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Abstract
Current medical technology evolves massive reports such as electronic patient records and scanned medical images; such

reports are needed to be stored securely for future references. Existing storage systems are not feasible for massive data

storage. Fortunately, cloud storage services meet the demand through their properties such as scalability and availability.

Cloud computing is encouraged by amazing web innovation and modern electronic contraptions. Medical images can be

stored in the cloud area, but most of the cloud service providers keep the client data in the plain text format. Cloud users

need to take the responsibility to preserve the medical data with their strategy. Most of the existing image encryption

solutions are vulnerable to the chosen-plaintext attack because the increasing power of computers and ingenuity of hackers

are opening up more and more cracks in this mathematical armour. This paper proposes Hopfield neural network (HNN)-

influenced image encryption technique to withstand against various attacks which optimize and improvise system through

continuous learning and updating. These methods provide a critical security feature that adapts itself for day-to-day

miracles of the real world. In this scheme, the back propagation neural network has been employed to generate image-

specific keys that increase the resiliency against hackers. The generated keys are used as an initial seed for confusion and

diffusion sequence generation through HNN.

Keywords Hopfield neural network (HNN) � Back propagation neural network (BPN) � Image-specific key generation �
Image encryption � Cloud storage

1 Introduction

In recent days, the advancements in Information Technol-

ogy (IT) and processing are incredible. Cloud computing is

one such kind which is being adopted by various enterprise

for hosting their applications and storage. The digitalized

data sharing via modern gadgets set the new stage for the

distribution of information around the world irrespective of

applications. Being shared information through the public,

there is a question on the intensity of privacy and security

for the personnel and sensitive information [1]. Increased

rate of information sharing among various organizations,

including medical imaging system users, leads to the

adoption of new storage techniques like a cloud [2], edge

[3], etc. Most of the online services like e-commerce, tel-

emedicine, online money access, and social network are

deployed in the cloud [4].

Cloud has reached its peak in recent days; Storage as a

Service (SaS) is the full demanded service by most of the

Internet of Things (IoT) applications [5]. Cloud storage

data security is a shared responsibility of customer and

service provider, so mainly the issues related to medical

data privacy need to be well tackled through the proper

crypto standards. It is crucial to offer data security for a

medical image stored in an open and shared environment

like a cloud. From the discussion over the cloud data

security, cloud service providers concentrate on security

measures about infrastructure, host, and data. However,

user data are exposed as a plain text up to a certain level.
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To address this issue, encryption schemes are suggested to

store the data in an encrypted format [6]. Qin et al. pro-

posed a fully homomorphic encryption (FHE) approach to

encrypting the image in cloud storage to offer image

security where the complexity has been increased even for

small scale images [7].

Numerous encryption schemes exist; they can encrypt

text, image, and audio. Still, security measure employed for

the text transmission presents poor performance for the

image, because of the intrinsic features of the images such

as bulk data capacity, high redundancy, and high correla-

tion among the pixel data; thus, independent security

scheme is required for each type of multimedia data

security [8]. Because of the difficulty in handling images

when compared to the textual data, image security gains

more importance. Besides, most of the sensitive applica-

tions, such as telemedicine, education, and biometric

authentication, share their context in terms of images.

Chaos-based image encryption schemes [9–13] are gained

attention due to its enhanced key strength through key

sensitivity. The significance of the chaos is that the key has

a real value.

As per the chaos theory, chaotic nature purely depends

on the initial seed. However, cryptanalysts are reported that

chaos-based encryption schemes are not withstood against

the chosen-plaintext attack. However, most of the modern

cryptographic techniques are subjected to cryptanalysis

where the attackers compromise the cryptosystem through

known-plaintext and chosen-plaintext attacking schemes.

Reversible exclusive-OR operation has been incorpo-

rated in image encryption due to its merits such as

reversibility, and it offers bitwise confusion. Also, it fea-

sible to create a stream cipher. However, it allows crypt-

analysis through a chosen-plaintext attack [14–20]. The

homomorphic encryption scheme is addressed as a leading

encryption technique, especially for cloud data security.

Yet, the homomorphic encryption scheme has cryptanaly-

sis by Baocang Wang, in which security keys are retrieved

with lesser than 8 s [21].

From the above survey, most of the existing schemes are

compromised by the chosen-plaintext attack due to their

common utility of simple XOR-based diffusion and con-

stant rounds of operation. The rounds of operations may

increase the complexity but unnecessary change in execu-

tion time which results in poor throughput. To prevent the

cryptanalysis and especially the chosen-plaintext attack,

the encryption scheme must be complex, reversible, self-

adaptive, and parameter sensitive. Neural-based encryption

schemes are the desired solution to satisfy the require-

ments, as mentioned earlier. An artificial neural network

(ANN) is a distributed network that can execute the parallel

task and the primitive elements called neuron [22]. Inte-

gration of ANN with conventional schemes provides

accurate results due to its self-learning and adaptive nature.

