27 E?01 3.49 E?06 6.23E?05 4.45 E?08 2.59 E?07

W 1.32 E?05 1.46 E?03 4.61 E?02 2.24 E?03 7.88 E?04

Fn8

B 7.38 E?07 2.69 E?05 6.58 E?05 5.68 E?05 2.46 E?09

W 3.27 E?06 1.78 E?05 8.37 E?04 6.27 E?02 2.19 E?07

Fn9

B 1.23E?05 6.38 E?07 4.32 E?08 7.48 E?04 2.49 E?07

W 1.34 E?02 2.51E?04 4.57 E?03 4.18 E?08 4.28 E?03

Fn10

B 4.20 E?08 2.08 E?02 1.51E?05 2.68 E?07 4.58 E?03

W 1.58 E?02 1.22 E?11 2.08 E?07 1.38 E?07 2.27 E?07

Fn11

B 7.52 E?04 6.18E?05 5.30 E?02 2.59 E?07 2.59 E?02

W 3.46 E?02 2.58 E?03 4.48 E?03 7.12 E?04 4.87 E?02

Fn12

B 3.59E?03 5.28 E?02 3.47 E?07 5.39 E?02 1.22 E?11

W 1.56 E?02 1.67 E?05 2.12 E?04 3.28 E?03 6.38 E?08

Fn13

B 1.48 E?03 2.59 E?05 6.38 E?02 9.52E?02 1.56 E?06

W 2.48 E?05 1.69 E?02 4.32 E?03 3.46 E?03 1.46 E?09

Fn14

B 1.50 E?02 2.02 E?08 4.57 E?04 1.55 E?05 2.50 E?04

W 1.39 E?06 4.68 E?02 3.27 E?06 2.59 E?03 3.67 E?03

Fn15

B 2.28 E?06 1.30 E?02 1.23E?02 3.50 E?02 7.95 E?23

W 5.39 E?04 3.28 E?04 2.46 E?03 2.99 E?08 4.28 E?08

Fn16

B 6.33E?05 2.11 E?08 2.15 E?04 1.49 E?04 2.50 E?04

W 4.58 E?04 2.45 E?03 1.01 E?05 6.20E?05 3.49 E?02
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section having the length l as Z4. Here, the continuous

variables are denoted as Z3 and Z4 where the integral

multiples are denoted as Z1 and Z2, respectively. Then the

mathematical expression based on the design for the

problem based on pressure vessel design ðPVDÞ is formu-

lated in the following section.

Table 6 continued
Test functions FF SCA PSO ABC CSCF

Fn17

B 1.36 E?07 1.38 E?02 1.23 E?06 2.47 E?02 3.31 E?02

W 4.56 E?08 4.39 E?03 2.62 E?03 1.20 E?05 4.39 E?06

Fn18

B 1.36 E?06 2.49 E?08 3.18 E?02 2.37 E?06 3.54 E?10

W 2.47 E?02 2.59 E?02 6.38E?05 5.33 E?02 2.28 E?03

Fn19

B 4.56 E?08 4.37 E?07 4.50E?03 2.49 E?02 2.54 E?07

W 7.39 E?05 3.28 E?07 4.68 E?02 2.13 E?05 2.11 E?08

Fn20

B 5.23 E?05 2.47 E?10 3.86 E?07 1.39 E?09 5.30 E?05

W 1.47 E?04 2.40 E?05 2.37 E?07 3.27 E?09 5.27 E?03

Table 7 Analysis of Wilcoxon’s

(R-S) test and Wilcoxon’s (M-

P) tests of CSCF algorithm

Approaches Best value (B) Worst value (W) r? r- P

”

= 0.1

”

