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Abstract
Multi-objective evolutionary algorithms (MOEAs) have proven their effectiveness in solving two or three objective

problems. However, recent research shows that Pareto-based MOEAs encounter selection difficulties facing many similar

non-dominated solutions in dealing with many-objective problems. In order to reduce the selection pressure and improve

the diversity, we propose achievement scalarizing function sorting strategy to make strength Pareto evolutionary algorithm

suitable for many-objective optimization. In the proposed algorithm, we adopt density estimation strategy to redefine a new

fitness value of a solution, which can select solution with good convergence and distribution. In addition, a clustering

method is used to classify the non-dominated solutions, and then, an achievement scalarizing function ranking method is

designed to layer different frontiers and eliminate redundant solutions in the environment selection stage, thus ensuring the

convergence and diversity of non-dominant solutions. The performance of the proposed algorithm is validated and

compared with some state-of-the-art algorithms on a number of test problems with 3, 5, 8, 10 objectives. Experimental

studies demonstrate that the proposed algorithm shows very competitive performance.

Keywords Evolutionary algorithm � Many-objective optimization � Achievement scalarizing function � Convergence �
Diversity

1 Introduction

Evolutionary algorithms (EAs) are a kind of population-

based search heuristic algorithms that can obtain a set of

candidate solutions in a single run. The multi-objective

evolutionary algorithms (MOEAs) have experienced a

boom development during the past two decades [1]. Most

MOEAs perform well on multi-objective optimization

problems (MOPs) with two or three objectives [2].

However, when MOEAs are adopted to tackle many-ob-

jective optimization problems (MaOPs) with more than

three objectives [3], they will confront with substantial

difficulties. As a result, there is growing interest in the

development of MOEAs to address MaOPs.

One of the primary reasons is that when MOEAs solves

MaOPs, almost all solutions in the population are not

dominant as the number of objectives increases, which is

attributed to the severe loss of selection pressure based on

Pareto front (PF) [4, 5]. Another primary reason is that it is

difficult for MOEAs to maintain good population diversity

in high-dimensional objective space of MaOPs [6, 44, 45].

Due to the relatively sparse distribution of candidate

solutions in the high-dimensional objective space, diversity

management strategies widely used in MOEAs, such as

crowded distance [7] or clustering operator [8], are con-

fronted with great difficulties.

In order to enhance the performance of MOEAs in

solving MaOPs, a lot of improved approaches have been

proposed. In summary, the developing approaches can be

roughly classified into three categories, including
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dominance-based, indicator-based and decomposition-

based approaches [9].

The first category is dominance-based MOEAs. In order

to increase the selection pressure toward the PF, the basic

idea adopts various improved dominance relationships or

novel diversified management strategies to select quality

solutions. Example of some cross-sectional modified

dominance relationships, such as �-dominance [10, 11],

fuzzy Pareto dominance [12, 13] and grid dominance [14],

have been proposed. Besides, another important role for the

quality solutions is diversity selection mechanism. For

example, in [15], a binary �-dominance is proposed to

combined with dominance to speed up convergence of

NSGA-II. SPEA2?SDE [16] presented a shift-based den-

sity estimation strategy, which punishes solutions with

poor convergence by assigning a high density value on the

basis of dominant comparison. In addition, a knee point

evolutionary algorithm is also a new dominance-based

method, aiming at dealing with MaOPs [17].

The second category is indicator-based MOEAs, which

adopts solution quality measurement of performance indi-

cators as selection criteria. Among the current available

indicator, hypervolume (HV) and R2 indicator may be the

most commonly used indicators in multi-objective search

process [18]. For instance, SMS-EMOA [19] used S metric

selection strategy to update population. HypE [20] pro-

posed the uses of Monte Carlo simulation to estimate the

HV contributions of the candidate solutions, which reduces

the high complexity of HV computation. MOMOBI-II [21]

designed a predefined binary indicator, HV indicator, GD

and R2 indicator in the environmental selection. SRA [40]

adopted the stochastic ranking algorithm to balance the

search biases of I�þ and ISDE indicators.

The third category is decomposition-based MOEAs,

which transforms a MOP into a set of single-objective

optimization problems. Then, these single-objective prob-

lems are optimized simultaneously by evolving a set of

solutions. MOEA/D [22] is a classical decomposition-

based algorithm, which is an important turning point in the

development of evolutionary algorithms. Since then, some

improved algorithms based on decomposition methods

have been proposed successively, such as [23, 24, 38, 39].

In addition, some researchers have made important

breakthroughs in the algorithm for solving MaOPs based

on dominance and decomposition methods. For example,

MOEA/DD [25] proposed a method based on dominance

and decomposition to balance the convergence and diver-

sity of the algorithm. BCE-MOEA/D [26] proposed that

dominance and decomposition work collaboratively to

facilitate each other’s evolution. Besides, the study on the

convergence and distribution of reference vectors is also

the focus of investigators. For instance, RVEA [27] pro-

posed that reference vectors can be used to clarify the

user’s preferences, thus targeting a preferred subset of the

entire Pareto front. RPEA [28] proposed the reference

vectors-based approach to guide the evolution so as to

strength the selection pressure toward the Pareto front and

maintain the uniform distribution of solutions. Hence, a

well-distributed reference vectors have been widely used to

increase the convergence and diversity in solving many-

objective optimization problems. Furthermore, the domi-

nant relationship based on decomposition is also the main

research direction. In NSGA-III [29], the authors proposed

a clustering operator assisted by a set of well-distributed

reference vectors to replace the crowding distance operator

in NSGA-II. In RPD-NSGA-II [30], the authors proposed a

new decomposition-based dominance relation to create a

strict partial order on a set of non-dominating solutions

using a well-distributed set of reference vectors. In h-
NSGA-III [31], the authors proposed a new h-dominance

relation-based non-dominant sorting to ensure convergence

and diversity in the environmental selection. And in SPEA/

R [32], the authors introduced a density estimator based on

reference direction for handling both multi-objective and

many-objective problems.

According to the above three methods, no matter which

method is based on, it will make an important contribution

to our future research. More recently, dominance-based

and decomposition-based methods have been the focus of

research when dealing with MaOPs in some literature

[25, 31, 42, 43]. However, as highlighted in [26], domi-

nance-based MOEAs present inferior performance in a

high-dimensional objective space, while decomposition

approaches have been performed suitable ability in solving

different many-objective optimization problems [33].

Therefore, this observation greatly inspired us to adopt

decomposition-based methods into dominance-based

MOEAs so as to tackle with MaOPs.

SPEA2 [8] is the most typical Pareto dominance rela-

tionship implementation, but when dealing with MaOPs,

there is not enough selection pressure as the number of

non-dominant solutions increases. Hence, some effective

strategy needs to be considered to improve the performance

of SPEA2. In the existing studies, decomposition-based

MOEAs seem to be quite straightforward since the refer-

ence vector can guide the solutions uniformly distribution.

For example, NSGA-III [29] that is a reference-points-

based many-objective evolutionary algorithm based on

NSGA-II algorithm emphasized those non-dominant solu-

tions closing to a set of provided reference points.

MOMOBI-II [21] is R2 ranking-based algorithm, which

introduce that the achievement scalarizing function value is

consistent with the reference vector. Motivated by NSGA-

III and MOMOBI-II, we suggest a reference-vectors-based

many-objective evolutionary algorithm following SPEA2

framework. Compared with existing approaches, the main
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new contributions of this paper can be summarized as

follows.

