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Abstract
Accurate and efficient models for rainfall–runoff (RR) simulations are crucial for flood risk management. Recently, the

success of the recurrent neural network (RNN) applied to sequential models has motivated groups to pursue RR modeling

using RNN. Existing RNN based methods generally use either sequence input single output or unsynced sequence input

and output architectures. In this paper, we propose a synced sequence input and output long short-term memory (LSTM)

network architecture for hydrologic analysis and compare it to existing methods (sequence input single output LSTM). We

expect the model will improve RR prediction in terms of accuracy, calibration training time, and computational cost. The

key idea is to efficiently learn the long term dependency of runoff on past rainfall history. To be more specific, we use the

indigenous ability of the LSTM network to preserve long term memory instead of artificially setting a time window for

input data. In this way, we can avoid losing long term memory of the input, the calibration of the time window length, and

excessive computation. The whole procedure mimics the traditional process-driven methods and is closer to the physics

interpretation of the RR process. We conducted experiments on real-world hydrologic data from the Brays Bayou in

Houston, Texas. Extensive experimental results clearly validate the effectiveness of our proposed method in terms of

various statistical and hydrological related evaluation metrics. Notably, our experiment shows that some rainfall events

could affect the runoff process in the test watershed for at least a week. For fine temporal resolution prediction, this long

term effect needs to be carefully handled, and our proposed method is superior in this case.
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1 Introduction

In the United States, flooding is the number one cause of

natural-disaster losses with estimated annual damage of

eight billion dollars [1]. Thus, reliable predictive tools for

rainfall–runoff (RR) modeling are crucial for flood pre-

vention, mitigation, and management. The literature is

replete with studies using different modeling approaches to

predict runoff (discharge) caused by a rainfall event [2–5].

Both process-driven [6–8] and data-driven [9, 10] approa-

ches were applied in this research area. The results of the

process-driven models are more realistic and scalable due

to the use of analytical and empirical formulae based on

physical phenomena. However, extensive meteorological

and geometric data requirements, skilled users, and con-

tinuous calibration processes make this class of RR models

more obsolete. In contrast, data-driven models that rely on

interpolating and extrapolating of data have become more

popular for RR modeling. Nevertheless, the lack of

knowledge of statistics and ML and using data-driven

models as a black box could lead to dramatic errors.

The application of machine learning (ML) has been

dramatically increasing mainly due to the significant

increase in computing power and data availability. In

hydrology, in particular, ML-based data-driven models

have been widely used for streamflow prediction with feed-

forward artificial neural network (ANN) being the most

popular algorithm [9–13]. More recently, to address the

limitations of feed-forward ANN in handling time-series

data, recurrent neural network (RNN) algorithms have been

used for RR modeling [14]. The loops inside the RNN
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make it capable of capturing long-term dependencies in

data. Theoretically, the hidden state inside RNN should be

able to preserve the memory of past input data. However,

in reality, standard RNN with artificial neurons as hidden

units faces vanishing and exploding gradient issues for

network training [15]. To this end, long short-term memory

(LSTM) networks have been developed by adding cell state

and gating mechanisms to the vanilla RNN [15, 16]. The

gates within the LSTM network handle the decision pro-

cess on forgetting or remembering the information by

keeping the errors in memory, which avoids error signal

decay [17, 18]. In other words, the gates within the LSTM

help to preserve states and short-term dependencies over

long periods. Although the LSTM network was introduced

in 1997 by Hochreiter and Schmidhube [17], it had not

been used for RR modeling till 2016 [19]. Since 2016, a

handful of studies have used LSTM for RR modeling and

reported satisfying results [19–27]. Many of the studies

mentioned above showed the superior performance of the

LSTM network in capturing the dynamics of time-series

compared to other RNN networks for hydrologic applica-

tions. Table 1 provides a summary of those studies and

their architecture. As shown in Table 1, most of the studies

used a fixed window size.

Part of the superiority of RNNs compared to traditional

ANNs is due to their sequence regime of operation com-

pared to fixed-size networks. Depending on the application

of the network, different architectures, including sequence

input and a single output (SISO), single input and sequence

output, sequence input and sequence output, and synced

sequence input and output (SSIO) can be used. While each

of these structures are designed for a specific purpose, most

of the studies that used the LSTM network for RR mod-

eling have chosen sequence input and single output or

sequence input and sequence output architectures

(Table 1). These architectures require determining a fixed

window size, unlike the SSIO architecture that relies on the

LSTM structure itself to capture the long dependencies.