Also, ANN has the calibre to learn the environment

through real-time data and training data. Thus, the neural

networks are integrated with various applications such as

data security, big data analytics, medical data classifica-

tion, and neural can be utilized in the civil structure anal-

ysis [23, 24], in which this paper focuses the data security.

As per the fundamental rule, artificial neurons should

resemble biological neurons. Accordingly, it has chaotic

behaviour. This chaotic behaviour of neurons gets the

attention of the cryptography applications [25].

From the literature, it has been noticed that ANN can be

extended to model the reversible complex encoders.

Besides, ANN can apply to a non-traditional image

encryption scheme. ANN can be modelled as a nonlinear

encoder that can be extended to replace the traditional

diffusion [26–31]. In addition to the diffusion, random

indexes are needed to achieve confusion. To obtain the

random indexes, the neural network also needs recurrent

behaviour, which is inevitable in the generation of the

pseudo-random sequence for image encryption. Thus, this

paper proposes recurrent Hopfield neural network (HNN)

as a primary component to implement the neural blended

adaptive image encryption. A variant type of neural model

is called the Hopfield neural network (HNN), which is a

recurrent network, and it is derived from the human brain

dynamics [32–37]. It exhibits temporal behaviour. It is

different from other neural architectures. Because other

neural networks consist of independent hidden units to

process the inputs, hence the networks are appropriate for

classification and clustering applications. Conversely,

recurrent HNN has interconnected hidden units, one of the

hidden units activates at the time to attain temporal or

sequential behaviour. It is useful in the applications based

on the sequence of successive events such as pseudo-ran-

dom sequence generation.

Significances of the proposed algorithm as follows:

• Multilayered architecture and nonlinear transfer func-

tion-assisted weight matrix of BPN reduces the prob-

ability of prediction of the key.

• Distinctive features of the image are taken as the input

for the BPN, thus generated keys are more adaptive to

the input plain image.

• Keys can be dynamic due to their self-learning capa-

bility of BPN.

• Unique key for every image, thus unauthorized persons

cannot hack the image and key using chosen-plaintext

attack.

• Confusion and diffusion are implemented using a

Hopfield neural network, so this scheme enhances the

complexity of the prediction of the algorithm.
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• Weight matrix of the HNN can be updated for every

image; thus, it produces the image-specific pseudo-

sequence generation.

• Image-specific pseudo-sequence generation in turn to

attain adaptive confusion and diffusion.

• Due to the recurrent and chaotic behaviour, HNN

requires key seeds similar to the chaos which is better

than linear neural architectures such as BAM, BPN as

the initial key seed larger in size (size is greater than

plain image), which increases transmission overhead.

• Establishing connectivity between the authenticated

user and the public cloud environment.

• Augmented privacy for medical image repository in the

cloud.

The rest of this paper is organized as follows. Section 2

presents pre-requisites such as four-nodes Hopfield neural

network (HNN) and its chaotic behaviour analysis. Sec-

tion 3 presents the proposed scheme with five phases, in

which, Phase I presents adaptive key generation using back

propagation network, Phase II presents the random

sequence generation using HNN and image-specific key,

Phase III employs adaptive confusion using random

sequence generation. Phase IV includes adaptive diffusion

using random sequence generation, and Phase V explains

the connectivity establishment between the cloud and the

proposed cryptosystem. Section 4 presents the results and

discussion. Finally, Sect. 5 presents the conclusions and

future work directions.

2 Pre-requisites

2.1 Hyperchaotic HNN

Hyperchaotic HNN has metastable states using external

input and chosen previous state [30, 32–34]. HNN is

designed with minimum node, selected node connection

along with an appropriate asymmetric weighted path,

provide the chaotic behaviour.

The proposed work is employed for the four-nodes

HNN. In a four-nodes HNN architecture, every node might

be connected with every other node, along with external

input. Besides, it has self-connection. The output of every

node depends on the previous state of the input nodes along

with external input. Every node is connected to other nodes

with the weighted path. Recurrent HNN is reconfigured as

chaotic architecture with four nodes which is illustrated in

Fig. 1. In chaotic architecture, each node is considered as

an input/output node, which results in a faster generation of

the pseudo-random sequence. Thus, it is considered as a

kind of hyperchaotic architecture. The speciality of this

architecture is that every node is not connected to every

other node, and weights are updated using the Hebb rule

along with hyperbolic activation function. Besides, HNN

has designed with a selected number of nodes, along with

the appropriate asymmetric weighted path, to provide the

desire chaotic behaviour.

Chosen Hopfield neural network has four nodes, so the

weight matrix dimension is 4 9 4, namely W11–W44 as in

Eq. (1).