(1) A density estimation is adopted by the perpendicular

distance from a solution to reference vector so as to rede-

fine a new fitness value of a solution. In the proposed

method, a set of reference vector is used to build the

density distribution in the process of assignment fitness

which can select solution with good distribution.

(2) A new achievement scalarizing function sorting

algorithm in environmental selection. In this method, a

clustering method is designed to classify the non-domi-

nated solutions, and then, an achievement scalarizing

function sort method is applied to layer different fronts and

prune the redundant solutions, and then, we can ensure

both convergence and diversity of non-dominated solutions

entering the next generations.

The remainder of this paper is organized as follows:

Sect. 2 presents the preliminaries of this paper. Section 3

introduces the proposed SPEA2?ASF algorithms. Sec-

tion 4 describes experimental design including test prob-

lems, performance metrics and experimental setting.

Section 5 provides the experimental results. Finally, the

conclusion is given in Sect. 6.

2 Preliminaries

In this section, we give some basic definitions in multi-

objective optimization. Then, we will briefly introduce the

decomposition methods, which are the foundations of our

proposed algorithm.

2.1 Basic definitions

In general, the multi-objective optimization problem

(MOP) can be mathematically defined as:

min FðxÞ ¼ ðf1ðxÞ; f2ðxÞ; :::; fmðxÞÞT ð1Þ

s:t x 2 X

where x ¼ ðx1; x2; :::; xnÞT is a n-dimensional decision

variable, Xn is a feasible solution space for n decision

variables, F : Xn ! Rm is the mapping from the decision

space to the target space, m is the dimension of the

objective space.

In multi-objective optimization, the following concepts

have been well defined and widely applied.

Definition 1 (Pareto dominance) For two different

decision variables x, y 2 X, if 8i ¼ 1; 2; :::;m, fiðxÞ� fiðyÞ,
and 9i ¼ 1; 2; :::;m, fiðxÞ\fiðyÞ, then x is said to Pareto

dominate y, denoted as x � y.

Definition 2 (Pareto optimal set ): For a solution

x� 2 X, if there is no x 2 X satisfying x � x�, x� is regarded

as the Pareto optimal solution. So the Pareto optimal set

(PS) is defined as:

PS ¼ fx 2 Xjx is the Pareto optimal solutiong ð2Þ

Definition 3 (Pareto front): Pareto front (PF) is described

as the image of Pareto optimal solution set on the objective

space. The PF is defined as:

PF ¼ ff ðxÞ 2 Rmjx 2 PSg ð3Þ

MOEAs have the powerful capacity for solving MOPs. The

goal of MOEAs is to obtain the non-dominated solutions

which is close to PF and evenly distributed over PF.

2.2 Decomposition methods

The decomposition method is used to transform the multi-

objective problem into a set of single-objective optimiza-

tion problems. There are several possible approaches such

as Tchebycheff approach, penalty-based boundary inter-

section approach and achievement scalarizing function

approach.

2.2.1 Tchebycheff approach

The Tchebycheff aggregate function with a non-negative

weight vector w and reference point z� ¼
min fiðxÞ j x 2 Xf g is written as follows:

minimize gteðx j w; z�Þ ¼ max
1� i�m

wi j fiðxÞ � z� jf g ð4Þ

where z� ¼ ðz�1; :::; z�mÞ is reference point, and the value of

z� is set z� ¼ min fiðxÞ j x 2 Xf g, i ¼ 1; 2; :::;m.

2.2.2 Penalty-based Boundary intersection approach

Mathematically, penalty-based boundary intersection

approach can be defined as follows:

minimize gpbiðx j w; z�Þ ¼ d1 þ hd2 ð5Þ

where h[ 0 is a penalty parameter. The d1 represents the

Euclidean distance between the fitness value and ideal

point z�, d2 is the perpendicular distance between F(x) and

w.

2.2.3 Achievement scalarizing function approach

Achievement scalarizing function (ASF) has been scarcely

studied in MOEAs, and ASF is defined as:

minimize gASFðx j w; z�Þ ¼ max
1� i�m

1

wi
j fiðxÞ � z� j

� �

ð6Þ
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where the reference vectors is the reciprocal form because

the method can make the contour lines of a solution con-

sistent with the reference vector. To make it clear that

achievement scalarizing function value is superior to

Tchebycheff aggregate function value in calculation, we

illustrate it with a two-dimensional example in Fig. 1.

In Fig. 1, we calculate the achievement scalarizing

function values and Tchebycheff aggregate function values

of solution A on wi, i ¼ 1; 2; 3, respectively. According to

Eq. 4, we can obtain gteðA;w1Þ ¼ 0:49, gteðA;w2Þ ¼ 0:35,

gteðA;w3Þ ¼ 0:21, and solution A is an optimal value on

reference vector w3. According to Eq. 6, we can obtain

these values gASFðA;w1Þ ¼ 1, gASFðA;w2Þ ¼ 7
5
,

gASFðA;w3Þ ¼ 7
3
, and solution A is an optimal value on

reference vector w1. Therefore, the calculated value of ASF

not only has convergence performance, but also has better

distribution performance than the TCH value in terms of

the distribution property of the solution. Besides, the rea-

son why we did not choose PBI method is that although

PBI has good convergence and distribution performance in

the calculation process, the h value selected has a great

impact on the results. So we consider ASF as the selection

criterion in environmental selection.

3 The proposed SPEA21ASF

3.1 Overview

The framework of the proposed SPEA2?ASF is described

in Algorithm 1.

First, after setting the population size N, a set of N

reference vectors is generated, which is denoted as

W ¼ fw1;w2; :::;wNg. So a m-objective reference vector is

represented by wj ¼ ðwj;1;wj;2; :::;wj;mÞ, where wj;i � 0,Xm

i¼1
wj;i ¼ 1, i ¼ 1; 2; :::;m, and j ¼ 1; 2; :::;N. Then, the

initial population P0 is randomly generated and the ideal

point z� is initialized. Next, the algorithm enters the iter-

ation until the termination condition is satisfied. In the

iteration, we use the recombination operator to produce the

offspring population Qt. Next, population Rt is composed

of current population Pt and offspring population Qt. Then,

we redefine the fitness of solutions according to the dis-

tance between the reference vector and solutions. Finally, a

clustering operator and a new achievement scalarizing

function sorting strategy are implemented for environ-

mental selection. The non-dominated solutions in the final

population Ptþ1 is returned as the output when the iterative

optimization is compete.

3.2 Generate reference vectors

In our algorithm, the decomposition-based approach con-

sists of a systematic process that first generates a set of

uniformly distributed reference vectors. In this paper, we

use Das and Dennis’s [29] systematic approach to generate

the evenly distributed reference vectors. The number of

reference vectors (N) is defined as follows:

N ¼
H þM � 1

M � 1

� �
ð7Þ

where H is considered as divisions along each objective,

M is the number of objective problem. In this case, the

reference vectors are widely distributed on the entire nor-

malized hyperplane. Therefore, the algorithm is likely to

find widely distributed Pareto optimal solutions corre-

sponding to the reference vectors.

Fig. 1 Illustrate the contour line with ASF and TCH with a two-

dimensional example
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3.3 Recombination operator

The selection of recombination operators plays an impor-

tant role in population renewal, especially in high-dimen-

sional objectives space. Because it is more likely to choose

solutions that are far away from each other to recombine

and generate poor-performing descendant solutions in a

higher-dimensional objectives space. In the existing

research, the two schemes of mating restriction and SBX

operation with a large distribution index are the most

widely used. As in NSGA-III [29], a careful elitist selection

of solutions and maintaining diversity among solutions are

applied by emphasizing the solutions closest to the refer-

ence line of each reference point. They do not employ any

explicit reproduction operation for handling problems with

box constraints only. In SPEA2?ASF, we also use a ref-

erence vector to lead selection strategy to maintain the

diversity in solving many-objective optimization problems.

