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Abstract
Obfuscating an iris recognition system through forged iris samples has been a major security threat in iris-based

authentication. Therefore, a detection mechanism is essential that may explicitly discriminate between the live iris and

forged (attack) patterns. The majority of existing methods analyze the eye image as a whole to find discriminatory features

for fake and real iris. However, many attacks do not alter the entire eye image, instead merely the iris region is affected. It

infers that the iris embodies the region of interest (RoI) for an exhaustive search towards identifying forged iris patterns.

This paper introduces a novel framework that locates RoI using the YOLO approach and performs selective image

enhancement to enrich the core textural details. The YOLO approach tightly bounds the iris region without any pattern loss,

where the textural analysis through local and global descriptors is expected to be efficacious. Afterward, various hand-

crafted and CNN based methods are employed to extract the discriminative textural features from the RoI. Later, the best-

k features are identified through the Friedman test as the optimal feature set and combined using score-level fusion. Further,

the proposed approach is assessed on six different iris databases using predefined intra-dataset, cross-dataset, and com-

bined-dataset validation protocols. The experimental outcomes exhibit that the proposed method results in significant error

reduction with the state of the arts.

Keywords DarkNet-19 � Feature selection � Image enhancement � Iris presentation attack detection � RoI localization �
Score-level fusion

1 Introduction

Iris recognition (IR) has achieved vigorous research inter-

est due to its peerless individualities such as the rich

morphological structure, certain distinctiveness for indi-

viduals (even twins), and constancy in micro-features

regardless of the growing age [1]. Nevertheless, the IR

systems are susceptible to presentation attacks that attempt

to emasculate the application security. These attacks rep-

resent the forged or deliberately designed iris patterns in

front of the iris camera/sensor to obstruct the functioning of

the IR system [2]. These may be used to register contrived

irises, purposely obscure a party’s trait, or even forge the

iris pattern of another person [3]. There are several ways to

reproduce the iris patterns, such as using textured contact

lenses, printed iris images, artificial eyeballs, and playing

iris images/videos on the LCD, and drug-prompted iris

employment [2, 3] as depicted in Fig. 1. As the IR systems

are progressively installed in precarious applications, e.g.,

border control, airport security, etc., there is an urge for

some security means to recognize the presentation attacks.

With this motivation, various presentation attack detection

(PAD) mechanisms are introduced in the literature [2].

The current iris PAD approaches are categorized as

either sensor-based or image-based. Sensor-based approa-

ches generally incorporate additional hardware to acquire

visual or physical patterns of the eye [4, 5]. Whereas,

image-based methods analyze the micro-structures existing

within the iris image through handcrafted methods and a
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classifier [6]. Indeed, an image-based method takes an

ocular image captured by the iris sensor, slices of the iris

region, extracts local and/or global features, and catego-

rizes it as ‘‘live’’ or ‘‘attack’’ through a classifier. There are

several feature descriptors existing in the literature, such as

local binary patterns (LBP) [7], binarized statistical image

features (BSIF) [8], and scale-invariant descriptors (SID)

[9], to constitute pixel-level features. The recent research is

extensively utilizing the convolution neural networks

(CNNs) for self-feature learning to realize PAD [10, 11].

The uncertainty of the micro-structures for live iris and

attack samples results in various discrete patterns corre-

sponding to the same class. Thus, a purposely developed

handcrafted feature may be incapable of capturing all

possible patterns [12]. Besides, several methods usually

include iris segmentation as a crucial stage to perform local

feature extraction from the segmented region [3]. Iris

segmentation locates the inner and outer iris edges in the

image. Nevertheless, it endures some problems since the

structure of the iris is not essentially circular; in fact, it has

no fixed shape. Therefore, detecting the iris edges without

any pattern loss is extremely challenging. In this view, a

PAD with such intrinsic segmentation techniques is not

robust [12].

The Iris liveness detection competition began in 2013 to

examine the evolving PAD algorithms, and to unveil the

progress status of the iris PAD. The recent edition occurred

in 2017 [10], which uncovered some interesting open

problems, e.g., cross-sensor and cross-dataset systems (also

known as cross-domain) in the context of iris PAD. With

the aspect of improving the cross-domain iris PAD, this

paper introduces an image-based PAD scheme as depicted

in Fig. 2. It begins with the region of interest (RoI)

localization, which is carried out by a preeminent CNN

framework, i.e., DarkNet-19 [13] that was initially

designed for generic object detection. This model predicts

the spatial dimensions of the rectangular box that tightly

bounds the RoI. The RoI is then cropped from the image

based on the rectangle box, and then, we use OpenCV in

python to detect the rectangle in the image and crop it. In

the next step, the selective image enhancement is per-

formed over the RoI of given iris images to remove blur-

riness and to magnify the pixel intensity [14, 15]. Further,

the enhanced RoI is fed to various handcrafted and data-

driven algorithms to extract key features and to produce

corresponding feature-vectors. Further, an optimal feature

set is obtained through the Friedman test based feature

selection approach and is fused using score-level fusion for

final attack prediction.

1.1 The motivation behind the proposed
approach

This work is based on some important observations related

to iris PAD. Most of the iris presentation attacks primarily

alter the iris region rather than the entire eye image [2].

Moreover, the amendment caused by such attacks is also

evident in the iris region. Based on such observations, it is

concluded that analyzing the entire eye image for feature

extraction is not desirable. Instead, it is beneficial to

identify the region of interest (RoI) within the eye image,

where best discriminative features exist corresponding to

all possible presentation attacks [11]. The majority of

existing iris segmentation approaches [16, 17] follow

handcrafted procedures to perceive iris inner and outer

boundary pixels. However, such procedures need a set of

Real/Genuine Iris

Textured Lens Print + capture Synthetic iris Print + scan

Fig. 1 Depiction of various iris presentation attack samples (bottom row) corresponding to live iris (top row). The iris liveness detection methods

are supposed to discriminate between these two categories
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empirically defined parameters and, thus, are less gener-

alizable to varying image categories. Besides, the circular

Hough transforms, and integro-differential operator for

detecting iris and pupil boundaries work well with high-

quality images but less robust to blur and noisy images

[14]. In this vein, some approaches [12] apply filters on raw

iris images for feature extraction, whereas others [3, 6]

down-sample the images according to their favorable input

size before feature extraction. However, both cases seem to

be inadequate because feature extraction from raw images

leads to a huge amount of computation and perhaps

redundant features construction. A previous study [14]

demonstrated a comparative study between RoI images and

raw eye images using accuracy as the performance metrics,

where accuracy on RoI images is substantially larger than

raw images. They gave the reasoning that heavy eyelids

and eyelashes may occlude the operative iris regions for

feature extraction and may cause intra-class variations.

Besides, image down-sampling in the required input size

(e.g., VGG-16 requires the input size as 224 9 224) results

in significant spatial feature loss [15]. Therefore, RoI

detection and segmentation from the given eye image is an

adequate choice for constituting better features. The choice

of YOLO framework is inspired by the speed hike achieved

at the test time as it analyses the given image only once,

unlike other object localization models such as region

proposal CNN and faster RCNN with repetitive image

processing [18]. It also exhibits better generalizability and

less error (less than half of the background errors compared

to fast and faster RCNN) [19]. The speed is primarily

important as the iris localization is an integral step of the

test time procedure of the proposed approach.

The comprehensive study of computer vision and image

classification suggests that multiple feature fusion sub-

stantially enhances the classification performances com-

pared to the sole feature [20–22]. A similar concept is

being followed in iris related applications, where hand-

crafted and data-driven features are combined to construct

an enhanced feature set [12, 20, 22]. However, the entire

feature set may encompass redundant or less important

features, which should be removed to obtain an optimal

feature set [23].

1.2 Contribution

YOLO- and CNN-based approaches have already been

used for RoI detection and feature extraction for iris PAD.