Wij ¼

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

2
664

3
775 ð1Þ

Weight values in Eq. (1) resemble the strength of the

neural network through training, which decides the accu-

racy of the result (percentage of closeness between

expected and obtained output). Weight values are either

integer or floating decimal which depends on the activation

function (identity or hyperbolic activation function). Each

node is sequentially updated with the following Eqs. (2)

and (3). From Eq. (2), each node receives the weighted

signal from other nodes along with external input (ei) and

input from other nodes (Xi). Subsequently, the sigmoid

transfer function is calculated using updated Xi as in

Eq. (3).

Net xið Þ ¼ Nðxiþ1Þ ¼ ei þ
X4
i¼1

X4
j¼1

xiwij ð2Þ

where Net(xi) represents some of the weighted inputs.

Xiþ1 ¼ tanh NetðxiÞð Þ ¼ 1

1þ e�NetðXiÞ
ð3Þ

The architecture, shown in Fig. 1, develops the cyclic

random sequences using the following Eqs. (4) and (5),

which are derived from Eqs. (2) and (3)

Fig. 1 Architecture of hyperchaotic HNN with four nodes
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xiþ1 ¼ �cixi þ
X4
j¼1

wijvj ð4Þ

vi ¼ tanh ðxiÞ ð5Þ

where ci is constant and c1 = c2 = c3 = 1; c4 = 100; xi is

the previous state, and wij is the weight matrix,

respectively.

2.2 Chaotic behaviour analysis of HNN

To attain the chaotic behaviour, node connections should

not have symmetrical weights. The chosen weights of the

hyperchaotic HNN are given as follows.

wij ¼

1 0:5 �3 �1

0 2þ p 3 0

3 �3 1 0

100 0 0 170

2
664

3
775;

where p is the control parameter.

The chaotic behaviour of the HNN (with control

parameter p = 0.3) is visually confirmed in Fig. 2. Fig-

ure 2a–c expresses the unstable state generation from X1 to

other states, and Fig. 2d–f expresses the unstable state

generation from X2 to other states. This is the evidence for

the chaotic behaviour of the muted HNN which exhibits

periodic and chaotic points. This chaotic behaviour

depends on the initial seed xi, weight values, and the

control parameter p.

3 Proposed scheme

This paper proposes Hopfield governed image-dependent

encryption scheme for medical image cloud storage which

is shown in Fig. 3. This framework consists of five phases

in which Phase I describes the adaptive key generation

using the BPN network;

Phase II presents image-specific random sequence gen-

eration using HNN,

Phase III and IV deal with the confusion and diffusion

process, respectively,

Phase V illustrates connectivity establishment between

the cloud and the proposed cryptosystem.

In this proposed work, the initial seed and the control

parameter are generated from the input image to design the

adaptive encryption scheme.

3.1 Phase I: adaptive key generation using back
propagation network

Once the key has been deduced, the security of the cryp-

tosystem will be compromised. This research work devel-

ops a method to prevent chosen-plaintext attacks using

Fig. 2 Chaotic behaviour of HNN with p = 0.3

6674 Neural Computing and Applications (2021) 33:6671–6684

123



neural networks. It generates a session key that is unique

for every image, as shown in Fig. 4. During training, the

set of image features in the dataset is a map to the key

using a feed-forward neural network. The network is

trained using multilayer BPN with the image features as

inputs and session keys as the target. The trained network

generates a unique key such a way that if at least one of the

image feature changes, the output key must change. As the

key generated is adaptive to the image, it can be called an

adaptive key generation. Tables 1 and 2 present the train-

ing dataset for BPN.

Normalized significant features of the image are

extracted and considered as the training inputs for the

neural network as shown in Table 1. For the training, the

desired unique key of every image is assigned as the target

as shown in Table 2. These input and target pairs are used

to train the BPN network. It is to be noted that these values

Fig. 3 Discrete Hopfield attractor image-dependent encryption scheme for medical image cloud storage

Fig. 4 Adaptive key generation
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are unique to the image, and hence the output will be

changed even with the slight variation of image features.

Figure 5 shows the training performance of the devel-

oped multilayer BPN network. Figure 5a illustrates the

fitting architecture of multilayer BPN network for the

proposed adaptive key generation process in the encryption

algorithm. Figure 5b depicts MSE versus the number of

epochs. It can be noticed that as the epoch number

increases, the MSE decreases. This is since the Net con-

verges to the optimum value at every succeeding epoch.

Hence, it can be inferred that the Net finally converges to a

global minimum and therefore is with stable weights. The

weight matrix finally produced can then be used as an

image-specific key generator.

3.2 Phase II: random sequence generation using
HNN and image-specific key

The scheme proposed here is to generate the chaos

sequences through HNN rather than using nonlinear

equations that exhibit the chaotic nature. Image-specific

key is considered as a control parameter, and the random

sequences are generated using the pseudo-code given as

follows.