Besides, we adopt a clustering method and ASF non-

dominated sort method to layer the different fronts, which

enhance not only the distribution but also the convergence.

Therefore, we consider creating offspring solutions that is

closer to parent solutions, such as NSGA-III [29]. Thereby,

we employs SBX operation with a lager distribution index,

where near-parent solutions are emphasized. During the

recombination, two parent solutions are randomly selected

from the current population Pt, and the offspring solutions

are created using SBX operators with large distribution

exponential and polynomial mutations.

3.4 Fitness assignment

In SPEA2 [8], after generating offspring population Qt by

parent population Pt, a union population Rt consists of Rt

and Qt. Then, a fine-grained fitness assignment strategy is

incorporated into density information in Rt. Each individ-

ual x is assigned a strength value S(x), indicating the

number of solutions in which it dominates:

SðxÞ ¼ jfyjy 2 Rt ^ x � ygj ð8Þ

where j � j stands for the cardinality, [ signifies the union of

parent population and offspring population, � represents

the Pareto dominance relation. Then, the raw fitness R(x) of

an individual x is calculated:

RðxÞ ¼
X

y2Rt ;y�x

SðyÞ ð9Þ

where RðxÞ ¼ 0 corresponds to a non-dominated solution,

and a high R(x) value means that a solution x is dominated

by many solutions.

However, if the individuals do not dominate each other,

the raw fitness value will be zero, and the fitness assign-

ment will be meaningless. In order to avoid this case, we

adopt an distance-based density estimation technique to

discriminate between individuals and solutions having

identical raw fitness values. Each solution has the unique

distance value d2 ¼ ðf ðxÞ;wiÞ, which is actually the per-

pendicular distance between f ðxÞ and the associated ref-

erence vector wi. The distance of d2 is calculated as

follows:

d1ðxÞ ¼k f ðxÞwi k = k wi k ð10Þ

d2ðxÞ ¼k f ðxÞ � d1ðwi= k wi kÞ k ð11Þ

where f ðxÞ ¼ ðf1ðxÞ; f2ðxÞ; :::; fmðxÞÞ is a transformed

objective value of solution x. wi is an m-dimensional ref-

erence vector. The expressions for d1 and d2 in two

dimensions are illustrated in Fig. 2.

In SPEA2 [8], the authors proposed that existing some

individuals in current generation may do not dominate each

other. Then, according to the partial order defined by the

dominance relationship, there will be no information or

little information. In this case, the use of density infor-

mation can guide the search more effectively [8]. There-

fore, density estimation method with an adaptation of the k-

th nearest neighbor is designed in SPEA2?ASF. In this

situation, we use the reciprocal of the distance to the k-th

nearest neighbor as the density estimate. More specifically,

we calculate the distance (d2) between each solution x and

all reference vectors, and then, all distances are sorted in

increasing order. Then, the k-th nearest solution represents

the desired distance, denoted as .xk. Therefore, the density
D(x) is defined as follows:

DðxÞ ¼ 1

.kx þ hx
ð12Þ

where k is the square root of the union population size,

k ¼
ffiffiffiffiffiffi
2N

p
. hx ¼ 2 is designed to the denominator to ensure

that its value is greater than zero and DðiÞ\1.

The redefined fitness of solution x is defined as:

FðxÞ ¼ RðxÞ þ DðxÞ ð13Þ

This method can make solutions with better local diversity

and convergence to have higher final fitness, which is of

great benefit to the diversity and local convergence of

subregions.

3.5 Achievement scalarizing function sorting-
based environmental selection

Environmental selection plays a key role in the process of

retaining the population into next generation. In SPEA2

[8], the truncation method prevents the deletion of

boundary solutions, but it lacks convergence and distribu-

tion in the retention of solution sets, especially in solving

high-dimensional multi-objective optimization problems.
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In order to select the candidate solutions with good

convergence and diversity from the union set Rt when we

tackle with MaOPs, we use d2 clustering and ASF non-

dominated sorting method to select these solutions that will

be next generation parent population. The procedure of

environmental selection is shown in Algorithm 2.

In environmental selection, we select these population

which have a fitness lower than 1 to the next generation

population. If the number of the selected population is less

than or equal to the population size N, we will copy these

best dominated solutions in the previous population to Ptþ1

until meeting the population size according to the fitness

ranking. However, when the number of population with

fitness value greater than 1 exceeds N, more attention has

been paid to the reduction strategies of the population. In

order to obtain individuals with good convergence and

diversity, we adopt a clustering operator method and ASF

non-dominated sorting method in St. In this situation, a set

of reference vector is designed to guide population toward

Pareto front and reference vectors. Therefore, the conver-

gence and diversity of population will be increased, the

detailed procedures are described in Algorithm 3, Algo-

rithm 4 and Fig. 3.

In the following, the clustering operator is illustrated in

Algorithm 3.

Each objective value of St is then translated by sub-

tracting objective fiðxÞ by zmin
i so that the ideal point of

translated St becomes a zero vector. We denote this

translated objective as f iðxÞ ¼ fiðxÞ � zmin
i . After translat-

ing each objective of St in the objective space, we need to

associate each population member with a reference vector.

In the translated objective space, we calculate the perpen-

dicular distance between each solution of St and each ref-

erence vector. Next, a solution with minimum distance is

assigned into a cluster C. Then, an achievement scalarizing

function sort is applied to select these population that will

join the next generation. The procedure of ASF non-dom-

inated sort is shown in Algorithm 4.

In Fig. 1, the ASF value is proved to be in the same

direction as the reference vector and has both convergence

and distribution. In addition, the smaller the ASF value is,

the closer the corresponding solution is to the real frontier

and the reference vector. So, we suggest a new sorting

method based on clustering operator and achievement

scalarizing function in environmental selection. To be

precise, we calculate the ASF value in each cluster and sort

these solutions in this cluster. Then, different fronts

½F1;F2; . . .� in all clusters are obtained. Finally, these

solutions from F1 to Fi�1 fronts are copied into Ptþ1, and

N � jPtþ1j solutions in the maximum front Fi are put into

Ptþ1 according to randomly sorting.
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To illustrate the process of achievement scalarizing

function sorting strategy more clearly, we describe it with a

two-dimensional example in Fig. 3.

We assume separately reference vectors w1 ¼ ð0:2; 0:8Þ,
w2 ¼ ð0:4; 0:6Þ, w3 ¼ ð0:5; 0:5Þ, w4 ¼ ð0:6; 0:4Þ and

w5 ¼ ð0:8; 0:2Þ. These solutions are set a ¼ ð0:19; 0:8Þ,
b ¼ ð0:22; 0:9Þ, c ¼ ð0:48; 0:5Þ, d ¼ ð0:51; 0:48Þ,
e ¼ ð0:7; 0:49Þ, f ¼ ð0:6; 0:4Þ, g ¼ ð0:7; 0:3Þ and

h ¼ ð0:8; 0:18Þ. In our paper, population size is same to the

number of reference vectors. In this case, we should retain

5 solutions into the next generation. After performing the

clustering operation according to Algorithm 3, we get the

reference vector and the associated solution set such as w1

and {a,b,c}, w3 and {c,d,e}, w4 and{f,g}, w5 and {h}. Then,

we carried out achievement scalarizing function in each

cluster. Solutions {a,c,f,h} are classified into first front,

{b,d,g} is sorted into second front, and {e} is layered into

third front. Therefore, solutions {a,c,f,h} are reserved

directly to the next generation of population, and then, the

remaining solution is randomly selected in {b,d,g} to keep

the number of solutions equal to the number of reference

vectors. In addition, when the number of solutions in first

fonts exceeds the population size N, we will select these

solutions with the optimal ASF value in each cluster into

the next parent population.