Even though, to the best of our knowledge, there is no

previous work that focuses on optimal feature selection out

of multiple handcrafted and data-driven features and

deploying it in the cross-domain environment. The inte-

gration of handcrafted and data-driven features is aimed to

exploit their respective benefits and to build an iris PAD

algorithm with appropriate generalizability to various

attack categories. The use of multiple algorithms provides

key features extracted with diverse views to the data since

each method examines the features with a distinct per-

spective. In specific, the use of a deep CNN model in RoI

detection provides the flexibility to adapt to varying image

qualities without extra parameter adjustments. Addition-

ally, we have presented a novel insight into the preeminent

Friedman test, where it may be used for optimal feature

selection by examining each feature-vector with the cor-

responding output. The score-level fusion of optimal

RoI Detection
Selective Image

Enhancement

Feature-1

Feature-2

Feature-k

Feature 
Extraction 

using
Local & Global 

Descriptors

Top-k
Feature 

Selection using
Friedman

Test

Score
Level
Fusion

Attack
or 

Real

Input Image

Fig. 2 Flowchart of the proposed approach. The region of interest

(RoI) is identified using YOLO framework, then image enhancement

is carried out on the selected region. Next, various local and global

feature descriptors are employed to extract features from enhanced

RoI. Further, top-k features are selected through Freidman test, and

are combined using score-level fusion for attack prediction
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features yields a fair contribution of each feature in the

attack prediction. The major contribution and novelties of

this paper can be summarized as follows:

• A novel approach that employs the YOLO model for

iris region localization since it is speedy and accurate in

predicting RoI at the test time.

• An algorithm that employs multiple handcrafted and

CNN-based methods for feature extraction in order to

perceive key features with multiple perspectives.

• A new feature selection mechanism based on the

Friedman test that examines each feature-vector with

output labels on distinct databases to enhance the

robustness of the optimal feature set.

• A comprehensive cross-domain assessment of the

proposed PAD approach on datasets currently used to

evaluate the state of the arts in the field of iris PAD.

• The proposed novel PAD approach outpaces the winner

of LivDet-Iris-2017 (it is the most recently conducted

iris liveness detection competition).

The leftover segment of this paper is structured as;

Section 2 explores the literature regarding progress in iris

PAD together with the current issues. Section 3 thoroughly

describes the proposed scheme and various phases involved

in processing the iris images. Section 4 describes the

underlying datasets and validation protocols included for

the proposed method assessment, along with the experi-

mental outcomes and discussion. Finally, Section 5 con-

cludes the entire work.

2 Related work summary

Since the last two decades, the vulnerability of an IR

system to be obscured through presentation attacks has

attained a sufficient interest of researchers. The presenta-

tion attack detection can be carried out at the sensor-level,

pixel-level, or algorithm-level. At the sensor-level, specific

designs of iris cameras/sensors can simplify live/fake iris

detection. Lee et al. [5] addressed PAD through inspecting

the specular blotches of collimated infrared light emitting

diode (IR-LED). However, it is incapable of identifying

contact lenses, as the visibility of iris texture worsens upon

wearing it. Further, authors [24] incorporated algorithms

based on pupil dynamics to perceive forged iris, and it

failed to identify textured lenses and artificial irises. Sen-

sor-level schemes may extensively acquire the ocular

properties of the legitimate iris pattern. However, the

generalization capability of the sensor-level PAD schemes

is limited as they require the specific design of sensors and

depend upon the special hardware functionalities.

Conversely, the pixel-level PAD schemes do not

demand special iris sensors exploiting the optical features

of iris to classify live/attack samples. Therefore, the tech-

niques utilizing local descriptors to scrutinize iris micro-

structures are extremely inspiring [25, 26]. In this context,

Daugman [27] introduced the real-time PAD system, where

extra peaks in the Fourier amplitude spectrum may be

recognized via 2-D Fourier transforms for the cosmetic

lens, which does not occur in the real iris’s spectrum. He

et al. [7] suggested utilizing local binary patterns (LBP) for

contact lens-based PAD, where LBPs are undermined from

six related iris subregions. Yet, the AdaBoost algorithm

identifies the principal LBP feature. Several other feature

descriptors, such as co-occurrence of adjacent LBP (CoA

LBP) [28], DAISY [29], and HOG [30], have also been

proposed in the literature. In addition, authors in [25]

demonstrated an in-depth investigation of spoofing attacks

on IR systems and employed multiscale BSIF for feature

extraction from iris images. They primarily focused on

printed iris images and iris video images captured from

LCD. Furthermore, authors in [31] proposed a novel

scheme to collect features from the regions of pupil and

sclera. Here, LBPs are autonomously extracted from sev-

eral regions of normalized iris images and then concate-

nated to discriminate between ‘‘attack’’ and ‘‘live’’

samples. Authors in [32] jointly utilized frequency analysis

and extra quality features for printed iris and cosmetic lens

detection. Moreover, Sharifi et al. [33] perceive cosmetics

on iris and face images by exploiting the combination of

micro-texton material and color spaces to discover edges,

spots, curves, etc., magnificently. Additionally, the change

in variability scores conveyed by fake and real texture is

exploited as a distinctive factor. It is noticed that the

aforesaid schemes include handcrafted feature extraction to

produce iris codes and observes the deviation in attack

samples from original counterparts. However, a similar

effect could be attained by learning the attack patterns

within the raw eye image. Precisely, matching the features

or score distribution of fake irises with legitimate corre-

spondents is not pretty adequate. Besides, in contrast to

handcrafted features, self-feature learning could be adapted

to identify attack patterns. Such approaches are described

below.

An adequate framework adhering to the self-feature

learning (data-driven) approach is the convolutional neural

network (CNN). Menotti et al. [34] designed a three-layer

CNN, namely SpoofNet as a liveness detection model for

fingerprints, iris, and face. The model is capable enough to

extract iris features and to undermine semantics and visual

features from raw iris images. Next, an analogous archi-

tecture was used in [35] to discriminate among normal,

soft, and textured lenses. However, such models conveyed

diminished accuracy due to the shallow architecture. Fur-

ther, in LivDet 2017 challenge [10], a seven-layer incep-

tion-based CNN architecture was participated to
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distinguish between live (real) and fake irises. Another

multi-patch CNN model was proposed by He et al. [36],

which is trained on 28 subsequent patches of real and

attack samples. The respective outputs of all patches are

gathered individually to feed the decision layer to classify

between live and fake irises. However, the computational

expenses are increased since a sole training stage entails 28

CNN operations. In addition, Choudhary et al. [6] exploited

the DenseNet121 model with some customizations, for

feature extraction and the SVM classifier for classification

between iris contact lenses. However, these models map

the given lens category images to the respective class,

instead of considering the entire dataset. Besides, Chen

et al. [11] introduced a multi-task CNN-based framework

that concurrently detects iris region and presentation

attacks in terms of probability. Notice that all these

methods incorporate single feature extractor, i.e., the

classification is carried out based on a single feature vector.

However, as the presentation attacks may amend the real

iris in several aspects, analyzing them with sole angle does

not yield impressive results. Therefore, authors in [21]

projected a premise that a pool of noble features results in

an ominously enhanced discrimination. They anticipated a

feature selection and fusion network using six different

local features, i.e., LBP, HoG, CoA LBP, BSIF, SID, and

DAISY, together with an eight-layer VGG model. How-

ever, the authors focused merely on textured lens-based

PAD, while other categories of presentation attacks are left

unexplored. Besides, Yadav et al. [22] delineated the fea-

ture-level fusion of VGG-8 and Haralick features for

multiple iris presentation attack detection. Similarly, Kohli

et al. [37] also fused the Zernike moment-based features

with LBP with variance (LBPV) to handle the medley of

iris presentation attacks. Furthermore, a recent work [38]

suggested coalescing features from three distinct local and

global regions within the given eye image through feature-

level and score-level fusion. Table 1 comprehensively

outlines the literature focusing on iris PAD in terms of the

underlying feature extraction mechanisms.

3 Proposed approach: YOLO with statistical
methods

This subsection describes each of the three subsequent

phases of the proposed approach to improve iris liveness

detection. Begin with region of interest (RoI) localization

through bounding box regression; it demonstrates the

architecture and functionality of the YOLO framework

[13] used. Further, seven distinct feature extractors used to

constitute features from enhanced RoI, and the Friedman

test [39] used to accomplish best-k feature selection from

resultant features are described in detail. Furthermore, the

selected features are combined using score-level fusion to

make a final attack prediction.

3.1 CNN framework for RoI detection

The RoI detection procedure is inspired by an earlier work

[11] with a slight modification that it focuses on iris

localization instead of liveness detection. The framework

(model) deployed to detect RoI is depicted in Fig. 3, which

adheres to a precise version of the CNN network, i.e.,

DarkNet-19 [13]. This framework contains nine convolu-

tional blocks, where the first six are followed by max

pooling layers. Each convolution block represents a com-

bination of three subsequent operations, i.e, convolution,

batch normalization (BN), and rectified linear unit (ReLU).

Here, each convolution layer is implemented with a filter

size of 3 9 3, excluding the last, where 1 9 1 filters are

used. Notice that a fully connected layer is not included

here so that the model automatically adapts to accept the

varying sized input. The topmost layer uses a softmax

function, which is responsible for predicting the coordi-

nates of the bounding box representing the iris region.