Choosing a fixed window size forces LSTM to limit the

long-term dependencies into the size of the selected win-

dow. On the other hand, the passage of hidden states from

previous time steps in the SSIO architecture makes it

capable of capturing the long-term dependencies on its

own. In other words, there is no need to use LSTM (or even

RNN) for RR modeling application if the user desire to use

a fixed window regime since the LSTM network does not

need to feed the model with the fixed window size. Addi-

tionally, using the fixed window size approach requires

more memory because of the formation of a matrix with a

size of batch size 9 fixed window size 9 number of input

variables, compared to batch size 9 number of input

variables in the SSIO architecture, even though the two

input dataset contains the same amount of information.

Moreover, extensive knowledge of the watershed response

to the rainfall events is required to determine the window

size. While the choice of architecture is not very influential

when working with a small dataset or coarse time resolu-

tion, it could make a significant difference in prediction

accuracy, computational time, and storage requirements

when increasing the time resolution or size of the study.

The main goal of this study is to compare these two

architectures with regards to prediction performance,

computational time, and memory requirements.

The majority of the aforementioned studies could be

categorized as time series-forecasting, meaning the flow at

previous time steps (Qt-k) is within the input vector to the

model along with rainfall and/or other variables. Depend-

ing on the immediate past observations to make a predic-

tion could be problematic in the case of damage to the

observational flow gauge. Severe damages have been

Table 1 A summary of studies that used the LSTM network for rainfall–runoff modeling

Ref Type Time resolution Type Window size Evaluation metrica

[23] Time series Daily Sequence input and output 10 NSE, RMSE

[24] Prediction Daily Sequence input and output 270 NSE, FHV, FMS, FLV

[25] Time series Hourly Sequence input and output 1 R2, RMSE, NSE, MAE, ETp, EQp

[21] Time series Hourly Sequence input and output 32 RMSE

[19] Time series Daily Sequence input and single output 200 NSE and RMSE

[20] Prediction Daily Sequence input and single output 365 NSE, RMSE, r, a, b, FHV, FMS, FLV

[22] Time series Monthly Sequence input and single output 5 MAE, R2, NSE, RMSE, bias, SDbias, DISP

[26] Time series Hourly Sequence input and output 8 RMSE, NSE, R2

[27] Prediction NRb Sequence input and single output NR MAPE, RMSE

aPlease see Sect. 3.3 for the definitions
bNR Not reported
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reported to the gauges maintained by the National Oceanic

and Atmospheric Administration (NOAA) and the United

States Geological Survey (USGS) during hurricanes and

severe storms [28]. Some of the damaged gauges have

never come back to functionality. Furthermore, future

development requires predicting runoff of hypothetical

rainfall events with different return periods (scenario-

based) as a part of flood management. Such a study would

not be possible using the time series-forecasting approach

due to the absence of observed discharge data. The few

studies that did not use the Qt-k as one of the inputs used

extensive meteorological and watershed characteristics

variables [20, 24]. The literature lacks an LSTM model that

predicts runoff solely based on precipitation input.

In this study, we build LSTM models with different

architectures that use high-temporal resolution rainfall (i.e.,

15 min) as the sole input and generate runoff as the output.

We will compare the SSIO with the SISO architecture with

different window sizes. An extensive comparison among

the architectures will be made through the use of various

evaluation metrics that measure the performance of the

models in predicting the hydrograph (runoff over time),

computational time, and storage requirements.

2 Methodology

In this study, we aim to compare the two different recurrent

neural network (RNN) architectures for RR modeling,

which aims at predicting the streamflow hydrograph from

precipitation input. We will first introduce the problem

formulation. Then we will give a quick review of a basic

neural network unit. In the end, we are going to show the

two different architectures studied in this section.

2.1 Problem formulation

To formulate the RR prediction task in a data-driven set-

ting, we use Qt to denote the river flow rate at the outlet of

a watershed at time step t; which is the quantity of interest

(QoI) of this problem. Similarly, we use Xt ¼ fXit; i ¼
1; 2; . . .g to denote the rainfall recordings at time step t in

the watershed. For each gauge i, the precipitation recorded

during the time step t is Xit. In practice, given a precipi-

tation forecast, we would like to predict the river flow rate

based on the precipitation forecast. Moreover, in flood

management, we are also interested in predicting the runoff

for hypothetical rainfall events where real-time observation

does not exist. Thus, we wish to find the mapping M :
Xt;Xt�1;Xt�2; . . .f g7!Qt that could predict the river flow

rate using past precipitation as the only input. In other

words, we wish to predict future runoff (hydrograph) based

on the history of rainfall (hyetograph).