3.6 Computational complexity of SPEA21ASF

The computational complexity of SPEA2?ASF is domi-

nated in one generation by the clustering operator that is

shown in Algorithm 3. In Algorithm 3, each solution x in St
need to be calculated the distances with N reference vec-

tors, and the computational complexity of each distance

calculation is O(m). Due to j St j � 2N, the overall worst

complexity of SPEA2?ASF in each generation is OðmN2Þ.

3.7 Discussions

It is worth noting that SPEA2?ASF algorithm is based on

the SPEA2 framework and is partly inspired by NSGA-III

and MOMOBI-II, but it is also different from these com-

pared algorithms. These differences can be summarized as

follows.

Both SPEA2?ASF and SPAE2 [8] employ the strength

Pareto and assign fitness to execute the dominate relations.

However, there are two major differences between the two

algorithms. Firstly, SPEA2?ASF adopts a set of reference

vector to build the density distribution in the process of

assignment fitness, while SPEA2 adopts the distance

between any two solutions for density distribution. Sec-

ondly, in order to deal with the scaled Pareto fronts,

SPEA2?ASF adopts a set of reference vector to guide

selection strategy to maintain the diversity, while SPEA2

only adopts the distance between solution x to its k-th

nearest neighbor to select non-dominated solutions.

Both SPEA2?ASF and NSGA-III [29] adopt dominance

relationships to converge populations and reference vectors

to maintain diversity. But NSGA3 uses the NSGA2 method

of fast non-dominant sorting, while SPEA2?ASF uses a

strong dominant relationship based on fitness values. In

addition, NSGA-III applies the correlation operation of the

vertical distance between population and reference point

and adopts the niche to retain the good candidate solutions,

while SPEA2?ASF employs a clustering correlation

operation and ASF non-dominated sorting method to pre-

serve the quality solutions.

Both SPEA2?ASF and MOMOBI-II [21] use a refer-

ence vector to lead selection strategy to maintain the

diversity in solving many-objective optimization problems.

Fig. 2 Illustrate the calculation of d1 and d2

Fig. 3 Illustrate the achievement scalarizing function sorting strategy

with a two-dimensional example
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Nevertheless, SPEA2?ASF performs a clustering method

and ASF non-dominated sort method to layer the different

fronts, enhancing distribution and convergence. MOMOBI-

II employs the fast R2 indicator ranking strategy in solving

many-objective problems.

In summary, our major motivation is to exploit the

merits of both a clustering method and ASF non-dominated

sort guided approaches for enhancing the convergence and

diversity in solving many-objective problems.

4 Experimental design

The experimental design introduced in this section inves-

tigates the performance of SPEA2?ASF. First, we give the

test problems and performance metrics which are used in

our experiments. Then, the experimental settings adopted

are provided.

4.1 Test problems

In this comparison, thirteen test problems with different

characteristics of the Pareto front are involved in the

experiments. We assessed two test suits including Deb–

Thiele–Laumanns–Zitzler (DTLZ1-DTLZ4) [34] and

Walking Fish Group (WFG1-WFG9) [35]. All these

problems can be extended to any number of objectives and

decision variables. In this paper, we consider the number of

objectives m 2 f3; 5; 8; 10g. For DTLZ1 test problems, the

number of division is mþ k � 1, where m is the number of

objectives and k is set to 5. However, k is set to 10 for

DTLZ2-DTLZ4 as mentioned in [34]. As for WFG prob-

lems, the divisions is set to k þ l, where k ¼ 2 � ðm� 1Þ
and l ¼ 20 [35].

4.2 Performance metrics

The performance metrics are need to evaluate the quality of

the proposed algorithm. In the multi-objective and many-

objective optimization algorithms literature, the inverted

generation distance (IGD) [36] is one of the most widely

used metric, which can comprehensively reflect the con-

vergence and diversity of solution sets.

IGD measures the average Euclidean distance from the

uniformly distributed points across the Pareto front to the

closet solution in its resulting solution set. Therefore, the

situation where all the obtained solutions are concentrated

to one point is avoided, which can well lead to convergence

while the possibility of the algorithm at the same time. The

lower value shows that the algorithm obtains a better per-

formance. The formula of IGD is as follows:

IGD ¼
PjPj

i¼1 dðPi;P
�Þ

jPj
ð14Þ

where P is the number of groups on the true front ; P� is the
Pareto solutions set for the multi-objective algorithm ; |P| is

the population size of P; dðPi;P
�Þ represents the minimum

between Pi and P�.
In addition, another performance metric (hypervolume)

[20] is adopted to evaluate the population quality, which

can measure both convergence and diversity. The hyper-

volume (HV) metric is defined as the volume of the

hypercube enclosed in the objective space by the reference

point and every vector in the Pareto approximation set A.

This is mathematically defined as:

HV ¼ f[ivolijveci 2 Ag ð15Þ

where veci is a non-dominated vector from Pareto

approximation set A, voli is the volume from the hypercube

formed by the reference point and the non-dominated

vector veci, and reference point is zref in the objective

space.

The HV metric is suitable for accessing the convergence

and maximum diffusion of solutions of Pareto approxi-

mation sets obtained by any multi-objective optimization

algorithm. In addition, a larger value for this metric indi-

cates that the solution is closer to the true Pareto frontier

and that the solution covers a wider range of extensions.

Since IGD and HV can simultaneously evaluate the

convergence and diversity of a given solution set, we

consider the following two widely used performance met-

rics to evaluate the performance of each algorithm. The HV

metric is calculated with respect to a given reference point

zref ¼ ðzref1 ; zref2 ; . . .; zrefm Þ. In our paper, we design zref ¼
ð1; 1; . . .; 1Þ as the reference point for DTLZ1 and use

zref ¼ ð2; 2; . . .; 2Þ as the reference point for DTLZ2,

DTLZ3 and DTLZ4. Besides, zref ¼ ð3; 5; . . .; 2mþ 1Þ is

applied as the reference point for WFG1-WFG9 problems.

4.3 Experimental setting

In this section, we describe in detail the different parameter

setting between our proposed algorithm and these com-

pared algorithms. In this paper, the parameter setting of

each algorithm is consistent with original paper (SPEA2

[8], MOEA/D [22], MOMOBI-II [21] and NSGA-III [29]).

Parameters are set as follows: neighborhood size T ¼ 20,

probability of crossover pc ¼ 0:5, probability of mutation

pm ¼ 1=D (D is the division), probability of mutation gc ¼
20 and distribution index gm ¼ 20.

Besides, in order to compare the results of the algorithm

to some extent, we set the same parameters in the number

of objectives, population size and maximum of the iterative
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generations of the five algorithms. The parameters are

shown in Table 1.

5 Experimental results

In this section, the performance of SPEA2?ASF is to be

validated to compare with SPEA2 [8], MOEA/D [22],

MOMOBI-II [21] and NSGA-III [29]. The aim is to

demonstrate the superiority of SPEA2?ASF implementa-

tion required for algorithm convergence and diversity in

solving many-objective problems. We analyze the results

of the proposed algorithm and the compared algorithms,

respectively, from the data and the figures.