Fig. 5 Training performance of the developed multilayer BPN network; a BPN fitting architecture with 55 input features, b respective training

performance graph

Table 1 Extracted feature from the images as a training dataset

Test image Min Max DC value Hist. mean Entropy Segment mean Segment DC value Segment histogram mean

I1 0.3333 0.0093 0.0357 0.0059 0.9654 0.1944 0.0250 0.0082

I2 0.0277 0.0227 0.0357 0.0167 0.9881 0.3055 0.5000 0.0228

I3 0.0277 0.0160 0.0357 0.0106 0.9968 0.1388 0.5000 0.1116

I4 0.2638 0.1786 0.0357 0.0368 0.9131 0.9444 0.5000 0.0093

I5 0.8055 0.0040 0.0357 0.0011 0.8233 0.2777 0.5000 0.0116

I6 0.4027 0.3809 0.5357 0.1506 0.5094 0.6944 0.5000 0.2898

I7 0.0555 0.0273 0.0357 0.0161 0.1388 0.3969 0.5000 0.0250

Min minimum intensity value, Max maximum intensity value, DC value DC component of an image, Hist. mean histogram mean, Entropy
entropy of an image, Segment mean mean of each segment, Segment DC value DC component of segments, Segment histogram mean histogram

mean of segments

Table 2 Target creation
Training image I1 I2 I3 I4 I5 I6 I7

Target 2.3495 2.36582 2.33447 2.42089 2.35676 2.38254 2.36295
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3.3 Phase III: adaptive confusion using random
sequence generation

Two different sets of nonlinear random sequences are

generated for the processes substitution and permutation.

The detailed flow is given in Fig. 3, which integrates the

adaptive and image-specific key generation, confusion, and

diffusion. The following section presents part of a detailed

encryption algorithm which includes confusion.

3.4 Phase IV: adaptive diffusion using random
sequence generation

Second random sequences are considered for the diffusion

process, and the detailed algorithm is given as follows
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3.5 Phase V: connectivity establishment
between cloud and cryptosystem proposed

The ciphered medical images of the user are stored into S3

bucket of AWS with sole login credentials. If the user

credentials are invalid, then the system denied the access,

and it will be handled as a user-defined exception else

image access is allowed. The procedural flow is explained

as follows:

Step 1 Register with AWS to get AWS_Username and

AWS_Password

Step 2 Create AWS secret key pairs for file storage in S3

of AWS

For every cloud access, follow the given steps

Step 3 Match the AWS user credentials with the cur-

rently received credentials

Step 4 If step 3 results with ‘‘NO’’, then return with the

message ‘Access Denied’

Step 5 If step 3 results with ‘‘YES’’, then, match the

AWS secret key pairs

Step 6 If step 5 results with ‘‘NO’’, then return with the

message ‘Invalid Credentials’

Step 7 If step 5 results with ‘‘YES’’, then put the

ciphered images into S3 of AWS

4 Results and discussion

The ciphered medical image has been stored in public

cloud storage, and authenticated users only can access the

cloud to get a ciphered image. The retrieval of the plain

image is only through the associated private key(s) em-

ployed. Figure 6 illustrates the block diagram for pushing

encrypted medical images into S3 bucket of AWS. As

evidence, the view of the uploaded medical image in AWS

S3 bucket is shown in Fig. 7.

To ensure the resistivity of this developed work, various

attack analyses like statistical, differential, encryption

quality, bit plane correlation and entropy, keyspace, key

sensitivity, computational and time complexity, and cho-

sen-plaintext attack are carried out. The ability of the

proposed algorithm is verified with medical images of size

256 9 256. The images before encryption after encryption

and after decryption are shown in Fig. 8a–f.

4.1 Statistical analysis

To verify the statistical resistivity of the developed work,

correlation analysis, entropy analysis, and histogram anal-

ysis are carried out.

4.1.1 Correlation analysis

Correlation analysis is carried out and results are entered in

Table 3. Figure 9 depicts the closeness of intensities

between the co-located pixels of the medical images before

and after encryption.

The adoption of the Hopfield neural network and the key

generation using an intrinsic property of the image results

in the more adaptive confusion process. As evidence, the

average correlation arrived is nearly 10-3 in all the direc-

tion of the encrypted image as shown in Table 3.