Table 2 shows the entire network architecture, along with

several parameters. Here, the input image is resized with

416 9 416 9 3, before feeding to the model. Further, the

spatial dimensions are diminished by a factor of 32 after

performing a chain of convolution and pooling functions,

and the output dimensions become 13 9 13 9 25. Indeed,

the output feature map contains the number of channels as

(#class ? #coords ? 1)*#ancors, where #class denotes

the number of output classes, #coords represents the

coordinates of the bounding box to predict (i.e., x,y coor-

dinates depict the center of the bounding box, along with

the height and width of the iris region), and #ancors is the

number of predefined anchors (or the number of the

bounding box to examine) to obtain the best bounding box.

In the experiment, it is set to 5. Notice that, since merely

single object detection and/or localization is carried out in

the proposed setup, #class is set to 0, and the framework is

utilized as a regressor instead of a classifier.

The DarkNet-19 model was originally trained with the

ImageNet dataset with 1000 distinct output categories.

However, this model is designed to act as a classifier.

Therefore, it is retrained with the explicitly annotated and

labeled iris images along with predefined coordinates of the

bounding box. The pre-trained model is employed to adopt

knowledge transfer when retrained on the standard iris

datasets. Moreover, by using the weights learned during

pre-training yields the quick network convergence with

improved accuracy [13]. This is since the initial CNN

learns generic features, such as points, blobs, and edges,

and during retraining; such knowledge is successfully

transferred to various diverse tasks. Since the model is not
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Table 1 Summarizing literature analysis in terms of different feature extraction methods focusing on various eye regions

Category Procedure Merits Limitations

Feature extraction

from entire eye

image

Using handcrafted feature

descriptors to extract features

from iris and facial images

[3, 8, 25, 27, 33]

Since it doesn’t require training, it can

perform well with less data.

Easy to implement

Requires parameters to be set empirically

by experts

A pre-trained CNN model is used

to extract features from down

sampled image [6]

A shallow convolutional model is

used for feature extraction and

classification [35]

Extract better discriminative features

by self-learning from large set of

images

Suffers from poor accuracy with less

amount of data

Huge amount of computation and

processing time is required

Combining handcrafted and CNN

based features using certain

fusion method [21–23, 37]

Handcrafted features are used to

train lightweight CNNs [12]

Enhances classification performance

by integrating both self-learnt and

handcrafted features

Lengthy procedure

Huge computation required

Using segmented

and normalized

iris region for

feature extraction

Handcrafted methods are used to

extract features from enhanced

normalized iris image [14, 15]

CNN based feature extraction from

segmented iris region [10, 16]

Avoids additional processing over

other eye regions (except iris) while

feature extraction

Includes iris segmentation which suffers

from poor accuracy with blur and noisy

images

CNN based feature extraction from

non-overlapped patches of

normalized iris images [36]

Utilizes rich information by rigorously

analyzing each local region of the

normalized image

It doesn’t consider the important textural

details in iris and pupil nearby areas

while extracting features

Feature extraction

from iris region as

RoI

Features are extracted from non-

overlapping patches of RoI using

handcrafted feature descriptors

[3, 7]

Features are extracted using a pre-

trained CNN model [17]

Focuses on each local region for

identifying key intensified pixels,

i.e., discriminative features.

Each patch is considered as an image

where filters are employed

Large processing time due to employ

ordinary filters repeatedly on multiple

patches and then combining results from

each patch

A YOLO model is employed for

detection and classification in

parallel [11]

The iris region localization and

presentation attack prediction is

accomplished by a sole model in

single stage

Requires huge amount of images and

ground truth vector to successfully

perform regression and classification as a

whole

Feature extraction

from local and

global iris regions

Handcrafted feature extraction

from iris and sclera regions and

summarize them [31]

CNN based feature extraction from

inner and outer regions of iris and

combine them using some fusion

method [38]

Features are constituted in relatively

large quantity as it applies feature

extraction from local regions and

then entire eye image

Additional computation is required as the

same feature extraction procedure is

employed repeatedly on each local

region and entire image as well

Pooling Convolution

Iris 0.73

Pooling Convolution Convolution

20
8

10
4

2

2

2

2

131320
8

3

3
1024

41
6

3

3

16

3

3
32

1

1
25

Convolution

Fig. 3 Depiction of the CNN framework employed for region of interest (RoI) detection, working as a regressor, predicting the dimensions of

bounding box, which tightly bounds the iris region
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too deep, it is entirely fine-tuned rather than freezing some

initial layers and fine-tuning the rest. Next, to further

enhance the training size and to address overfitting, some

data augmentation methods are employed to perform

transformations such as random flipping, shearing, rotation,

and cropping on the training batches. The augmented

images are supplied to the model by ImageDataGenerator,

an open-source tool provided by Keras [40], during model

training only. Since the model does not perform classifi-

cation, the classification loss is excluded from the loss

function, which contains localization loss and confidence

loss. Therefore, the loss function to accomplish regression

(predicting the bounding box parameters), is defined as

follows:

L ¼ kcord
XC2

i¼0

XN

j¼0

Biris
ij ðxtrgt;i � dxpred;iÞ2 þ ðytrgt;i � y

^

pred;i
Þ2

� �

þ kcord
XC2

i¼0

XN

j¼0

Biris
ij ðwtrgt;i � dwpred;iÞ2 þ ðhtrgt;i � dhpred;iÞ2

h i

þ kiris
XC2

i¼0

XN

j¼0

Biris
ij ðOtrgt;i � dOpred;iÞ2

� �

þ kno iris

XC2

i¼0

XN

j¼0

Bno iris
ij ðOtrgt;i � dOpred;iÞ2

� �

ð1Þ

Here, Biris
ij represents the case if iris exists in the ith cell

and Biris
ij signifies if the jth bounding box in the ith cell

primarily contributes to the prediction. In contrast, Bno iris
ij

denotes the case when the jth bounding box in the ith cell

does not contain the iris. C2 denotes the total number of

cells present in the last feature map, and N shows the

number of bounding boxes to predict. In the experiment,

the values for N and C are set to 5 and 13, respectively.

Ultimately, the total number of bounding boxes to predict

for an image is given by C 9 C9N, i.e., 13 9 13 9 5. The

actual values for output class Oi is computed as follows:

Otrgt;i ¼
1 if Biris

ij ¼ 1

0 if Bno iris
ij ¼ 1

(
ð2Þ

Fundamentally, the above derivation calculates the dif-

ference in the actual and predicted values then measures

the L2 loss. kcoord,kiris, and kno iris are the hyper-parameters

employed to weight the distinct regression losses. In our

experiment, these values are considered as 1, 5, and 1,

respectively.

Refer to Eq. (1), the first two terms of the loss function

describe the coordinates of the predicted bounding box’s

center, whereas the second term relates to the box’s height

and width. The third and fourth terms focus on the prob-

ability of the box to encompass the iris. Indeed, all the loss

terms are summed together to form the unified L2 regres-

sion loss. Further, the model is trained by using the SGD

with momentum, with 64 batch size. Consider that the

boxtg and boxpd represent the target and predicted bounding

box, respectively. Then,

boxtg ¼ ðxtrgt; ytrgt;wtrgt; htrgtÞ
boxpd ¼ ðx̂pred; ŷpred; ŵpred; ĥpredÞ

ð3Þ

Here, the tuple ðxtrgt; ytrgt;wtrgt; htrgtÞ implies the target

output values from the coordinates of labeled bounding

boxes, whereas ðbxpred; bypred; bwpred; bhpredÞ denotes the pre-

dicted coordinate values for the bounding boxes. Let (bx,

by, bw, bh) are the outcomes of the last convolutional layer,

then they are transformed through the pre-specified anchor

locations (lw, lh) to the offsets as given below [13].

bxpred ¼ rðbxÞ þ cx

bypred ¼ rðbyÞ þ cy

bwpred ¼ lwexp bwð Þ
bhpred ¼ lhexp bhð Þ

ð4Þ

Here, (cx, cy) signifies the coordinates of the upper left

corner from the current cell of the resultant feature map.

The default anchor locations given in [13] are used in the

model, i.e., {(3.42, 4.41), (1.08, 1.19), (9.42, 5.11), (6.63,

11.38), (16.62, 10.52)}.