5.1 The analysis of data

During data processing, we run all the algorithms 20 times

independently to indicate the comparative results for each

test problems with different number of objectives. The

statistical experimental results of IGD are summarized in

Table 2, where the minimum IGD mean value and standard

deviation are recorded. Moreover, the statistical experi-

mental results of HV are summarized in Table 3, where the

maximum HV mean value and the standard deviation are

recorded. The mean value represents the optimal value,

while the standard deviation represents the difference

between most data and the mean value, with no other

significance. In addition, the Wilcoxon rank sum test [37]

at a significance level of 0.05 is recorded in tables. That is,

if the p value is greater than 0.05, two algorithms show no

significant difference. In our paper, we use ?, = and - to

represent that SPEA2?ASF is superior to, similar to and

inferior to the compared algorithm. Besides, the bold black

front represents the optimal value among the five algo-

rithms. Bold italic font represents that the indicator value

of the compared algorithm is superior to SPEA2?ASF

when there is no significant difference between the two

algorithms. In this case, we can consider that the proposed

algorithm also has the optimal value.

Tables 2 and 3 show the IGD and HV values obtained

by the five algorithms, which can express the convergence

and diversity of the algorithm simultaneously. In all the test

problems, SPEA2?ASF algorithm has 22 optimal values in

Table 2 and has 34 optimal values in Table 3, and the total

number of optimal values is higher than other compared

algorithms. Moreover, the proposed algorithm has stronger

optimal value quantity advantage when compared with

other algorithms alone. Since the performance indicators

IGD [36] and HV [20] can simultaneously evaluate the

population convergence and diversity, it can be shown

from the data in Tables 2 and 3 that the SPEA2?ASF

algorithm achieves better performance than the compared

algorithms.

In addition, the proposed algorithm is analyzed in detail

from each problem and the compared algorithms to further

understand the performance of SPEA2?ASF algorithm on

all problems. The detailed analysis is as follows.

DTLZ1 is characterized by linearity and multi-mode,

and its biggest challenge is to have a number of local

Pareto fronts. As can be observed in Tables 2 and 3,

SPEA2?ASF achieves the best results for the four objec-

tives on the DTLZ1 problem, which indicates the obvious

competitiveness of the proposed algorithm. In addition,

SPEA2?ASF algorithm shows the similar performance to

NSGA-III for 3-, 5- and 8-objective, and similar perfor-

mance to MOMOBI-II for 3- and 5-objective in HV data

statistics. For DTLZ1, SPEA2?ASF is not inferior to the

compared algorithms for the four objectives, which con-

firms the splendid performance of SPEA2?ASF in terms of

both convergence and diversity for getting over the liner

and multi-modal many-objective problem.

DTLZ2 is a relatively simple problem with concave PF.

For the statistical results in Tables 2 and 3, SPEA2?ASF

shows competitive performance in HV statistics for 3-, 5-,

8- and 10-objective than the compared algorithms, while

there is no significant performance difference than

MOMOBI-II. In addition, SPEA2?ASF performs slightly

worse than MOMOBI-II in IGD statistics for 3- and

10-objective and NSGA-III for 3-objective, which indi-

cates that decomposition-based method has certain advan-

tages in dealing with concave problems in higher

dimensions.

DTLZ3 is characterized by concave and multi-mode,

where the challenge lies in how to get rid of local opti-

mality. For the statistical results in Tables 2 and 3, the

performance of SPEA2?ASF is better than other algo-

rithms for 3- and 5-objective, but it has the obvious

Table 1 Setting of the

population size and the

maximum number of iterative

generation in the experiments

Number of objectives Population size Maximum of the iterative generations

(m) (N) (MaxGen)

3 210 300

5 210 500

8 156 800

10 276 1000
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disadvantage over MOEA/D, MOMOBI-II and NSGA-III

on 8- and 10-objectives. By contrast, SPEA2?ASF shows

slight resemblance with SPEA2. From this result, the

convergence of this algorithm in dealing with the concave

problem of multi-mode is still to be improved.

The main challenge of DTLZ4 lies the biased solutions.

As indicated by the statistical results in Tables 2 and 3,

SPEA2?ASF shows competitive performance on 5-, 8- and

10-objective in terms of both IGD and HV values.

SPEA2?ASF is able to achieve a good convergence and

wide distribution of approximate PF. However,

SPEA2?ASF performs the slightly worse than NSGA-III

for 3-objective in IGD statistics and shows similar per-

formance with MOMOBI-II for 3- and 5-objective.

WFG1 is recommended to test the ability of each

algorithm to deal with mixed, biased and scaled PF. As

shown by the statistical results in Tables 2 and 3,

SPEA2?ASF behaves superior performance than SPEA2

and NSGA-III but inferior than MOEA/D and MOMOBI-

II.

WFG2 is introduced to test optimizer’s ability to tackle

convex, disconnected and non-separable PF. As shown in

Tables 2 and 3, SPEA2?ASF shows slightly worse than

NSGA-III only for 3-objective and manifests competitive

performance than other algorithms for 3-, 5-, 8- and

10-objective. However, SPEA2?ASF shows a relatively

poor performance than other algorithms in dealing with

WFG3 characterized by linear, degenerate and non-

separable.

Regarding WFG4, it introduces concave and multi-

model characteristic in decision space. As shown by the

statistical results in Tables 2 and 3, SPEA2?ASF performs

better than other algorithms in HV statistics but only better

than MOEA/D and MOMOBI-II in IGD statistics. Even

though the results of the two statistical methods were dif-

ferent, SPEA2?ASF algorithm still shows a good advan-

tage over the other algorithms.

WFG5 is a deceptive optimization problem with con-

cave PF. As shown in Table 2, SPEA2?ASF performs

superior than the compared algorithms but inferior than

SPEA2 and NSGA-III for 5- and 8-objective. However, as

shown in Table 3, SPEA2?ASF puts up competitive per-

formance than compared algorithms but only shows

slightly worse than NGSA-III for 10-objective.

For WFG6, non-separable and concave characteristics

are introduced. SPEA2?ASF achieves better performance

in HV statistical results than other algorithms. However,

SPEA2 and NSGA-III perform better than the proposed

algorithm SPEA2?ASF in Table 3 for 5-, 8- and 10-ob-

jective. WFG7 is designed to test the ability of each

algorithm to deal with concave and biased feature.

SPEA2?ASF performs relatively worse performance

compared with the SPEA2 and NSGA-III for differentTa
bl
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Table 3 Statistical result (mean and standard deviation) of HV values on DTLZ problems calculated by SPEA2, MOEA/D, MOMOB-II, NSGA-

III and SPEA2?ASF

Problems Objs SPEA2 MOEA/D MOMBI-II NSGA-III SPEA2?ASF

DTLZ1 3 9.754E-01(5.669E-04) = 9.718E-01(5.561E-
04) ?

9.755E-01(6.823E-
04) =

9.755E-01(6.174E-
04) =

9.757E-01(5.880E-04)

5 9.981E-01(3.197E-04) ? 9.970E-01(1.499E-
04) ?

9.990E-01(1.062E-
04) =

9.989E-01(1.096E-
04) =

9.990E-01(1.061E-04)

8 0.00E?00(0.000E?00) ? 9.960E-01(8.064E-
04) ?

9.928E-01(1.059E-
02) ?

9.711E-01(1.178E-
01) =

9.982E-01(5.277E-03)

10 0.00E?00(0.000E?00) ? 9.965E-01(1.110E-
03) ?

9.943E-01(8.169E-
03) ?