4.1.2 Information entropy analysis

The statistical features like frequency of occurrence and

randomness of pixels are the hint to know the image. Any

encryption algorithm is capable of attaining the standard

entropy values globally as well in local. The global entropy

value for an ideal case is expected as 8, and the local

entropy also has optimal value for various significance

levels such as 5%, 1%, and 0.1%. Table 4 reveals the

proposed approach offers the better conversion of a plain

image into random noise and also arrived entropies are in

the acceptable range. The proposed Hopfield neural

attractor updates the weight matrix for every single medical
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Fig. 6 Block diagram for pushing encrypted medical image into S3 bucket of AWS

Fig. 7 Available uploaded medical images in AWS S3 bucket

Fig. 8 Medical: a plain (M1); b encrypted (E1 = E(M1)); c decrypted (M1 = D(E1)); medical: d plain (M2); e encrypted (E2 = E(M2)); f decrypted
(M2 = D(E2))
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Fig. 9 Adjacent pixels correlation in all the directions of the image (M1) (a–c); adjacent pixels correlation in all the directions of the image

(E1 = E(M1)) (d–f)

Table 4 Randomness analysis
Test images Global entropy Local entropy

No. of blocks = 30 Block size = 44 9 44

Original image Encrypted image Encrypted image

M1 4.425 7.9913 7.9017

M2 5.032 7.9945 7.9031

M3 6.32 7.9932 7.9023

M4 6.51 7.9922 7.9000

M5 4.784 7.9917 7.9033

Table 3 Correlation analysis
Test images Direction M1 M2 M3 M4 M5

Original image H 0.9587 0.9635 0.9808 0.9898 0.9948

V 0.9449 0.9798 0.9760 0.9875 0.9933

D 0.9196 0.9503 0.9603 0.9801 0.9939

Encrypted image H - 0.0064 0.0035 0.0037 - 0.0017 0.0008

V 0.0031 0.0007 - 0.0038 0.0013 0.0069

D 0.0004 0.0047 0.0006 - 0.0005 - 0.0012

H horizontal, V vertical, D diagonal
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image, which results in arriving exclusive encrypted ima-

ges for every single medical image. Due to the adaptive

encoding feature of the proposed work, the average entropy

of 7.99 has arrived irrespective of original medical images.

4.1.3 Histogram analysis

The uniform pixel intensity distribution over the image

plane offers image unpredictability. Figure 10a–c shows

the distribution of pixel intensities in the plain medical

images M1, M2, and M3, which are not uniformly dis-

tributed. Histograms for the encrypted medical images M1,

M2, and M3 are represented using Fig. 10d–f where the

intensities of the pixels are uniformly distributed.

From the histogram analysis, it is proven that the

redundancy of plain medical image pixels is entirely

obscured. As a result, the actual pixel intensities are

stretched and shifted out from the original and arrived with

a flat histogram. The proposed scheme also achieves one of

the features to resist a statistical attack.

4.2 Encryption quality analysis

The quantitative analysis for the histogram is also sup-

ported to ensure encryption quality. Maximum deviation

(MD) and deviation from uniform histogram (DH) are the

metrics to do the process as mentioned earlier. Compared

to the confusion stage, the diffusion stage needs to be

tested for encryption quality. For a different set of sample

test images, MD and DH are computed and tabulated in

Table 5.

The proposed algorithm carries out the diffusion process

in an adaptive manner, so the distribution of pixel inten-

sities is uniform by having the redundancy of pixels with

the expected count. From Table 5, the higher value of MD

reveals that the encrypted image has deviated from the

original.

From Table 5, the DH value for the test images after

encryption is very low which indicates that the histogram

of encrypted images is close to the ideal one. Due to the

complex, nonlinear, and dynamic encoding process as

diffusion strategy in the proposed algorithm, occurrence of

pixels values is utmost equal.

4.3 Keyspace analysis

According to the cryptographic law, strength for any

encryption proposal resides in the key. For a smaller key-

space with smaller exhaustive search, itself algorithm can

be broken. The proposed algorithm has a larger keyspace to

keep up the potency of the algorithm. Here, the proposal

has eight different keys in a set {k1,…, k8} each with the

precision of 1014, so the total keyspace is 10112. Besides,

the session keys are also obtained from the inherent fea-

tures of plain medical images that are used in encryption.

Fig. 10 Histogram analysis for the plain and encrypted image of medical images M1, M2, and M3, respectively (a–f)
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Session keys, together with the key set, are adequate to

resist the brute force attack.

4.4 Key sensitivity analysis

Keys perform a vital role in the encryption schemes, and

key sensitivity analysis is an important metric to evaluate

the robustness of the encryption schemes. Most of the

encryption schemes utilize the same key for every image

transmission. But the proposed scheme offers an indepen-

dent and adaptive key for each image using image features.

When the key is in the double data type, it can reflect the

minor change in the image features. NPCR is measured

between the images after a slight change in image content.

The test is carried out using the identical image with pixel

change, and the pixels are selected from various locations.

Tabulated NPCR values in Table 6 are evident to confirm

that the proposed scheme generates the independent key

after a slight change in image content, and this scheme can

resist the exhaustive search.