Table 2 Various parameters involved in the YOLO framework in the

experimental setup

Layers No of Filters Filter Size Stride Output size

Conv_1 16 (3,3) 1 (416,416,16)

Max-pool – (2,2) 2 (208,208,16)

Conv_2 32 (3,3) 1 (208,208,32)

Max-pool – (2,2) 2 (104,104,32)

Conv_3 64 (3,3) 1 (104,104,64)

Max-pool – (2,2) 2 (52,52,64)

Conv_4 128 (3,3) 1 (52,52,128)

Max-pool – (2,2) 2 (26,26,128)

Conv_5 256 (3,3) 1 (26,26,256)

Max-pool – (2,2) 2 (13,13,256)

Conv_6 512 (3,3) 1 (13,13,512)

Max-pool – (2,2) 1 (13,13,512)

Conv_7 1024 (3,3) 1 (13,13,1024)

Conv_8 1024 (3,3) 1 (13,13,1024)

Conv_9 25 (1,1) 1 (13,13,25)

Softmax –

*The Conv_* block includes the convolution, batch normalization

and max pooling operations
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Intersection of Union ðIoU) ¼
\ðBoxtg;BoxpdÞ
[ðBoxtg;BoxpdÞ

ð5Þ

The procedure to predict bounding boxes by incorpo-

rating the pre-specified anchors is depicted in Fig. 4. The

predicted bounding boxes are shown in blue rectangles,

computed from the five pre-specified anchors. This

framework convolves on all grid cells and calculates the

IoU between the target bounding box (boxtg) and the pre-

dicted bounding box (boxpd) as given in (5), and the largest

IoU is observed. If the largest IoU is greater than a preset

threshold, then the respective cell produces zero loss to

calculate the probability of the bounding box enclosing the

iris. The output of the iris localization framework corre-

sponding to images from different datasets is shown in

Fig. 5.

3.2 Selective image enhancement on RoI

The localized RoI (iris region) is cropped from the image

based on the rectangle box using OpenCV in python and

undergoes selective image enhancement through rescaling,

sharpening, color, and contrast variation, etc. It increases

the subjective and textural quality of the image to enrich

the textural details. The cropped iris image is first rescaled

by a factor of 1.25, and then image sharpening is per-

formed. It highlights the fascinating minutiae in the region

to eliminate the noise and to make the image more alluring.

Indeed, the edge sharpening and fine details are determined

by the sharp conversions in the image intensity. Further,

the sharpening is produced by preserving the high-fre-

quency modules and discarding the low-frequency com-

ponents. Besides, the contrast is twisted by the variance in

the illumination reflected from two neighboring surfaces.

In specific, contrast refers to the distinction in chromic

properties that enables an object discernable from other

objects and background as well. It is obtained by the dif-

ference in the brightness and color of an object from others.

There are various algorithms and linear and nonlinear

functions to accomplish contrast enhancement; however,

logarithmic transformation is used in our experiments.

Figure 6 represents the output image samples after per-

forming image enhancement.

3.3 Feature extraction from RoI

Feature extraction from the RoI is carried out using three

different approaches: key point-based, local and global

descriptors, and a deep learning-based feature extractor [3].

The key point-based feature extractors include scale-in-

variant feature transform (SIFT) to extract the set of local

key points. Besides, the local descriptors such as LBP [25],

CoA LBP [28], Multiscale BSIF (MBSIF) [41], Zernike

moment [37] and Haralick features [22] perform textural

analysis to constitute discriminative patterns and generate

output feature-vectors. Further, the VGG-8 model is

employed to extract deep learning-based features, which is

an imitation of VGGNet [42] with eight layers instead of

sixteen. Such feature extractors are described in the fol-

lowing subsections.

Key-point-based feature extraction: key points or key

features denote the points in the image, which are invariant

to chromatic deviations and image rescaling. In our

experiment, the SIFT descriptor is used to identify unique

key features from the RoI. Such key points have diverse

colors, which are utilized to indicate discernment between

Fig. 4 The pictorial representation of the process of bounding box

prediction using the pre-specified anchors

Fig. 5 Output of the iris localization framework containing the bounding box indicating the iris region along with the probability score
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key features and are considered beneficial for detecting

presentation attacks with cosmetic lenses and printed iris

images.

Local and global feature extraction: local descriptors

refer to image neighborhood localities computed at several

interest points. Usually, interest points are perceived at

various measures and estimated to reprise across distinct

views of an object. In addition, they are also probable to

acquire the core of the object’s exterior. Such feature

descriptors designate the image patch surrounding the point

of interest. The prime advantage of employing local fea-

tures is that they have significant potential to recognize the

object despite clutter and occlusion. In this work, Co-oc-

currence of LBP (CoA LBP), MBSIF, Zernike movement,

and Haralick features are employed. CoA LBP refers to an

image feature that relies upon spatial co-occurrence

amongst micro-structures represented by an LBP. It was

introduced to counter the limitations of conventional LBP,

wherein LBP histograms, all the LBPs of micro-features,

are wrapped into a sole histogram. It abandons essential

information regarding spatial relations amongst the LBPs,

although they may encompass information regarding the

image’s global structure.

Besides, MBSIF is an advancement over the traditional

BSIF method, where instead of a single fixed-size filter,

multiple filters with changing scales are incorporated. The

multiple filter responses are combined to create an

improved, unique feature set. This work utilized three

domain-specific filters of sizes 17 9 17, 7 9 7, and 5 9 5

with a bit length of 12, 10, and 8, respectively, publicly

provided in [43]. These filters are domain-specific since

they are trained on patches of iris samples and more

powerful than generic BSIF filters [41].

On the other side, the Zernike moments [37] are robust

across the variations in rotation, scale, and translation, also

efficaciously applied in iris segmentation and recognition

[44]. In this work, Zernike moments are used to capture the

fluctuations in the contour between the live iris and attack

samples. An orthogonal set of polynomials is included to

define the Zernike moments in an image, and a radial

polynomial Pm,n is computed over it. This radial polyno-

mial is demarcated as follows:

Pn
mðqÞ ¼

X
m� nj j

2

k¼0

ð�1Þkqm�2kðm� kÞ!
k! mþ nj j

2
� k

� �
! m� nj j

2
� k

� �
!

ð6Þ

where q is the difference between a point (i, j) and the

center of the image, m shows the order of polynomial

function and n depicts the repetition such that |n|\m and

|m–n| is even. The Zernike function is unswervingly cal-

culated in the Cartesian coordinate space given by:

Zm;n p; qð Þ ¼ Rn
mðqp;qÞe�jnhp;q ð7Þ

Consider, S 9 S as the image size, then

qp;q ¼ 1

S
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� Sþ 1ð Þ2þ S� 1� 2qð Þ2

q
ð8Þ

hp;q ¼ tan�1 S� 1� 2q

2p� Sþ 1

� �
ð9Þ

Let’s consider I as an iris image, then Zernike moments

are computed for (x, y) across the non-overlapping cell of

n 9 n. Several pairs of (x, y) are chosen to calculate the

amplitude of multi-order Zernike moments. It aids to

improve the depiction of the input image. In our experi-

ment, Zernike moments are calculated on non-overlapped

patches of 4 9 4, 8 9 8, and 16 9 16, and the resultant

features are combined to produce combined feature vector.

Next, the Haralick features [22] are well-known statis-

tical global descriptors used to encode the textural details

within an image. These are effectively employed in several

domains, such as medical imaging, texture classification,

and face presentation attack detection. Haralick features

exploit the gray level co-occurrence matrices (GLCM), a

tabulation of the occurrences of distinct combinations of

gray pixels in an image. Typically, the aim is to map the

given unknown sample to either of a set of predefined

texture classes. The textural features may be discrete his-

tograms, scaler numbers, or empirical distributions.

Moreover, such features characterize the image’s textural

Fig. 6 Depicting image enhancement in Region of Interest (RoI) through rescaling, sharpening, color, and contras variation
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properties such as contrast, orientation, spatial structure,

and roughness, and encompass definite correlation with the

target output. The GLCM represents the scatter of co-oc-

curred pixel intensities within the image (I) at a well-de-

fined pair (Dp, Dq) at position (x, y). Therefore,

GLCMDp, Dq (x, y) is calculated as follows:

GLCMDp;Dq x; yð Þ

¼
Xm

p¼1

Xn

q¼1

1; if Iðp; qÞ ¼ x ; Iðp þ Dp; q þ DqÞ ¼ y

0; otherwise

(

ð10Þ

After calculating GLCM, Haralick features are com-

puted to encode the textural details in the image. Indeed,

there are 13 different Haralick features (i.e., contrast, the

sum of variance, the difference in the variance, correlation,

sum of average, inverse difference moment, entropy, the

sum of entropy, the sum of squares of variance, two

information correlation scores, angular second moment,

and difference in entropy).