9.998E-01(5.714E-
04) ?

9.9998E-01(8.470E-05)

DTLZ2 3 9.283E-01(9.197E-04) ? 9.269E-01(6.201E-
04) ?

9.298E-01(6.511E-
04) =

9.295E-01(7.686E-
04) ?

9.295E-01(8.238E-04)

5 9.843E-01(7.954E-04) ? 9.857E-01(4.593E-
04) ?

9.906E-01(2.763E-
04) =

9.903E-01(3.120E-
04) ?

9.905E-01(3.431E-04)

8 7.264E-01(1.657E-03) ? 9.551E-01(1.277E-
02) ?

9.994E-01(7.775E-
05) =

9.990E-01(8.827E-
04) ?

9.994E-01(7.719E-05)

10 7.315E-01(2.832E-03) ? 9.572E-01(1.575E-
02) ?

9.9992E-01(2.70E-
05) =

9.997E-01(6.733E-
04) ?

9.9993E-01(2.273E-05)

DTLZ3 3 9.273E-01(1.091E-03) = 9.257E-01(1.139E-
03) ?

9.283E-01(1.117E-
03) =

9.232E-01(1.291E-
02) ?

9.277E-01(1.620E-03)

5 6.347E-01(4.346E-01) ? 9.854E-01(4.086E-
04) ?

9.900E-01(3.449E-
04) -

8.604E-01(3.133E-
01) ?

9.888E-01(1.711E-03)

8 0.00E?00(0.000E?00) = 9.557E-01(6.253E-
03) -

9.976E-01(2.636E-
03) -

2.909E-02(1.301E-
01) =

3.518E-02(1.573E-01)

10 0.00E?00(0.000E?00) = 9.578E-01(6.842E-
03) -

9.945E-01(1.150E-
02) -

2.713E-02(6.421E-
02) -

0.000E?00(0.000E?00)

DTLZ4 3 9.219E-01(2.843E-02) ? 8.893E-01(5.861E-
02) ?

9.298E-01(8.401E-
04) =

9.296E-01(8.745E-
04) =

9.295E-01(8.223E-04)

5 9.827E-01(4.329E-03) ? 9.739E-01(1.835E-
02) ?

9.873E-01(6.888E-
03) =

9.868E-01(6.926E-
03) ?

9.896E-01(4.185E-03)

8 7.863E-01(7.421E-02) ? 9.594E-01(7.910E-
03) ?

9.988E-01(4.757E-
04) ?

9.975E-01(1.312E-
03) ?

9.994E-01(2.123E-04)

10 7.629E-01(1.292E-02) ? 9.611E-01(1.619E-
02) ?

9.999E-01(7.666E-
05) ?

9.995E-01(4.659E-
04) ?

9.9993E-01(2.417E-05)

WFG1 3 4.848E-01(2.963E-03) ? 5.247E-01(8.230E-
03) -

5.031E-01(5.780E-
03) ?

4.789E-01(2.582E-
03) ?

5.111E-01(2.725E-03)

5 3.976E-01(2.738E-03) ? 5.160E-01(2.613E-
02) -

5.589E-01(2.055E-
02) -

4.028E-01(2.877E-
03) ?

4.548E-01(5.227E-03)

8 3.254E-01(1.486E-03) ? 4.457E-01(2.236E-
02) -

4.178E-01(9.014E-
02) -

3.271E-01(3.860E-
03) ?

3.388E-01(2.551E-03)

10 2.922E-01(1.715E-03) ? 4.661E-01(3.967E-
02) -

3.812E-01(3.061E-
02) -

2.999E-01(2.964E-
03) ?

3.037E-01(2.252E-03)

WFG2 3 9.468E-01(3.322E-02) = 8.322E-01(5.904E-
02) ?

9.108E-01(6.309E-
02) ?

9.481E-01(3.037E-
03) -

9.471E-01(3.251E-02)

5 9.809E-01(4.533E-03) ? 8.455E-01(7.705E-
02) ?

9.714E-01(5.313E-
02) ?

9.427E-01(6.258E-
02) ?

9.853E-01(3.976E-02)

8 9.498E-01(1.127E-02) ? 8.194E-01(7.584E-
02) ?

8.353E-01(8.354E-
02) ?

9.367E-01(8.517E-
02) =

9.752E-01(7.304E-03)

10 9.367E-01(8.539E-03) ? 8.334E-01(8.687E-
02) ?

7.789E-01(5.599E-
02) ?

9.706E-01(6.080E-
02) ?

9.726E-01(6.994E-03)

WFG3 3 7.048E-01(2.044E-03) - 7.130E-01(3.706E-
03) -

7.189E-01(1.712E-
03) -

7.062E-01(2.921E-
03) -

7.025E-01(2.980E-03)

5 6.053E-01(1.712E-02) ? 5.874E-01(9.896E-
03) ?

5.971E-01(1.501E-
02) ?

6.535E-01(7.986E-
03) -

6.403E-01(6.833E-03)

8 4.564E-01(2.654E-02) ? 5.474E-01(1.584E-
02) -

4.179E-01(5.251E-
03) ?

6.007E-01(1.642E-
02) -

4.646E-01(4.646E-01)

10 4.557E-01(2.344E-02) - 5.498E-01(1.734E-
02) -

4.445E-01(2.312E-
03) ?

5.700E-01(2.404E-
02) -

4.451E-01(1.315E-02)
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Table 3 (continued)

Problems Objs SPEA2 MOEA/D MOMBI-II NSGA-III SPEA2?ASF

WFG4 3 7.097E-01(2.488E-03) ? 7.180E-01(2.482E-
03) ?

7.266E-01(3.681E-
03) =

7.113E-01(3.203E-
03) ?

7.267E-01(2.016E-03)

5 7.556E-01(1.094E-02) ? 7.299E-01(2.696E-
02) ?

7.859E-01(2.591E-
02) ?

7.905E-01(4.967E-
03) ?

8.598E-01(2.428E-03)

8 6.342E-01(3.365E-02) ? 6.170E-01(5.891E-
02) ?

6.152E-01(6.509E-
02) ?

8.026E-01(1.961E-
02) ?

8.439E-01(1.623E-02)

10 6.643E-01(2.851E-02) ? 5.639E-01(4.747E-
02) ?

6.770E-01(3.533E-
02) ?

8.379E-01(2.942E-
02) =

8.356E-01(1.787E-02)

WFG5 3 6.800E-01(3.023E-03) ? 6.802E-01(3.417E-
03) ?

6.819E-01(2.406E-
03) ?

6.863E-01(2.160E-
03) ?

6.953E-01(2.556E-03)

5 7.252E-01(9.020E-03) ? 7.367E-01(1.820E-
02) ?

6.963E-01(1.707E-
02) ?

7.897E-01(3.709E-
03) ?

8.249E-01(2.684E-03)

8 5.589E-01(3.277E-02) ? 5.935E-01(2.543E-
02) ?

7.065E-01(5.772E-
02) ?

7.829E-01(2.635E-
02) ?

8.207E-01(9.986E-03)

10 5.614E-01(2.620E-02) ? 6.108E-01(2.262E-
02) ?

6.645E-01(6.387E-
02) ?

8.285E-01(9.957E-
03) -

8.158E-01(1.003E-02)

WFG6 3 6.907E-01(3.850E-03) ? 6.910E-01(8.037E-
03) ?

7.000E-01(4.184E-
03) =

6.895E-01(3.586E-
03) ?

7.003E-01(4.102E-03)

5 7.337E-01(1.186E-02) ? 7.112E-01(3.041E-
02) ?