4.5 Chosen-plaintext attack analysis

XOR-based substitution methods are tested with this tra-

ditional analysis to ensure the potential to resist the chosen-

plaintext analysis. While examining the resiliency of the

proposed scheme against the chosen-plaintext attack, it

should satisfy Eq. (6)

M1 �M2 6¼ CM1 � CM2 ð6Þ

where M1, M2, CM1, and CM2 are plain medical image 1,

plain medical image 2, cipher medical image 1, and cipher

medical image 2, respectively. Figure 11a indicates the

XOR between medical image 1, medical image 2, and

Fig. 11b shows the XOR between the corresponding cipher

images, accordingly both the images are not the same

which is a visual proof for the ability of the proposed

scheme against chosen-plaintext attack. From this analysis,

it is clear that the hacker cannot obtain the key by applying

the chosen-plaintext attack.

4.6 Computational effectiveness/efficiency

The computational effectiveness/efficiency of the proposed

method depends on the pseudo-random sequence genera-

tion, permutation, and substitution process. The number of

operations that are employed to develop the pseudo-ran-

dom sequence through HNN is about O {n (M 9 N)}.

Consequently, the number of permutation operations is

about O {2 9 M 9 N}, and the total number of substitu-

tion operations are performed about O {2 9 M 9 N}. The

proposed scheme is tested with a grey image with a size of

256 9 256, and it takes 0.451 s for the encryption process.

Also, the elapsed time for the adaptive key generation is

about 0.018845 s for each plain image. The time taken for

uploading a file through a WiFi network of speed

130 Mbps into the AWS S3 bucket is 0.546 s. The prop-

agation delay is inversely proportional to network speed.

Fig. 11 Chosen-plaintext attack analysis: a M1 � M2, b CM1 � CM2

Table 5 Image encryption

quality analysis
Encryption quality metrics M1 M2 M3 M4 M5

MD 63,480 89,800 45,019 51,694 86,329

DH 0.0658 0.029 0.03808 0.0271 0.5561

Table 6 Key sensitivity analysis

Image with % of change in the content (with different location) Generated key NPCR (%)

Medical image 1 with 5 pixels change 5.99999999999999909999 99.6262

Medical image 1 with 10 pixels change 5.99999999999990999999 99.5941

Medical image 1 with 15 pixels change 5.99999999099999999999 99.6002

Medical image 1 with 20 pixels change 5.99990999999999999999 99.5544

Medical image 1 with 25 pixels change 3.99099999999999999999 99.5880
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4.7 Performance comparison analysis

The proposed scheme is compared with the recent methods

using entropy, correlation, NPCR, and UACI. The com-

parison analysis is shown in Table 7. The proposed

scheme is compared with three different modes of tech-

niques such as Refs. [9, 11, 13] are chaos-based encryption,

Ref. [10] is inter- and intra-plane shuffling-based encryp-

tion, Ref. [12], and Refs. [34, 37] are genetic and neural-

based encryption, respectively. Chaos-based works are

framed in such a way to resilient against statistical, dic-

tionary attack, but sometimes Chaos-based works fail in

entropy when the modality of image changes. Plane- and

pixel-wise rotation algorithms offer desire entropy but fail

in the keyspace. However, most of the works are crypt-

analysis by chosen-plaintext analysis [14–20]. Based on the

obtained metric values, the proposed scheme can withstand

statistical, differential, and brute force attacks. Besides, the

adaptive key generation using the BPN algorithm formu-

lates a strong and image-specific encryption scheme.

Cloud data storage is chosen for data sharing between

groups of intended users to avoid multiple transmissions. In

such a scenario, every single image storage and transmis-

sion demands security. When the cloud is approached for

storage, the encryption module should encrypt any type of

medical image, and it should result in the desire and uni-

form metrics. This demand is fulfilled by the proposed

scheme using adaptive key generation. In the proposed

scheme, the adaptive key from BPN is inserted in the

weight matrix of the Hopfield neural network as control

parameters, which decide the chaotic behaviour of the

HNN. Hence HNN starts self-learning with every plain

image, which results in an image-specific random

sequence. The image-specific random sequence employs

the self-adaptive confusion and diffusion. Due to the self-

adaptive property of the proposed Hopfield neural network

and unique key for every image transmission, the proposed

scheme resists the chosen-plaintext attack. Besides, tabu-

lated metrics prove that the proposed scheme is not com-

promised with any other metrics, so it can make resilient

against statistical, differential, and encryption quality

attacks.