After feature extraction and encoding by using the

aforementioned local and global descriptors, corresponding

feature-vectors are generated, and they may vary in length

depending upon the number of feature values extracted by

a particular descriptor. Each feature-vector is fed to a

dedicated SVM classifier to generate corresponding output

class, i.e., to label the given eye image as either ‘‘live’’ or

‘‘attack’’. The training procedure of the SVM classifier

with the feature-vectors to generate the output labels is

described in the next subsection.

3.4 Local classification using SVM

In the proposed approach, multiple SVM classifiers are used

at various stages, e.g., in best-k feature selection and score-

level fusion. Therefore, this subsection provides a deep

insight into the working principle of the SVM classifier.

Let Fkf gNk¼1 as the training feature set, and Ykf gNk¼1 as

the corresponding labels, the SVM attempts to learn a

hyperplane � as follows:

argc min ck k22 þ q
X

k

L c;Fk;Ykð Þ ð11Þ

where q and L(c, Fk, Yk) denotes the penalty parameter and

the loss function, respectively. Due to the efficacy of the

quadratic Hinge loss in the image classification, it is

employed in the experiments. The hinge loss function is

expressed as follows:

L c;Fk; Ykð Þ ¼ max 0; cTFkYk � 1
	 
� �2 ð12Þ

where, Yk is set to 1 for live iris, whereas - 1 signifies

spoofs. After learning c, a test set Ytest is given to the SVM

classifier, and the classification utilizes the sign of cTYtest.

Here, q is set to 0.1. As mentioned earlier, a dedicated

SVM classifier is associated with each feature descriptor

(selected in best-k features) for local classification, i.e., the

class prediction using the single feature vector. Further, the

score-level fusion of all individual classifications is

accomplished to perceive the global prediction.

3.5 Global classification through score-level
fusion

Let c1, c2,….,ck represent the local outcomes of k classi-

fiers, and the score-level fusion acquires a set of weights

w1,w2,…..wk, where w1? w2 ?���. ? wk=1, to compute the

fused output (Cs) as follows:

Cs ¼ c1w1 þ c2w2 þ � � � þ ckwk ð13Þ

The weights w1, w2,…..wk in (13) are learned by recur-

sively evaluating the individual performances of the classi-

fiers on the test set. This is obtained by using varying

partitioning over the train and test sets, where the train-set is

assigned a large number of samples so that the classifiers

may learn effective feature discernment. Though, instead of

combining outputs of all classifiers, best-k features are

identified that result in more accurate classification. In this

vein, we exploit the preeminent statistical tests for the

concurrent assessment of several classifiers. As all SVMs

are the same, they differ in their performances due to the

feature-vectors, which are used for classifiers’ training.

Thus, the association of each feature extractor with SVM

acts as a classification algorithm, where the best-k methods

are identified using the Friedman test [39]. It performs fea-

ture selection by simultaneously evaluating each feature

with the output and ranks them based on their performances.

Further, the optimal set of weights for score-level fusion is

obtained by an inclusive analysis of the train-set for various

experiments. In particular, the partitioning is performed as

5267 training and 1316 testing samples for IIITD CLD, 8482

training and 2120 testing samples for IIITD-CSD, 4080

training and 1020 testing samples for ND CLD, 3840

training and 960 testing samples for ND-LivDet, 6356

training and 1589 testing samples for Clarkson-2015, and

6476 training and 1619 testing samples for Clarkson-2017

datasets. Each dataset is randomly split 100 times, where the

best-k features are identified through tenfold cross-validation

on the train-set. Finally, the local responses of such k clas-

sifiers for the test samples are fused using (13) to obtain the

global outcome. The first 50 random splits are utilized to

learn weights, whereas the performance of sore-level fusion

is computed using the rest 50 partitions.

1. Best-k Feature selection through Friedman test

In general, the Friedman test is aimed to discard a null

hypothesis that given multiple classifiers are statistically
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similar, i.e., they all exhibit equal performances. In this

vein, the Friedman test exploits two statistics expressed as

follows:

v2F ¼ 12D

nðnþ 1Þ
X

i

R2
i �

nðnþ 1Þ2

4

" #
ð14Þ

FF ¼ D� 1ð Þv2F
D n� 1ð Þ � v2F

ð15Þ

where, n, R, D signify the number of datasets, average rank,

and the number of classifiers, respectively. Nevertheless, in

the proposed approach, the null hypothesis is modified as

‘‘all extracted features exhibit identical contribution in the

output prediction.’’ In the Friedman test, D and n should be

big enough (as a rule of thumb, D[ 10 and n[ 5) [39].

There are multiple feature-vectors; each with separate

SVMs, acting as classifiers (n), yet the number of datasets

(D) is limited. Therefore, subsampling is performed over

the datasets as given in Algorithm-1 to counter it, where

three distinct samples are created from each dataset. Thus,

a total of 18 sampled datasets are produced from six

datasets and are considered as separate datasets. However,

sampling on the raw dataset seems inadequate as each iris

image is not included in the sampled dataset. In addition,

the size of the sampled datasets would be perilously less,

and thus, the overall outcome may be affected. Therefore,

before subsampling, image augmentation on each dataset is

carried out by using imagedatagenerator (an image pro-

cessing tool provided in Keras [40]). It performs certain

transformations on each image matrix in the dataset (as

described in the next subsection) and generates similar

augmented images.

2. Image augmentation

In order to generate auxiliary training samples, several

augmentation methods are incorporated that accomplish

various transformations on the images of the given iris

datasets. Such transformation includes rotation, flipping,

shearing, shearing after rotation, rotation after shearing at

varying directions and angles, etc. Indeed, such transfor-

mations are similar to regular matrix operations, i.e., the

input image matrix is modified in terms of pixel values and

locations surrounding the axis. Flipping is implemented

horizontally as well as vertically, where pixels are moved

along the height and width. Similarly, rotation moves the

pixel values in the 2D plane counter-clockwise with the

predefined angle about the origin. Besides, shearing

amends pixel values according to the variation in their

distances from all axis. These transformations are carried

out by employing ‘ImageDataGenerator’, i.e., a class

facilitated by Keras [40] for image pre-processing. The

parameters specified for such transformations are given as:

shear (B 0.2), rotation (B 40), flip (horizontal and verti-

cal = True), height shift (B 0.2), and width shift (B 0.2). It

aids in producing auxiliary images with analogous features

to augment and enrich the model input.

4 Experimental framework and discussion

Aiming to realize iris liveness detection, six different iris

datasets containing iris images with various attack variants,

are considered in this study. The primary reason behind

including many datasets is a prerequisite of the Friedman

test for best-k feature selection. However, the proposed

approach is examined on each dataset for performance

validation. A series of experiments are performed on these

datasets to validate the efficacy of the proposed approach.

The following subsections describe the databases along

with the validation protocols used in the experiments for

method assessment, and the respective outcomes are also

discussed. A comparative study among the proposed

approach and the state of the arts is also described.

4.1 Description of iris datasets and validation
protocols

Table 3 demonstrates the iris datasets used in this work,

along with the underlying image distribution and attack

types. The IIITD contact lens dataset (CLD) [45] contains

live, soft, and patterned lens iris samples of 101 distinct

subjects that are captured through Cogent and Vista sen-

sors. Besides, IIITD combined spoofing dataset (CSD) [37]

contains live, patterned, print-scan, and print-capture iris

images. Notice that, IIITD-CSD contains the IIITD contact

lens dataset as a part of it; thus, we exclude it from the

combined spoofing dataset. Further, ND-LivDet-2017 [10]

and ND contact lens 2013 [46] dataset contains merely live

irises and patterned iris samples. Furthermore, both
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LivDet-Iris 2015 and LivDet-Iris 2017 (Clarkson) [10]

datasets contain images of live irises, iris printouts, and

textured contact lenses. In addition, a ‘‘Combined’’ dataset

is also prepared for some experiments by merging images

from all datasets. Each dataset is provided with train and

test partitions to facilitate the training and testing of

algorithms. The datasets belonging to LivDet-Iris 2017

further divide the test samples into two groups; test-known

and test-unknown. In the former group, both live and

artifacts possess the same ‘‘known’’ properties like train

samples. Besides, the second group has unknown or dif-

ferent properties than train samples. Note that this work

adheres to binary classification, i.e., live versus attack, and

does not discriminate among attack types.

For all the abovementioned datasets, the experiments

follow the predefined train-test partitioning for feature

extraction and SVM training. However, fivefold cross-

validation is used for best-k feature selection, where each

dataset is divided into five equal parts. Afterward, in each

training phase, one part is considered as test set, and the

rest four are used for algorithm training. Notice that the

fivefold cross-validation is employed in merely the Fried-

man test to compute area under the curve (AUC) values,

whereas the remaining experiments follow the procedure

described in subsection-III(D), i.e. ‘‘score-level fusion.’’