7.551E-01(3.710E-
02) ?

7.950E-01(5.521E-
03) ?

8.299E-01(5.659E-03)

8 6.067E-01(3.256E-02) ? 6.137E-01(2.469E-
02) ?

8.208E-01(1.336E-
02) ?

8.175E-01(1.649E-
02) ?

8.537E-01(9.912E-03)

10 5.433E-01(3.458E-02) ? 6.214E-01(4.092E-
02) ?

8.579E-01(8.768E-
03) ?

8.571E-01(1.047E-
02) ?

8.729E-01(1.201E-02)

WFG7 3 7.283E-01(2.216E-03) ? 5.194E-01(1.495E-
01) ?

7.151E-01(5.592E-
02) ?

7.281E-01(1.639E-
03) ?

7.352E-01(1.531E-03)

5 7.680E-01(7.493E-02) - 4.466E-01(1.342E-
01) ?

6.085E-01(1.274E-
01) ?

7.312E-01(5.572E-
02) =

7.270E-01(1.104E-01)

8 5.651E-01(5.980E-02) ? 3.025E-01(6.600E-
02) ?

4.129E-01(8.054E-
02) ?

6.620E-01(1.124E-
01) =

6.306E-01(1.150E-01)

10 5.619E-01(4.624E-02) ? 3.471E-01(9.146E-
02) ?

4.575E-01(5.363E-
02) ?

7.647E-01(1.205E-
01) =

7.470E-01(8.367E-02)

WFG8 3 4.730E-01(1.056E-02) = 4.533E-01(2.878E-
02) ?

4.980E-01(7.638E-
03) -

4.634E-01(6.830E-
03) ?

4.749E-01(1.190E-02)

5 3.691E-01(4.038E-02) ? 2.279E-01(3.102E-
02) ?

3.025E-01(3.166E-
02) ?

4.449E-01(1.352E-
02) ?

4.827E-01(5.703E-03)

8 2.394E-01(4.316E-03) ? 2.155E-01(4.972E-
02) ?

3.655E-01(5.228E-
02) -

3.517E-01(3.160E-
02) -

3.340E-01(2.386E-02)

10 2.348E-01(4.144E-03) ? 2.332E-01(4.813E-
02) ?

2.874E-01(7.019E-
02) ?

3.260E-01(3.294E-
02) -

3.058E-01(2.587E-02)

WFG9 3 6.504E-01(1.742E-03) ? 6.019E-01(8.751E-
02) ?

6.467E-01(1.882E-
03) ?

6.539E-01(1.502E-
03) -

6.512E-01(1.871E-03)

5 7.214E-01(5.079E-03) ? 4.638E-01(4.550E-
02) ?

6.094E-01(3.114E-
02) ?

6.988E-01(9.577E-
02) =

7.441E-01(1.840E-03)

8 6.668E-01(1.415E-02) ? 4.024E-01(7.873E-
02) ?

4.806E-01(8.593E-
02) ?

6.855E-01(4.754E-
02) =

7.048E-01(5.239E-02)

10 6.792E-01(1.095E-02) ? 4.418E-01(4.818E-
02) ?

4.944E-01(8.668E-
02) ?

7.107E-01(3.228E-
02) ?

7.370E-01(1.723E-02)

Total – 43/6/3 43/0/9 32/11/9 30/12/10 ?/=/-
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objective space in Table 2 but shows the competitive per-

formance in Table 3.

WFG8 is featured by concave, biased and non-sparable.

As shown in Table 2, SPEA2?ASF displays slightly worse

performance then NSGA-III in IGD values for 8- and

10-objective. However, SPEA2?ASF achieves competi-

tive performance compared with algorithms for different

objectives. As for WFG9, it is a difficult problem to solve,

characterized by concave, biased, multi-modal, deceptive

and non-separable. SPEA2?ASF realizes competitive

performance for 5-, 8- and 10-objective in HV statistics,

whereas SPEA2 has achieved no significantly different

IGD value for 3- and 8-objective and performs superior to

SPEA2?ASF for 5-objective.

Besides, the tables record not only the optimal value of

the indicator average but also the standard deviation. In

general, the standard deviation corresponding to the opti-

mal value of average value is also optimal. However, there

may be some poor values in the 20 independent operations,

resulting in the standard deviation, and the optimal value is

not uniform optimal. It can be seen from Tables 2 and 3

that SPEA2?ASF has the largest number of optimal values

among the 52 functions, regardless of the optimal value or

standard deviation. Finally, SPEA2?ASF and each algo-

rithm are counted on 13 test problems with four different

objective numbers in the last row of the table. Among the

52 functions, SPEA2?ASF algorithm has a certain

advantage in the number of superior and similar than

compared algorithms. In general, SEPA2?ASF algorithm

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 4 The representation of the optimal solutions obtained by each algorithm on the 3-objective DTLZ1(a)–(e) and DTLZ3(f)–(j)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 The representation of HV convergence trend by each algorithm on the 3-objective of partial functions
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achieves good convergence and distribution in solving

high-dimensional many-objective optimization problems.

5.2 The analysis of figures

Data statistics show that the proposed algorithm has an

overall advantage over the compared algorithms. However,

figures are more intuitive to see the convergence and dis-

tribution of each algorithm on a certain function. In the

following, we will analyze the front figures and HV con-

vergence figures of the test problem for 3-, 5-, 8- and

10-objectives.

The convergence and diversity of the five algorithms

show that the approximate Pareto optimal solution set

converges to the position of the true Pareto front and can be

uniformly distributed along the true Pareto front. As shown

in Figs. 4, 6, 8 and 10, SPEA2?ASF algorithm obtains an

approximate Pareto solution set with good convergence

and distribution. In addition, the convergence trend of the

performance indicator can also intuitively show the con-

vergence accuracy and convergence speed of the algo-

rithms. As further observed in Figs. 5, 7, 9, 11 and 12,

SPEA2?ASF algorithm almost achieves the optimal or

suboptimal convergence accuracy and convergence speed,

(a) (b) (c) (d)

(f) (g)

(e)

(h) (i) (j)

Fig. 6 The representation of the optimal solutions obtained by each algorithm on the 5-objective DTLZ3(a)-(e) and WFG8(f)-(j)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 The representation of HV convergence trend by each algorithm on the 5-objective of partial functions
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which indicates that the proposed algorithm is competitive

in solving high-dimensional problems.

Besides, the proposed algorithm is analyzed in detail

with the compared algorithms to further understand the

performance of the SPEA2?ASF algorithm on these

problems with obvious characteristics. The specific analy-

sis is as follows.

Figure 4 shows the representation of the optimal solu-

tions obtained by each algorithm on the 3-objective DTLZ1

and DTLZ3, where Fig. 4 a–e represents DTLZ1 and Fig. 4

f–j represents DTLZ3. Three coordinates represent three

objective functions. In Fig. 4, the five algorithms can

converge to the true Pareto front on both test problems.

However, SPEA2 and MOEA/D are obviously poorly

distributed on the front, especially MOEA/D. The distri-

bution of MOMOBI-II is relatively better, but the locations

of extreme points on DTLZ1 are unevenly distributed, and

the processing of boundary solutions on DTLZ2 needs to

be improved. The NSGA-III frontier map is closest to

SPEA2?ASF on DTLZ1, but it is not evenly distributed at

the extreme points on DTLZ2.