= 0.05

CSCF vs FF 16 4 201 41 2.46E-02 Yes Yes

CSCF vs SCA 12 8 104 24 5.23E-03 Yes Yes

CSCF vs PSO 19 1 211 7 7.75E-02 Yes Yes

CSCF vs ABC 11 9 223 83 3.61E-01 Yes Yes

Fig. 3 Design for the welding beam ðWBDÞ problem

Table 8 Best solutions for various approaches based on WBD

Variables CSCF FF SCA PSO ABC

F (Z) 1.704 2.236 1.725 1.942 2.358

Z1 (H) 0.197 1.237 1.478 2.365 0.937

Z2 (L) 8.035 7.238 5.323 8.368 7.234

Z3 (T) 3.209 4.235 3.736 3.897 5.237

Z4 (B) 2.210 4.358 2.789 3.247 4.374

G1 (Z) - 4.288 - 5.235 - 5.565 - 7.327 - 5.856

G2 (Z) - 4.789 - 5.385 - 6.462 NA - 7.357

G3 (Z) - 0.499 - 1.375 - 1.458 NA - 2.345

G4 (Z) - 0.067 - 0.475 - 0.637 NA - 0.927

G5 (Z) - 3.274 - 3.985 - 4.214 NA - 4.274

G6 (Z) - 3.173 - 4.763 - 5.247 NA - 6.436

G7 (Z) - 2.438 - 3.475 - 2.462 - 4.287 - 3.345

Table 9 Statistical analysis of various approaches for WBD

Approaches l r B W

CSCF 1.7043 1.7042 1.7048 1.7044

FF NA NA 2.236432 NA

SCA 1.7256 1.72564 1.7258 1.7252

PSO NA NA 1.942762 NA

ABC 2.3585 2.3583 2.3584 1.7487

Fig. 4 Design for pressure vessel design ðPVDÞ problem
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Minimize : FðZÞ
¼ 0:6224Z1Z3Z4 þ 1:7781Z2Z

2
3 þ 3:1611Z2

1Z4
þ 19:84Z2

1Z3

ð30Þ
Subject to :