The feature extraction methods constitute the discrimina-

tive features from the train and test sets and constitute the

train and test features. The classifiers are trained using

train-features to realize binary classification, where

authentic iris samples are labeled as ‘‘live’’ and artifacts

denote ‘‘attack.’’ In the experiments, the PAD performance

is expressed as per ISO/IEC SC37 [47] metrics as below:

• Accuracy: Ratio of correctly classified samples out of

total samples.

• Bona fide presentation classification error rate

(BPCER): Ratio of live irises, incorrectly classified as

attacks, out of total samples.

• Attack presentation classification error rate (APCER):

Ratio of attack samples erroneously classified as live,

out of total samples.

• Average classification error rate (ACER): Average of

BPCER and APCER.

• Equal error rate (EER): The point/value, where ACPER

and BPCER are equal.

Here, APCER and BPCER correspond to false accep-

tance rate (FAR) and false rejection rate (FRR), respec-

tively. Such error rates vary based on the variation in the

threshold on the classifier’s output. As mentioned above,

the point/value, where both error rates become equal, is

referred to as an equal error rate (EER). The trade-off

between FAR and FRR is outlined using detection error

trade-off (DET) curves based on varying thresholds [47],

where the diagonal line aids in EER computation with the

point, where this line meets the DET curve.

4.2 Best-k feature selection

Table 4 compares seven distinct algorithms (feature

extraction plus SVM) on 18 datasets using the Friedman

test, where the intermediate results are expressed in terms

of average ranks. Besides, separate ranking is done

according to the higher values of the area under the curve

(AUC) for each dataset as in [39]. The fivefold cross-val-

idation is employed on each dataset, and an average AUC

is computed. Although there are several feature extraction

algorithms available in the literature, few selected methods

are examined due to their improved performances reported

in previous works [21, 22, 37]. In specific, SIFT, LBP,

MBSIF, CoA LBP, Haralick features, Zernike moments,

and VGG-8 model exhibit better performances in textural

classification. In this view, these methods are embedded

with dedicated SVM classifiers to discriminate between

attack and live samples and examined 18 different sampled

datasets. More details about the Friedman test can be found

in [39].

Table 3 Description of iris PAD datasets in terms of image distribution with arrack types

No. Database Types of Images Live Spoof

1. IIITD Contact Lens Iris Database [45] Soft and Patterned contact lens, live 4310 2273

2. IIITD Combined Spoofing Database [37] Patterned contact lens, Print ? capture, Print ? scan, live 6022 4580

3. ND-Iris Contact lens 2013 [46] Patterned contact lens, live 3400 1700

4. ND-LivDet-2017 [10] Patterned contact lens, live 2400 2400

5. LivDet-Iris-2015 Clarkson [10] Patterned contact lens, Print ? scan, live 1906 6039

6. LivDet-Iris-2017 Clarkson [10] Patterned contact lens, Print ? scan, live 3954 4141
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Considering Table 4, v2F and FF are evaluated as 91.29

and 86.70 using (14) and (15). FF is distributed with (7–1)

and (7–1) (18–1) degrees of freedom based on F distribu-

tion for 7 classifiers and 18 datasets. Since the critical value

of F (6, 102) at a = 0.05 is 2.14 � FF; thus, we reject the

null hypothesis by following the Friedman statistics. Fur-

ther, it can be concluded from the average ranks that SIFT,

VGG-8, and MBSIF are top three; whereas, CoA LBP,

Zernike, and Haralick features are bottom three algorithms.

It is worth identifying their statistical difference to find

best-k features, which is carried out by using two post hoc

tests (Nemenyi test and Bonferroni Dunn test) [39]. These

tests state that two classifiers statistically differ if the dif-

ference in their average ranks is larger than the critical

difference (CD), which is computed as follows:

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

6D

r
ð16Þ

Here, qa is the critical value for given a. Next step is to

employ the Nemeny test for 7 classifiers, where qa = 2.949

(for a = 0.05), and CD = 2.123. It infers that SIFT, VGG-

8, and MBSIF perform equally. Likewise, Zernike, CoA

LBP, and Haralick features are similar. Though, nothing is

decided for LBPV, as its average ranks differ from that of

MBSIF and CoA LBP methods by less than the critical

difference. Further, at a = 0.1, qa = 2.693, the CD is

computed as 1.939, which signifies that LBPV is signifi-

cantly different from MBSIF. Thus, LBPV is not included

in best-k features. Consequently, SIFT, VGG-8, and

MBSIF are selected as best-k features.

Figure 7 illustrates the outcome of the post hoc tests,

where it is perceived that the average ranks also demon-

strate a fair assessment of the classifiers. Besides, the top

horizontal line within the figure depicts the axis to plot the

average ranks from left (lowest value/finest rank) to the

right (higher value/lowest rank); thus, the methods on the

left are superior. Besides, the methods that are statistically

similar are connected via a horizontal line. The result

unveils that SVMs report three best classifications with

Fig. 7 Graphical illustration of results reported by Friedman test and

Nemeny test, where SIFT, VGG-8, and MBSIF are ranked in top three

features, and are statistically similar

Table 4 Analysis of seven distinct features on 18 subsampled iris PAD datasets for best-k feature selection through the Friedman test

Datasets SIFT CoA LBP MBSIF Zernike LBPV Haralick VGG-8

IIITD-s1 0.945 (2) 0.681(6) 0.952(1) 0.794(5) 0.842 (4) 0.763 (7) 0.927(3)

IIITD-s2 0.957(1) 0.794(5.5) 0.932(2) 0.799(5.5) 0.821(4) 0.731(7) 0.927(3)

IIITD-s3 0.951(1) 0.716(6) 0.926 (2.5) 0.683(7) 0.793(4) 0.746(5) 0.921(2.5)

IIITD-CSD-s1 0.962 (1.5) 0.813(4) 0.891 (3) 0.723 (6) 0.799 (5) 0.687 (7) 0.962 (1.5)

IIITD-CSD-s2 0.913 (2.5) 0.746 (5) 0.917(2.5) 0.706 (6.5) 0.810 (4) 0.706 (6.5) 0.922 (1)

IIITD-CSD-s3 0.924 (3) 0.723 (6) 0.945 (1) 0.744 (5) 0.832 (4) 0.690 (7) 0.933 (2)

ND CLD-s1 0.935 (1) 0.802 (4) 0.895 (3) 0.703 (7) 0.786 (5) 0.726 (6) 0.924 (2)

ND CLD-s2 0.947 (1.5) 0.744 (5) 0.899 (3) 0.721 (6.5) 0.771 (4) 0.728 (6.5) 0.947 (1.5)

ND CLD-s3 0.910 (3) 0.717 (5) 0.937 (1.5) 0.702 (6) 0.846 (4) 0.679 (7) 0.931 (1.5)

ND-LivDet-s1 0.926 (2) 0.723 (7) 0.852 (4) 0.790 (5) 0.861 (3) 0.764 (6) 0.942 (1)

ND-LivDet-s2 0.929 (1.5) 0.791 (4) 0.927 (1.5) 0.751 (6) 0.780 (5) 0.712 (7) 0.911 (3)

ND-LivDet-s3 0.942 (1.5) 0.812 (4) 0.940 (1.5) 0.721 (7) 0.801 (5) 0.761 (6) 0.929 (3)

Clarkson15-s1 0.891 (3) 0.771 (4.5) 0.901(2) 0.737(6) 0.776 (4.5) 0.682 (7) 0.923 (1)

Clarkson15-s2 0.889 (3) 0.782 (5) 0.901 (2) 0.754 (6) 0.811 (4) 0.707 (7) 0.941 (1)

Clarkson15-s3 0.921 (2.5) 0.792 (4.5) 0.923 (2.5) 0.724 (6) 0.799 (4.5) 0.703 (7) 0.944 (1)

Clarkson17-s1 0.917 (1) 0.712 (6) 0.791 (4) 0.740 (5) 0.802 (3) 0.691 (7) 0.901 (2)

Clarkson17-s2 0.930 (1) 0.763 (4.5) 0.902 (2.5) 0.767 (4.5) 0.752 (6) 0.740 (7) 0.906 (2.5)

Clarkson17-s3 0.921 (1.5) 0.811 (4) 0.921 (1.5) 0.752 (6) 0.792 (5) 0.732 (7) 0.901 (3)

Average rank 1.861 5.000 2.277 5.888 4.333 6.666 1.972

The Ranks in the brackets are assigned based on the ascending values of AUCs reported for individual datasets

*s1, s2, s3 refer to sampled datasets generated from the proposed sampling algorithm Algorithm-1
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SIFT, VGG-8, and MBSIF features. Therefore, these three

features are combined through score-level fusion expressed

in (13) to obtain the final output.