Figure 5 shows the representation of HV convergence

trend by each algorithm on the 3-objective of partial

functions. In experiments, we use the number of iterations

(a) (b) (c) (d)

(f) (g)

(e)

(h) (i) (j)

Fig. 8 The representation of the optimal solutions obtained by each algorithm on the 8-objective DTLZ2 (a)–(e) and WFG9 (f)–(j)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9 The representation of HV convergence trend by each algorithm on the 8-objective of partial functions
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as the termination condition of the algorithm, which is the

abscissa. In this paper, the ordinate of convergence trend is

log10(HV) or log10(IGD), and this representation can

make the convergence trend and accuracy more clear. As

observed in Fig. 5, SPEA2?ASF obtains the best HV value

on DTLZ1, DTLZ2, DTLZ3,WFG5 and WFG7. As for

WFG2, WFG4 and WFG6, SPEA2?ASF performs the

almost the same HV accuracy. According to Figs. 4 and 5,

SPEA2?ASF demonstrates the good convergence and

diversity for 3-objective problems.

Figure 6 shows the representation of the optimal solu-

tions obtained by each algorithm on the 5-objective DTLZ3

(a)–(e) and WFG8 (f)–(j). In Fig. 6, SPEA2 obviously did

not converge to the true front and MOEA/D performs the

worst distribution on DTLZ3, while MOMOBI-II and

NSGA-III show the similar Pareto front with good con-

vergence and distribution of SPEA2?ASF. As further

observed in Fig. 6f–j, MOEA/D and MOMOBI-II perform

the worst distribution, while NSGA-III shows the almost

similar Pareto front with SPEA2?ASF.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 10 The representation of the optimal solutions obtained by each algorithm on the 10-objective DTLZ1 (a)–(e) and WFG2 (f)–(j)

(a) (b) (c) (d)

Fig. 11 The representation of HV convergence trend by each algorithm on the 10-objective of partial functions

(a) (b) (c) (d)

Fig. 12 The representation of IGD convergence trend by each algorithm on the 10-objective of partial functions
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Figure 7 shows the representation of HV convergence

trend by each algorithm on the 5-objective of partial

functions. As further observed in Fig. 7, SPEA2?ASF

obtains the best HV accuracy on DTLZ1, DTLZ4, WFG2,

WFG4, WFG5, WFG6, WFG8 and WFG9. In this case,

SPEA2?ASF shows the competitive performance of con-

vergence and diversity for 5-objective test instances.

Figure 8 shows the representation of the optimal solu-

tions obtained by each algorithm on the 8-objective DTLZ2

(a)–(e) and WFG9 (f)–(j). As for Fig. 8a, SPEA2 shows no

convergence to the true Pareto front, which indicates the

strength Pareto dominate fails to tackle with 8-objective

DTLZ2. In addition, MOEA/D is poorly distributed

although it converges to the true Pareto front. Besides,

SPEA2?ASF performs the similar Pareto front with

MOMOBI-II but superior to NSGA-III on 8-objective

DTLZ2. As for Fig. 8f–j, SPEA2?ASF shows the superior

distribution performance than SPEA2, MOWA/D and

MOMOBI-II and shows the similar Pareto front with

NSGA-III on 8-objective WFG9.

Figure 9 shows the representation of HV convergence

trend by each algorithm on the 8-objective of partial

functions. Since SPEA2 does not converge to the true

Pareto front on DTLZ1, DTLZ2 and DTLZ3, only four

algorithms of HV convergence figures are given in Fig. 9a,

b and c. As further observed in Fig. 9, SPEA2?ASF per-

forms the best HV accuracy on DTLZ1, DTLZ2, DTLZ4,

WFG2, WFG4, WFG5, WFG6 and WFG9. Although

SPEA2 ? ASF cannot guarantee that all of these test

problems converge fastest, the final accuracy is indeed

optimal.

Figure 10 shows the representation of the optimal

solutions obtained by each algorithm on the 10-objective

DTLZ1 (a)–(e) and WFG2 (f)–(j). Fig. 10a shows that

SPEA2 does no converge to the true Pareto front. MOEA/D

and MOMOBI-II are only able to obtain some partial true

Pareto front due to the biased distribution of the non-

dominated solutions. Fig. 10d displays that NSGA-III

performs relatively good convergence and distribution, but

some solutions have not converged to the true Pareto front.

However, Fig. 10e shows that SPEA2?ASF manifests

better than the compared algorithms. This is because the

clustering and scalarizing function method in SPEA2?ASF

can well balance the convergence and distribution in the

high-dimensional target space. As further observed in

Fig. 10f–j, all five algorithms converge to the true Pareto

front, but the distribution of non-dominated solutions is

different. MOEA/D and MOMOBI-II obtain some true

Pareto front of partial biased distribution. The non-domi-

nant solutions obtained by NSGA-III are difficult to meet

the distribution requirements of the frontier when they are

clustered in the middle space. Fig. 10f shows that SPEA2

performs better than MOEA/D, MOMOBI-II and NSGA-

III. However, the non-dominant solution obtained by

SPEA2 is not nearly as good as that obtained by

SPEA2?ASF. As can be seen from Fig. 10f–j,

SPEA2?ASF achieves competitive performance of distri-

bution in high-dimensional objective spaces for WFG2.

Figure 11 shows the representation of HV convergence

trend by each algorithm on the 10-objective of partial

functions. As can be seen from Fig. 11, the convergence

precision of SPEA2?ASF is the highest on WFG2, WFG6

and WFG9 relative to the compared algorithms. However,

NSGA-III performs the similar HV accuracy with

SPEA2?ASF on 10-objective WFG4, superior than

SPEA2, MOEA/D and MOMOBI-II. In addition, the IGD

convergence figure of some test instances is to show that

SPEA2?ASF is competitive in dealing with 10-objective

test problems. As further observed in Fig. 12, SPEA2?ASF

obtains the best IGD accuracy on DTLZ1, DTLZ4, WFG2

and WFG8. Therefore, Figs. 11 and 12 show that

SPEA2?ASF is suitable to tackle with many-objective

problems.

Through the analysis of data and graphs, we can obtain

the potential ability of SPEA2 ? ASF in dealing with

multi-objective and high-dimensional problems. In addi-

tion, according to the law of no free lunch [41],

SPEA2?ASF algorithm cannot guarantee that all test

problems are better than other algorithms. From the data

and figures, it can be seen SPEA2?ASF algorithm mani-

fests a better performance of convergence and distribution,

which indicates that SPEA2?ASF algorithm can achieve

good convergence and distribution in high dimensional

space.

6 Conclusion

In this paper, an achievement scalarizing function sorting

method is proposed in strength Pareto evolutionary algo-

rithm, namely SPEA2?ASF, for many-objective opti-

mization. This algorithm adopts the perpendicular distance

from a solution to reference vector as the density estima-

tion. Then, we redefine the fitness of a solution to be dif-

ferent from SPEA2, which increases the diversity of non-

dominated solutions. In the process of SPEA2?ASF, a

clustering method has been adopted to classify the non-

dominated solutions. In addition, an achievement scalar-

izing function sorting methods are applied to layer different

fronts and prune the redundant solutions.

According to the empirical experimental results, the

proposed algorithm SPEA2?ASF has shown the competi-

tive performance of convergence and distribution on the

thirteen benchmark problems up to ten objectives in com-

pared with four state-of-the-art algorithms, namely SPEA2,

MOEA/D, MOMOBI-II and NSGA-III.
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In the future, we would like to discuss further how to

modify the proposed SPEA2?ASF to improve the ability

to solve problems such as DTLZ3, WFG1 and WFG7. In

addition, constraints and large-scale multi-objective opti-

mization problems may also be our future research

direction.
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