5 Conclusion

Cloud storage environments are vulnerable to many secu-

rity breaches because of open and multi-tendency. When

the cloud is approached for the creation of a medical image

repository, it’s vital to ensure the security solutions are

impenetrable. This proposed solution offers security for the

data stored in the cloud storage and for a different state like

underuse, at rest, and in transit. The motivation of this

work is to build a secure medical image repository in the

cloud. Hopfield attractor is a major component of the

security system for the medical images to be stored in the

cloud, and fitness is also validated using the standard

metrics. The proposed work employed Hopfield attractor

for the confusion of pixels followed by diffusion has

confirmed the resiliency against the various attacks. The

proposed work has keyspace 10112. Also, adaptive keys are

generated by BPN; thus, hackers cannot predict the key

using the chosen-plaintext attack strategy. The integration

of supervised and associative neural networks increases the

complexity of key and algorithm predictions. In the future,

the neural-assisted security solutions will be developed for

multimedia data such as colour medical image, audio, and

video storage in the cloud.
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15. Özkaynak F, Özer AB (2016) Cryptanalysis of a new image

encryption algorithm based on chaos. Optik (Stuttg)

127:5190–5192. https://doi.org/10.1016/j.ijleo.2016.03.018

16. Akhavan A, Samsudin A, Akhshani A (2017) Cryptanalysis of an

image encryption algorithm based on DNA encoding. Opt Laser

Technol 95:94–99. https://doi.org/10.1016/j.optlastec.2017.04.

022

17. Dhall S, Pal SK, Sharma K (2018) Cryptanalysis of image

encryption scheme based on a new 1D chaotic system. Signal

Process 146:22–32. https://doi.org/10.1016/j.sigpro.2017.12.021

18. Li M, Guo Y, Huang J, Li Y (2018) Cryptanalysis of a chaotic

image encryption scheme based on permutation–diffusion struc-

ture. Signal Process Image Commun 62:164–172. https://doi.org/

10.1016/j.image.2018.01.002

19. Zhang Y (2019) Security analysis of a chaos triggered image

encryption scheme. Multimed Tools Appl 78:31303–31318.

https://doi.org/10.1007/s11042-019-07894-6

20. Zhang Y (2020) Cryptanalyzing an image cryptosystem based on

circular inter–intra pixels bit-level permutation. IEEE Access

8:94810–94816. https://doi.org/10.1109/ACCESS.2020.2995839

21. Bogos S, Gaspoz J, Vaudenay S (2018) Cryptanalysis of a

homomorphic encryption scheme. Cryptogr Commun 10:27–39.

https://doi.org/10.1007/s12095-017-0243-8

22. Kohonen T (1988) An introduction to neural computing. Neural

Netw 1:3–16. https://doi.org/10.1016/0893-6080(88)90020-2

23. Chen Y, Yan J, Sareh P, Feng J (2020) Feasible prestress modes

for cable-strut structures with multiple self-stress states using

particle swarm optimization. J Comput Civ Eng 34:1–10. https://

doi.org/10.1061/(ASCE)CP.1943-5487.0000882

24. Domer B, Fest E, Lalit V, Smith IFC (2003) Combining dynamic

relaxation method with artificial neural networks to enhance

simulation of tensegrity structures. J Struct Eng 129:672–681.

https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(672)

25. Yu W, Cao J (2006) Cryptography based on delayed chaotic

neural networks. Phys Lett Sect A Gen At Solid State Phys

356:333–338. https://doi.org/10.1016/j.physleta.2006.03.069

26. Tang H, Li H, Yan R (2010) Memory dynamics in attractor

networks with saliency weights. Neural Comput 22:1899–1926.

https://doi.org/10.1162/neco.2010.07-09-1050

27. Qin K (2017) On chaotic neural network design: a new frame-

work. Neural Process Lett 45:243–261. https://doi.org/10.1007/

s11063-016-9525-y

28. Kassem A, Al Haj Hassan H, Harkouss Y, Assaf R (2014) Effi-

cient neural chaotic generator for image encryption. Digit Signal

Process Rev J 25:266–274. https://doi.org/10.1016/j.dsp.2013.11.

004

29. Ma X, Chen X, Zhang X (2019) Non-interactive privacy-pre-

serving neural network prediction. Inf Sci (Ny) 481:507–519.

https://doi.org/10.1016/j.ins.2018.12.015

30. Bigdeli N, Farid Y, Afshar K (2012) A novel image encryption/

decryption scheme based on chaotic neural networks. Eng Appl

Artif Intell 25:753–765. https://doi.org/10.1016/j.engappai.2012.

01.007

31. Al Azawee H, Husien S, Yunus MAM (2016) Encryption func-

tion on artificial neural network. Neural Comput Appl

27:2601–2604. https://doi.org/10.1007/s00521-015-2028-3

32. Hopfield JJ (1982) Neural networks and physical systems with

emergent collective computational abilities. Feynman Comput.

https://doi.org/10.1201/9780429500459

33. Hopfield J (1984) Neurons with graded response have collective

computational properties like those of two-state neurons. Proc

Natl Acad Sci U S A 81:3088–3092. https://doi.org/10.1073/pnas.