4.3 Validation of Freidman test’s outcome

As depicted in Fig. 7, the Friedman test clustered the fea-

tures into two groups according to the similarity in their

performance on various databases. We consider these as

group-A (SIFT, MBSIF, VGG-8) and group-B (LBPV,

CoA LBP, Zernike, Haralick). As discussed in Section-B,

group-A is selected as the most discriminative (optimal)

feature set by the Nemeny test. This subsection further

validates the effectiveness of such a feature set through a

comparative analysis between group-A and group-B. To

achieve this, methods in both groups are examined on all

six original datasets; IIITD CLD, ND CLD, ND-LivDet,

IIITD-CSD, and Clarkson. The training and testing pro-

cedures follow the validation protocols provided with each

dataset, i.e., validation is performed on the predefined test

sets. More in detail, methods in each group individually

perform feature selection and classification, whereas the

final score is obtained through performing score-level

fusion on their outcomes. The experimental results for all

datasets are shown in Fig. 8, where methods in group-A

outperform group-B with significant performance

improvement over all datasets. Here, one question arises

‘‘why the selected k features are optimal?’’ The reason is

the underlying feature extraction procedures of MBSIF,

SIFT, and VGG-8 methods. In specific, the MBSIF method

uses domain-specific filters [43] to construct iris features

which are more powerful than the generic filters [8].

Similarly, VGG-8 is retrained on iris datasets, and thus, the

feature maps learned by the VGG-8 model are also

domain-specific. Therefore, their combination yields a

significant improvement in the iris pattern discrimination.

Besides, SIFT features identify key points within the iris

region that certainly differs for presentation attacks with

cosmetic lenses and printed iris images [25]. Each of these

methods individually performs better classification. How-

ever, their score-level fusion causes an additional

improvement towards the correct output prediction.

4.4 Fusion methods comparative analysis

In this study, one probable question arises that why to use

‘‘score-level fusion’’ instead of others. To answer this, we

demonstrate a fair comparison among four distinct yet

widely used fusion methods, i.e., score-level fusion,

majority voting, feature-level fusion, and rank-level fusion.

Except for feature-level fusion, all methods work at the

classifier-level, i.e., on the predicted output labels.

Whereas, in feature-level fusion, all three features of iris

images are concatenated to form a combined feature-vector

that is fed to the SVM classifier for output prediction.

Table 5 summarizes the outcomes of the abovementioned

fusion methods on all datasets in terms of accuracy,

APCER, BPCER, and ACER. Although there is no uni-

versal trend towards using an explicit fusion method, score-

level fusion is used comparatively more in iris related lit-

erature. Additionally, in the experimental outcomes, score-

level fusion outperforms other counterparts with a signifi-

cant margin. The reason behind score-level fusion per-

forming better is that it considers the fair contribution of

each feature in the output prediction based on their pre-

diction accuracy. More in detail, instead of neglecting the

features upon wrong prediction (as in majority voting),

each feature is assigned some weights, and thus a fair

contribution from each is achieved.

4.5 Intra-domain evaluation

In this validation scheme, the proposed approach is eval-

uated on individual datasets, where the algorithm’s training

and testing are carried out on the predefined train-test

partitions within each dataset. However, an additional sub-

splitting is created during training, where 20% of images

are selected randomly from each train-set to serve as the

Fig. 8 Performance of two

different groups of features

(group-A and group-B)

clustered by Friedman test, on

five datasets. The feature

extraction methods plus SVMs

(in each group) are individually

trained and the results are

computed using score-level

fusion on their individual

scores. It is observed that

methods in group-A perform

significantly better for all

datasets

5622 Neural Computing and Applications (2021) 33:5609–5629

123



validation set. In a nutshell, the selected feature extractors,

i.e., SIFT, MBSIF, and VGG-8 extract features that are fed

to dedicated SVMs to map the given iris images to either

real or attack category and the outcome is obtained after

score-level fusion. Afterward, two vectors for the error

rates (APCER and BPCER) are calculated based on the

varying threshold on the SVM’s output. Further, DET

curves are plotted for each dataset that plots APCER

against BPCER, as shown in Fig. 9. The EER value for the

dataset is obtained by observing the point on the diagonal

line where the curve intersects and is listed in Table 6.

It is observed from the intra-dataset evaluation results

that the proposed approach works significantly well while

trained and examined on the sole dataset. The discrimi-

nation error rate is reduced up to 1.07% and 1.62%,

respectively, for IIITD Contact Lens and IIITD Combined

Spoofing datasets. It infers that the attack patterns with

textured and printed iris can be successfully discriminated

from genuine samples. Besides, the proposed method

performs PAD with less than 3% misclassification rate for

ND datasets. However, for Clarkson datasets, there is still

a requirement to further diminish the misclassification

error.

4.6 Cross-domain evaluation

Except Clarkson 2017, all remaining datasets facilitate

cross-sensor evaluation, since images in their train and test

partitions are captured through distinct sensors and envi-

ronments. Therefore, in this section, we attempt to explore

the proposed method in cross-domain, where the train and

test sets possess high intra-class variations in the iris

samples. First, the inter-domain evaluation is performed at
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Fig. 9 DET plots for Intra-sensor evaluation of the proposed method

on various datasets. The method performs best for IIITD CLD dataset,

while highest misclassification rate is reported for IIITD-CSD dataset
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the sensor-level, where different sensor images within the

same dataset are served as train-test sets. As both the IIITD

datasets (CLD and CSD) contain images captured through

Cogent and Vista sensors, we design train-test pairs from

these sensors for both datasets. Likewise, images in ND

datasets (ND CLD and ND-LivDet) were captured from

IrisGuard AD100 (ND-I) and LG4000 (ND-II) sensors;

thus these are also arranged in cross-sensor train-test pair.

The performance outcome of the proposed approach for

these sensor pairs in terms of accuracy and error rates is

depicted in Table 7, and the respective DET curves are

shown in Fig. 10.

Further, images in Clarkson 2015 were captured using

Dalsa and LG sensors, where the textural details within the

respective images, along with the acquisition pattern, differ

significantly. Therefore, it is expected that the error rates

would be comparatively high for LG and Dalsa train-test

pair. The DET curve corresponding to the Clarkson 15

dataset is illustrated in Fig. 11. It can be observed from the

experimental outcomes that the proposed approach results

in better accuracy for Cogent ? Vista, ND-I ? ND-II

pairs. However, for LG-Dalsa sensor pairs, it exhibits a

comparatively high misclassification error rate.

In the next phase, different datasets (cross-dataset) are

considered as train-test pairs to validate the likelihood of

transfer learning through these datasets. Since IIITD CLD

and IIITD-CSD, both datasets contain iris samples captured

with Vista and Cogent sensors; thus, the intra-class varia-

tion exists at sensor-level instead of dataset-level. There-

fore, we may expect that direct cross-dataset evaluation

would perform similar to cross-sensor. Accordingly, the

cross-dataset evaluation experiment is conducted, where

training and testing are performed over IIITD-CSD and

IIITD CLD datasets, respectively. On the other side, ND

CLD and ND-LivDet datasets also contain images captured

using identical sensors; thus, knowledge transfer may be

expected. However, according to the results shown in

Table 8 and Fig. 12, the proposed method doesn’t gener-

alize pretty well for cross-dataset validation. The reported

EER values for IIITD and ND datasets are 16.07% and

22.10%, respectively. On the other side, the texture of

Clarkson samples differs from other datasets to a huge

extent, as can be seen in Fig. 13. The combination of

Clarkson with any other dataset as a train-test pair results in

accuracy analogous to random predictions. The results

exhibit that the variation in the datasets in properties

(textured lens, print-capture, print-scan, or a mix of both),

arrangement (concerning sizes of distribution among clas-

ses), acquisition sensors, and environmental conditions

limit the ability to knowledge transfer.