In reality, RR is also affected by other physical pro-

cesses such as evapotranspiration, infiltration, and snow

melting that depend on other metrological data in addition

to precipitation. In this study, however, we are focused on

flood prediction with a high temporal resolution (every

15 min). Empirically rainfall drives the majority part of the

runoff in this scenario. To sum up, the task of runoff

modeling is to find the regression relationship between

output river flow rate and input precipitation history.

2.2 Preliminaries

Long short-term memory (LSTM) In both our proposed

model and the architecture we are comparing to, LSTM

units are used. RNNs keep a hidden state vector, which

changes according to the input at each time step. Theo-

retically, the hidden state vector preserves the memory of

the history of the input, making RNNs a natural fit for our

task. LSTM was proposed by [9] to deal with the exploding

and vanishing gradient problems. The LSTM unit we use

consists of a cell state ct, an input gate it, a forget gate f t, a

cell gate gt, and an output gate ot. For each time step t with

the precipitation input vector Xt, previous hidden cell state

ht�1, and previous cell state ct�1, the updated hidden state

ht is computed by the following calculations:

it ¼ rðWiiXt þ bii þWhiht�1 þ bhiÞ ð1Þ
f t ¼ rðWif Xt þ bif þWhf ht�1 þ bhf Þ ð2Þ

gt ¼ tanhðWigXt þ big þWhght�1 þ bhgÞ ð3Þ

ot ¼ rðWioXt þ bio þWhoht�1 þ bhoÞ ð4Þ
ct ¼ f t � ct�1 þ it � gt ð5Þ
ht ¼ ot � tanhðctÞ ð6Þ

rð�Þ is known as a sigmoid function. � denotes Hada-

mard products. All W’s are weight matrices, and all b’s are

bias matrices. Note that since we are working with real-

world time series data, past time steps should not be

affected by future time steps. Consequently, the bidirec-

tional mechanism is not employed in this study. Both

architectures use a single directional LSTM network.

2.3 LSTM architectures

The majority of existing LSTM RR literature have used

sequence input single output (SISO) or sequence input/

output model (see Fig. 1 for different structures). However,

we argue that a synced sequence input/output (SSIO)

model (input and output have the same length l) fits our

task better. Note that l does not need to be fixed. Although

the un-synced sequence input and output model has been

used in hydraulic engineering, it is not perfectly suit-

able for our application in this study. The common use case
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of the method is to predict runoff in multiple future time

steps. However, our method aims at predicting the runoff at

the next time step. Thus, we mentioned the architecture for

introduction but did not discuss further in this paper.

For the sequence input single output and un-synced

sequence input/output model, the length of the input vector is

fixed from the training time. This setup has three potential

disadvantages. (1) The excessive need to determine the best

window size lw. In otherwords, thewindow size itself becomes

an extra hyperparameter and requires tuning. (2) The potential

of losing long term rainfall history; if lw is not large enough, the

long term effect of rainfall cannot be captured within the time

window.For floodprediction at a temporal resolution as high as

every 15 min, there are 96-time steps for a single day.

Depending on the size of the watershed, the peak of

generated runoff can be observed from a couple of hours to a

couple of weeks after the beginning of the event. In this case,

if lw is set to be 100, the network will have trouble predicting

a one-week event. (3) Compared to the synced sequence

input/output model, the sequence input single output model

requires more computation and memory to process the same

time series. For instance, if we choose the window size to be

100, then the input data will be repeated 100 times.

Since we are focused on predicting the runoff with only

precipitation input, the un-synced sequence input/output

model is not applicable. To this end, we compare two

different architectures: a synced sequence input/output

model used by [29] and sequence input single output model

used in [19–27].

3 Experiments and evaluation

In this section, we will introduce the experimental results

based on a RR dataset from an urban watershed, Brays

Bayou, in Houston, Texas.

3.1 Study area and dataset

Figure 2 shows the Brays Bayou watershed, Brays Bayou,

and its tributaries located in the southwest of Harris County

and northeast of Fort Bend County, Texas, that we selected

for this study. Brays Bayou drains freshwater from 329

square kilometers of a heavily urbanized and populated

watershed and discharges into the Houston Ship Channel

and eventually to the Gulf of Mexico. Brays Bayou has had

a history of floods; just in the last 18 years Tropical Storm

Allison (2001), Hurricane Ike (2008), the Memorial Day

Flood (2015), the Tax Day Flood (2016), and Hurricane

Harvey (2017) caused significant flooding and billions of

dollars of property damage [1].