81.10.3088

34. Wang X-Y, Li Z-M (2019) A color image encryption algorithm

based on Hopfield chaotic neural network. Opt Lasers Eng

115:107–118. https://doi.org/10.1016/j.optlaseng.2018.11.010

35. Lakshmi C, Thenmozhi K, Rayappan JBB, Amirtharajan R

(2020) Hopfield attractor-trusted neural network: an attack-re-

sistant image encryption. Neural Comput Appl 32:11477–11489.

https://doi.org/10.1007/s00521-019-04637-4

36. Lakshmi C, Thenmozhi K, Rayappan JBB, Amirtharajan R

(2018) Encryption and watermark-treated medical image against

hacking disease—an immune convention in spatial and frequency

domains. Comput Methods Programs Biomed 159:11–21. https://

doi.org/10.1016/j.cmpb.2018.02.021

37. Bigdeli N, Farid Y, Afshar K (2012) A robust hybrid method for

image encryption based on Hopfield neural network. Comput

Electr Eng 38:356–369. https://doi.org/10.1016/j.compeleceng.

2011.11.019

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

6684 Neural Computing and Applications (2021) 33:6671–6684

123

https://doi.org/10.1016/j.jnca.2016.11.027
https://doi.org/10.1016/j.jnca.2016.11.027
https://doi.org/10.1186/s13677-017-0097-9
https://doi.org/10.1186/s13677-017-0097-9
https://doi.org/10.1016/j.future.2016.11.012
https://doi.org/10.1016/j.future.2016.11.012
https://doi.org/10.1049/iet-ipr.2018.5654
https://doi.org/10.1049/iet-ipr.2018.5654
https://doi.org/10.1109/MCC.2018.111121403
https://doi.org/10.1109/MCC.2018.111121403
https://doi.org/10.1007/s11831-018-9298-8
https://doi.org/10.1155/2017/6729896
https://doi.org/10.1016/j.ins.2015.10.027
https://doi.org/10.1007/s11277-019-06420-z
https://doi.org/10.1016/j.optlaseng.2018.05.009
https://doi.org/10.1016/j.image.2015.10.004
https://doi.org/10.1016/j.ijleo.2012.06.020
https://doi.org/10.1016/j.ijleo.2016.03.018
https://doi.org/10.1016/j.optlastec.2017.04.022
https://doi.org/10.1016/j.optlastec.2017.04.022
https://doi.org/10.1016/j.sigpro.2017.12.021
https://doi.org/10.1016/j.image.2018.01.002
https://doi.org/10.1016/j.image.2018.01.002
https://doi.org/10.1007/s11042-019-07894-6
https://doi.org/10.1109/ACCESS.2020.2995839
https://doi.org/10.1007/s12095-017-0243-8
https://doi.org/10.1016/0893-6080(88)90020-2
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000882
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000882
https://doi.org/10.1061/(ASCE)0733-9445(2003)129:5(672)
https://doi.org/10.1016/j.physleta.2006.03.069
https://doi.org/10.1162/neco.2010.07-09-1050
https://doi.org/10.1007/s11063-016-9525-y
https://doi.org/10.1007/s11063-016-9525-y
https://doi.org/10.1016/j.dsp.2013.11.004
https://doi.org/10.1016/j.dsp.2013.11.004
https://doi.org/10.1016/j.ins.2018.12.015
https://doi.org/10.1016/j.engappai.2012.01.007
https://doi.org/10.1016/j.engappai.2012.01.007
https://doi.org/10.1007/s00521-015-2028-3
https://doi.org/10.1201/9780429500459
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1016/j.optlaseng.2018.11.010
https://doi.org/10.1007/s00521-019-04637-4
https://doi.org/10.1016/j.cmpb.2018.02.021
https://doi.org/10.1016/j.cmpb.2018.02.021
https://doi.org/10.1016/j.compeleceng.2011.11.019
https://doi.org/10.1016/j.compeleceng.2011.11.019

	Neural-assisted image-dependent encryption scheme for medical image cloud storage
	Abstract
	Introduction
	Pre-requisites
	Hyperchaotic HNN
	Chaotic behaviour analysis of HNN

	Proposed scheme
	Phase I: adaptive key generation using back propagation network
	Phase II: random sequence generation using HNN and image-specific key
	Phase III: adaptive confusion using random sequence generation
	Phase IV: adaptive diffusion using random sequence generation
	Phase V: connectivity establishment between cloud and cryptosystem proposed

	Results and discussion
	Statistical analysis
	Correlation analysis
	Information entropy analysis
	Histogram analysis

	Encryption quality analysis
	Keyspace analysis
	Key sensitivity analysis
	Chosen-plaintext attack analysis
	Computational effectiveness/efficiency
	Performance comparison analysis

	Conclusion
	Acknowledgements
	References