It may be inferred from Table 8 that cross-dataset

evaluation is not efficacious. However, a further possibility

to obtain a successful evaluation in cross-domain is to pool

images of all datasets at one place to create combined-

dataset. The pooling is done according to correspondence

in the individual train-test partitions. More in detail, the

images in the training and testing partitions are pooled

separately. In Clarkson 2017 and 2015 datasets, the test-

unknown and test-known partitions are retained while

dataset pooling, which is not concerned with other data-

bases. In this regard, two different test partitions are gen-

erated ‘‘known-test,’’ which contains the test-known

partition from Clarkson and test sets of all other datasets,

and ‘‘unknown-test’’, which contains the test-unknown

partitions of both Clarkson datasets. Table 9 shows the

proposed method’s performance over the combined-dataset

while testing with both the aforementioned test sets in

terms of ACER %. With known prediction, the proposed

method achieves 5.81% ACER with classification accuracy

higher than 90%. Besides, with the unknown prediction,

the proposed method successfully reduced ACER to

7.22%, with classification accuracy more than 88.8%. The

corresponding DET curves are depicted in Fig. 14.

4.7 Comparative analysis with state of the arts

This section demonstrates a comparative study between the

proposed method and the state of the arts performing best

over the datasets used in this study. As ND-LivDet and

Clarkson datasets belong to LivDet-Iris 2017 competition,

their corresponding results are compared with the

Table 6 Error rates resulted by

the proposed approach within

intra-dataset domain

Datasets EER (%)

IIITD CLD 1.07

ND CLD 2.02

ND-LivDet 2.92

IIITD-CSD 1.62

Clarkson 2015 3.85

Clarkson 2017 3.25

Table 7 Experimental results reported by the proposed approach in

cross-sensor evaluation

Cross-sensor pair Accuracy APCER BPCER ACER EER

IIITD-Congent ?

IIITD-Vista

99.88 3.22 0.19 1.70 2.86

IIITD-Vista ?

IIITD-Congent

98.75 4.08 2.15 3.11 3.09

ND-I ? ND-II 98.21 2.93 1.36 2.14 1.87

ND-II ? ND-I 97.53 4.79 3.91 3.25 4.68

LG ? Dalsa 86.31 7.89 4.25 6.07 5.93

Dalsa ? LG 82.54 9.01 3.92 6.46 7.19
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competition winner along with a recently introduced PAD

method based on Meta-Fusion [12]. However, for other

datasets, the results are compared with another state of the

arts performing best on the respective datasets. Moreover,

we have carefully implemented a DensePAD framework as

described in [48] on all the datasets considered in this

work. This is because the DensePAD framework has not

been examined on these datasets in the original work.

Table 10 summarizes the results from the state of the arts

(according to the dataset used) and compares it with the

proposed method in terms of error reduction. The term

‘‘error reduction’’ refers to the % of error reduced by the

proposed method compared to the state of the arts. It is

observed that except for the ND-LivDet, the proposed

approach outperforms the state of the arts for all datasets.

For the IIITD CLD dataset, the proposed method achieves

more than a 40% error reduction. With the ND CLD

dataset also, it successfully reduces the error rate by

17.73%. However, in the case of Clarkson, there is no

significant error reduction reported. Besides, for the ND-

LivDet dataset, the proposed method lacks 69.17% from

the existing counterpart. The DET curves resulted from the

proposed method corresponding to the abovementioned

experiments are represented in Fig. 15.

4.8 Discussion

The proposed scheme incorporates five subsequent steps,

i.e., RoI localization, image enhancement, feature extrac-

tion, best-k feature selection, and classification to

Fig. 10 DET plots for cross-sensor evaluation of proposed method on

various datasets. The method performs best for Congent-[Vista

pair, while highest misclassification rate is reported for ND-II-[ND-

I

Fig. 11 DET plots for cross-sensor evaluation of proposed method on

Clarkson 2015 dataset. The method performs better while using LG

and Dalsa sensor images for training and testing, respectively

Table 8 Experimental results

reported by the proposed

approach in cross-dataset

evaluation

Cross-dataset Pair Accuracy APCER BPCER ACER EER

IIITD-CSD ? IIITD CLD 73.71 12.03 18.61 15.32 16.07

ND Liv?

ND CLD

70.21 18.23 20.08 20.15 22.10

IIITD ? ND 63.43 27.02 20.24 23.63 27.64

Clarkson ? * Random prediction

*Represent any dataset

Fig. 12 DET plots for cross-dataset evaluation of proposed approach

on three dataset pairs. It reports less discrimination accuracy for IIITD

and ND datasets compared to intra-domain counterparts. Moreover,

for Clarkson, the performance is not better than the random prediction

and thus not included here
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accomplish iris PAD. Each step has some significance and

contribution to the attack prediction. The feature extraction

procedure incorporates multiple feature extraction meth-

ods, including handcrafted and CNN-based. It is believed

that CNN itself has enough potential to constitute dis-

criminatory features from the images to perform errorless

classification. However, CNN requires thousands of images

per class to learn respective features that are not currently

available in iris datasets. Moreover, the textural quality in

images within iris datasets significantly varies due to dif-

ferences in hardware and wavelength range of different iris

sensors, as depicted in Fig. 13. This, in turn, results in

intra-class variation in iris datasets that may not be cap-

tured through a single feature extraction method. Since

each method analyzes the iris samples from a certain per-

spective, using multiple features tends to analyze images

from multiple angles and may improve discrimination.

Further, the feature selection procedure based on the

Friedman test removes the redundant features with the

insignificant contribution in the output prediction and

results in an optimal feature set to improve iris PAD.

The experimental results infer that the proposed optimal

feature set exhibits excellent performance for intra-dataset

iris PAD with the least error resulted in the IIITD CLD

dataset. Further, a trivial upsurge in the error rate is

observed with cross-sensor deployment, yet the best out-

come is observed when the train and test samples are

borrowed from ND-I and ND-II datasets, respectively.

Besides, the cross-dataset assessment results in a substan-

tial increase in the error rate, where the highest two error

rates have resulted in ND-LivDet ? ND CLD and IIITD

CLD ? ND CLD as training and testing datasets,

respectively. It infers that there is a huge scope towards

diminishing the iris presentation attack detection errors in

cross-domain setup. Furthermore, the analysis of fusion

approaches to combine the features in the optimal feature

set suggests that score-level fusion is an adequate choice to

improve cross-domain iris PAD.

The entire test time procedure, i.e., RoI localization,

feature extraction, and SVM classification requires an

average of 0.021 s for a given sample. Notice that this

execution time is corresponding to a single image instead

of the entire dataset. The computational platform used to

execute the experiment is Intel Scalable processors Xeon

4114, 64 GB DDR4 RAM, GTX 1080Ti 11 GB GPU card.

5 Conclusion

This study focuses on improving discrimination between

live iris and attack patterns/samples to enrich iris presen-

tation attack detection. It primarily emphasizes the iris

attacks that are launched at the sensor-level through a

Fig. 13 Presentation attack samples from various iris datasets representing intra-class variation, where PAD approaches face difficulties

Table 9 Experimental results

reported by the proposed

approach in combined-dataset

evaluation

Test set ACER %

Test-known 5.81

Test-unknown 7.22

Fig. 14 DET plotes resulted by the proposed method for combined-

dataset evaluation
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patterned contact lens, printed and scanned copies of

genuine iris images. To deal with such attacks, an approach

is proposed with a sequence of phases, each focusing on

mitigating a certain challenge. The YOLO approach

localizes the iris region without pattern loss while retaining

the important textural details where discriminatory patterns

exist. The RoI localization reduces the amount of compu-

tation required for feature extraction from the iris samples.

The feature extraction procedure with handcrafted and

CNN-based methods aimed to construct features from

multiple perspectives. Further, the feature selection reduces

the number of features to process without compromising

the average classification accuracy. Therefore, it again

yields a significant reduction in computational cost and

execution time, which includes feature extraction from iris

images and the corresponding classifier’s training proce-

dure. As a result of feature selection, SIFT, MBSIF, and

VGG-8 features are selected as the top three features dis-

criminating significantly among the live and attack pat-

terns. Further, these features are combined by performing

score-level fusion on the corresponding classifier’s out-

comes. The feature selection is robust as it is unbiased

towards a certain dataset; instead, the features are

examined on multiple iris PAD datasets to observe their

consistency in cross-domain.

On comparing the proposed method with state of the

arts, it is concluded that except for the ND-LivDet dataset,

it outperforms all existing methods with significant error

reduction. The improved performance is due to the efficacy

of domain-specific MBSIF filters in textural feature con-

struction, the robust key points detection through SIFT

features to identify printed iris and cosmetic lenses, and the

iris-specific feature maps learned by the VGG-8 model.

Also, the score-level fusion boosts the accuracy by

assigning appropriate weights to each feature. Although the

proposed approach is lengthy, yet minimizes the misclas-

sification error rate of both attack and genuine iris patterns.
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