15-min precipitation data from 2007 to 2017 were col-

lected from 15 rainfall gauges within the Brays Bayou

watershed maintained by the Harris County Flood Control

District (HCFCD, rainfall data is available at https://www.

harriscountyfws.org/) and 15-min flow data were obtained

from the United States Geological Survey (USGS) gauges.

Within the Brays Bayou watershed, there are five flow

gauges. In this study, only one freshwater gauge located

very close to the watershed outlet (green circle in Fig. 2)

was used to collect flow data for the purpose of training,

validation, and test (discharge data is available at https://

waterdata.usgs.gov/nwis/uv?site_no=08075000). Consid-

ering the RR process, predicting the flow at the outlet of the

watershed is desirable not only for flood management

purposes but also for any potential feeding to a storm surge

model (flow flux). Thus, in this study, only the gauge

located near the outlet of the watershed that is not influ-

enced by the tide was selected. Hydrologic data (rainfall

and river discharge) was split into the train, validation, and

test data sets. All 15-min data up to the end of 2015

(2007–2015) was used for training. The entire year 2016

was used for validation, and 2017 was used as the holdout

test dataset. This training-validation-test split

scheme (shown in Fig. 3) is designed to minimize over-

fitting and be consistent with realistic prediction scenarios.

We believe that the characteristics of the watershed that

could affect runoff evolve in time. At prediction time, all

the data we have will be in the past, and the prediction we

aim to do is in the future. Thus, later data is used as

test/validation than training.

Fig. 1 Different LSTM

architectures. It should be noted

that Xt ¼ fXit; i ¼ 1; 2; . . .g
where the precipitation recorded

during the time step t is Xit to

denote the rainfall recordings at

time step t in the watershed
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3.2 Experimental setups

Here we introduce the detailed settings of our experiments,

including the parameters for the compared models and

details of the training stage.

3.2.1 Synced sequence input and output (SSIO) model

For the synced sequence input/output model, the training

dataset originally consists of 16 columns. Each column is a

time series of precipitation or river discharge spanning

from 2007 to the end of 2015. The training dataset contains

several extreme events, as shown in Fig. 3, including

Memorial Day Flood (2015) and Hurricane Ike (2008). The

peak flow of the validation set is lower than that of the

training set. The peak of the test dataset (from hurricane

Harvey) is higher than the previous record and requires the

model to extrapolate, but it is not high enough to be an

outlier. Training an RNN on such a long sequence is

challenging and problematic. Thus, the training dataset is

split into shorter snippets, where each snippet starts from

the beginning of a runoff event and ends at a definitive

Fig. 2 Brays Bayou watershed,

streams, rainfall, and flow

gauges. The figure on the

bottom right shows rainfall and

runoff during Hurricane Harvey

(2017) (color figure online)

Fig. 3 Discharge rates used for training, validation, and test. Hurricane Harvey (2017) in the test dataset was an unseen event
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conclusion of a runoff event. The snippets do not neces-

sarily have the same length. During training each snippet is

fed into the network as one batch (training proceeds one

forward and one backward propagation). Since all the

training example starts from a similar metrological state

(river flow at a base flow without precipitation), it is pos-

sible to set the initial hidden and cell state to be learnable

parameters. At prediction time, the input sequence can

either (1) start from a base flow state using the learned

initial hidden and cell state, or (2) start at the middle of an

event using a hot-start hidden and cell state from the pre-

diction of the first part of the event. From a grid search of

hyperparameters, a two-layer LSTM network with 64

hidden LSTM units and zero dropout at each layer has been

chosen.

3.2.2 Sequence input single output (SISO) model

For the sequence input single output model, we tested four

different window size (memory length): 48 steps, 96 steps,

192 steps, and 672 steps. These choices correspond to 12 h,

one day, two days, and a week, respectively. The pro-

gressive choices are designed to show the cascade of long

term dependency of RR. The tuned hyperparameters of the

SISO models are listed in Table 2.