G1ðZ1; Z3Þ ¼ �Z1 þ 0:0193Z3 � 0 ð31Þ
G2ðZ2; Z3Þ ¼ �Z2 þ 0:0095Z3 � 0 ð32Þ

G3ðZ3; Z4Þ ¼ �pZ2
3Z4 �

4

3
pZ2

3 þ 1296000� 0 ð33Þ

G4ðZ4Þ ¼ Z4 þ 240� 0 ð34Þ

Table 10 provides the best solutions for various

approaches such as FF, SCA, PSO, ABC and proposed

CSCF approaches. Table 11 provides the statistical analysis

Table 10 Best solutions for

various approaches based on

PVD

Variables CSCF FF SCA PSO ABC

F (Z) 6123.489 6356.956 647.025 6485.382 6627.827

Z1 (ST ) 0.726329 0.729647 0.74583 0.75938 0.763045

Z2 (HT ) 0.527452 0.537219 0.53947 0.54728 0.54682

Z3 (IR) 41.66390 41.86719 42.4893 43.4710 44.3729

Z4 (l) 163.4489 163.5762 164.294 165.328 166.320

G1 (Z) - 0.000147 - 0.000163 0.000245 NA 0.00038

G2 (Z) - 0.043820 - 0.044625 0.043894 NA 0.04429

G3 (Z) - 112.4896 - 112.5782 113.4340 NA 114.927

G4 (Z) - 60.47343 - 60.62632 - 61.3829 NA - 62.3840

Table 11 Statistical analysis of various approaches for PVD

Approaches l r B W

CSCF 6123.489 2.427594 6123.532 6123.563

FF 6034.87 83.26723 635.809 6234.87

SCA NA NA 622.479 NA

PSO NA NA 632.479 NA

ABC 6142.763 12.3769 6782.498 6232.457

Fig. 5 Design for tension–compression spring design ðT � CSDÞ
problem

Table 12 Best solutions for

various approaches based on

T � CSD

Variables CSCF FF SCA PSO ABC

F (Z) 0.020342 0.028833 0.022856 0.0265978 0.027573

Z1 ðDCÞ 0.374584 0.374637 0.383674 0.3936732 0.426537

Z2 ðNCÞ 0.503762 0.527482 0.53842 0.543785 0.568239

Z3 ðDÞ 10.83740 10.8643 11.0352 11.36789 11.48793

Z4 (B) - 5.37998 - 5.43789 - 5.38265 - 5.401632 - 5.41789

G1 (Z) - 3.89787 - 4.67882 - 4.7298 NA - 4.28701

G2 (Z) - 0.26379 - 0.27245 - 0.28753 NA - 0.29363

G3 (Z) - 4.67903 - 4.83567 - 4.69365 NA - 4.72734

G4 (Z) - 0.76727 - 0.77346 - 0.78437 NA - 0.72763

Table 13 Statistical analysis of various approaches for T � CSD

Approaches l r B W

CSCF 0.021356 3.67811 0.021356 0.021356

FF 0.021356 4.3689 0.021356 0.021356

SCA NA NA 0.021356 NA

PSO NA NA 0.021356 NA

ABC 0.021356 4.58678 0.021356 0.021356
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for the mean (l) standard deviation (r), best value (B) and
worst value (W).

C. Illustration 3: problem based on tension–compression

spring design ðT � CSDÞ

Figure 5 describes the structural model for the problem

based on tension–compression spring design ðT � CSDÞ.
Here, the ðT � CSDÞ is considered as one of the continuous

constrained problem developed by Belegundu [45]. More-

over, the tension–compression spring design ðT � CSDÞ
comprises of four different parameters namely diameter of

the coil ðDCÞ, active coil number ðNCÞ with the diameter

ðDÞ. Then the mathematical expression based on the design

for the problem based on tension–compression spring

design ðT � CSDÞ is formulated in the following section.

Let us assume; Z ¼ Z1; Z2; Z3½ � ¼ DC;NC;D ð35Þ

Minimize : FðZÞ ¼ NC þ 2½ �DCD
2 ð36Þ

Subject to :

G1ðZÞ ¼ 1� D3
CNC

71785D
� 0 ð37Þ

Table 14 CM optimization for

six variants of CSCF algorithm
Problems CM Variant I Variant II Variant III Variant IV Variant V

P1 Logistic 0.23024 0.23453 0.25687 0.22475 0.22946

Tent 0.26437 0.26892 0.27356 0.23728 0.26409

Sinusoidal 0.29037 0.29784 0.29487 0.25782 0.27365

Gauss 0.24893 0.24632 0.24387 0.24023 0.24973

Circle 0.22731 0.22472 0.22636 0.22022 0.22537

Sinus 0.24577 0.24376 0.24937 0.24065 0.24637

Iterative 0.23263 0.23436 0.24854 0.23036 0.24872

Chebyshev 0.26972 0.26253 0.27463 0.26165 0.27261

Henon 0.23365 0.23343 0.24876 0.23347 0.23226

Intermittency 0.25376 0.25434 0.26362 0.25336 0.26328

Singer 0.26287 0.25421 0.27887 0.26114 0.27115

Sine 0.24763 0.24376 0.24874 0.24462 0.24736

P2 Logistic 0.33536 0.33543 0.33472 0.33398 0.33253

Tent 0.33374 0.33346 0.33464 0.33487 0.33376

Sinusoidal 0.34476 0.34236 0.34345 0.34212 0.34864

Gauss 0.33536 0.33453 0.33463 0.33534 0.33562

Circle 0.33342 0.33367 0.33376 0.33333 0.33364

Sinus 0.34764 0.34463 0.34475 0.34874 0.34497

Iterative 0.34373 0.34473 0.34472 0.34364 0.34398

Chebyshev 0.33236 0.33372 0.33447 0.33243 0.33348

Henon 0.34747 0.34248 0.34834 0.34172 0.34152

Intermittency 0.34362 0.34235 0.34236 0.34234 0.34086

Singer 0.33283 0.33263 0.33476 0.33107 0.33127

Sine 0.34873 0.34473 0.34331 0.34163 0.34836

P3 Logistic 0.52243 0.52454 0.52345 0.52032 0.52257

Tent 0.53476 0.53365 0.53673 0.53163 0.53256

Sinusoidal 0.52677 0.52256 0.52488 0.52112 0.52157

Gauss 0.52143 0.52657 0.52225 0.52376 0.52478

Circle 0.52589 0.52144 0.52586 0.52002 0.52164

Sinus 0.54254 0.54685 0.54148 0.54265 0.54574

Iterative 0.53547 0.53148 0.53658 0.53356 0.53467

Chebyshev 0.53679 0.53251 0.53135 0.53673 0.53682

Henon 0.52146 0.52367 0.52785 0.52576 0.52147

Intermittency 0.54457 0.54237 0.54652 0.54134 0.54658

Singer 0.52254 0.52475 0.52111 0.52457 0.52537

Sine 0.53789 0.53645 0.53467 0.53362 0.53364
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G2ðZÞ ¼
4D2

C � DDC

12566ðDCD
2 � D4Þ þ

1

5108D2
� 1� 0 ð38Þ

G3ðZÞ ¼ 1� 140:45D

NCD
2

� 0 ð39Þ

G4ðZÞ ¼
Dþ DC

1:5
� 1� 0 ð40Þ

Then the design variables for the problem based on

tension–compression spring design ðT � CSDÞ are delin-

eated in the following Sec-

tion. 0:05�D� 2; 0:25�DC � 1:3 as well as

2�DC � 15. Table 12 provides the best solutions for var-

ious approaches such as FF, SCA, PSO, ABC and proposed

CSCF approaches. Table 13 provides the statistical analysis

for the mean (l) standard deviation (r), best value (B) and
worst value (W).

Then, various chaotic variants namely.

Variant-I, Variant-II, Variant-III, Variant- IV, and

Variant- V of the novel CSCF algorithm are employed in

solving the above-mentioned three engineering problems

namely P1; P2; P3 that are represented in Table 14.

Figure 6 explains the ranking system of five different

variants of the CSCSF algorithm. From the graphical

analysis, it is noted that the fourth variant of the circle

mapping provides minimum mean absolute error (MAE)

Fig. 6 MAE versus variants for a P1, b P2, c P3

Fig. 7 Convergence time versus variants
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when compared with all other variants. The term MAE is

defined as the average value obtained by the absolute dif-

ference among the actual value and the predicted value.

Finally, Fig. 7 describes the convergence time with respect

to all the five variants. The graphical analysis reveals that

the variant-II comprises of less convergence time during

the running process when compared with all other variants.

5 Conclusion

This paper proposed a novel chaotic sine–cosine firefly

(CSCF) algorithm with numerous variants to solve opti-

mization problems such as computational complexity,

memory space, tricky derivations, efficiency, and conver-

gence speed. The chaotic form of two algorithms namely

the sine–cosine algorithm (SCA) and the Firefly (FF)

algorithms are integrated to improve the convergence

speed and efficiency to minimize the complexity issues.

Moreover, the proposed CSCF approach is operated under

various chaotic phases and the optimal chaotic variants

containing the best chaotic mapping is selected. Then

various experiments are conducted to evaluate the effi-

ciency and the performances of the chaotic sine–cosine

firefly (CSCF) algorithm. Owing to its hypothetical nature,

various chaotic functions and benchmark functions are

discussed to obtain better optimal results. Furthermore, the

proposed CSCF algorithms are compared with several

other optimization algorithms such as firefly (FF) algo-

rithm, particle swarm optimization (PSO) approach, artifi-

cial bee colony (ABC) optimization algorithms to evaluate

the effectiveness of the CSCF algorithm. Finally, the effi-

ciency and the performances of the proposed CSCF algo-

rithm is solved by evaluating three different types of

engineering design problems to prove the efficiency,

robustness and effectiveness of the system.
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