For all LSTM networks used in this study, a fully con-

nected layer with ReLU activation is added after the last

LSTM layer to map the high dimensional hidden state

vector ht at each time step t to a scalar output Qt. All

LSTM networks are trained with Adam optimizer [30] with

the AMSGrad variant [31] and the learning rate is set to

0.00005. The models are implemented using deep learning

framework PyTorch [32]. Numerical experiments were

conducted on RTX node of Frontera at the Texas Advanced

Computing Center (TACC). Jupyter notebook hosted on

designsafe [33] was used for post-processing and result

analysis.

It should be noted that the batch size, early stopping

epoch, and the maximum epoch number are not tuned to

avoid overfitting. The batch size is set to satisfy the

memory requirement of GPU. Early stopping epoch and

maximum epoch numbers are set high enough so that the

optimization algorithm converges within the limit. The

early stopping round and maximum epoch for SISO168 is

set lower than other SISO models with shorter window size

since training the SISO168 is significantly more time-

consuming. We have to set it to lower so that training does

not exceed the 24-h time limit for computing jobs in

Frontera.

3.3 Evaluation metrics

Extensive evaluation was conducted using both classic and

hydrologically relevant metrics. We used Root Mean

Square Error (RMSE), Nash–Sutcliffe Efficiency coeffi-

cient (NSE), Mean Absolute Error (MAE) to measure the

model performance. While RMSE could provide valuable

information on the model performance, breaking it down to

bias, amplitude error, and the phase error could provide

more specific details on the source of error. The following

equations express the RMSE decomposition [34]:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
k¼0ðQM;k � QO;kÞ2

N

s

ð7Þ

RMSE2 ¼ bias2 þ SDbias
2 þ DISP2 ð8Þ

bias ¼ 1

N

XN

k¼0
ðQM;k � QO;kÞ ð9Þ

SDbias ¼ rM � rO ð10Þ

DISP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2rMrObsð1� qO;MÞ
q

ð11Þ

where QM;k and QO;k are the modeled and observed dis-

charges at time step k, respectively; N is the total number

of time steps; SDbias is the amplitude error; DISP is the

absolute value of phase error where a non zero value

indicates the phase of modeled discharge lags or leads the

observed one; rM and rO are the standard deviation of

modeled and observed discharges, respectively; and qObs;M
is the correlation coefficient between the observed and

modeled discharges.

To exploit the hydrological context, hydrologically rel-

evant metrics that evaluate overall water balance, vertical

redistribution, and temporal redistribution could be used as

diagnostic tools. Some of these metrics are derived from

the concept of the flow duration curve. Flow duration curve

Table 2 Tuned hyperparameters

of LSTM models
Test namea Hidden size Drop out Windows size Batch size Early stopping Max epoch

SISO12 64 0.5 48 4096 400 3000

SISO24 64 0.1 96 1024 400 3000

SISO48 128 0.3 192 1024 400 3000

SISO168 128 0 672 1024 200 1000

aSSIO synced sequence input and output, SISO sequence input and single output, numbers after the SISO

show the length of window size in hours
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(FDC) is defined as the relationship between a given dis-

charge value and the percentage of time that this value was

exceeded. The concept of probability distributions cannot

be applied in RR process due to the existing correlation

among discharges in successive time and the effect of

seasonality. FDC could be considered as the complement

of the cumulative distribution function [35]. In this paper,

the following hydrologically relevant metrics were used:

FMS ¼
logQM;0:2 � logQM;0:7

� �

� logQO;0:2 � logQO;0:7

� �

logQO;0:2 � logQO;0:7

� �

ð12Þ

FHV ¼
PM

i¼0ðQM;i � QO;iÞ
PM

i¼0QO;i

ð13Þ

FLV

¼
PH

j¼1 logQM;j � logQM;Min

� �

�
PH

j¼1 logQO;j � logQO;Min

� �

PH
j¼1 logQO;j � logQO;Min

� �

ð14Þ

FMM ¼
logQM;Median � logQOb;Median

logQO;Median

ð15Þ

EQPeak ¼
ðQPeak;M � QPeak;OÞ

QPeak;O

ð16Þ

ETPeak ¼ TPeak;M � TPeak;Obs

�

�

�

� ð17Þ

where FMS: bias in flow FDC midsegment slope which

evaluates the vertical redistribution, Q0:2 and Q0:7 are dis-

charges associated with the exceedance probabilities of

20% and 70%, FHV is the bias in FDC high-segment

volume (2%), M is the number of runoff indices corre-

sponding to discharges with exceedance probabilities

smaller than 2%, FLV is the bias in FDC low-segment

volume that evaluates the long-term baseflow, H is the

number of runoff indices corresponding to discharges with

exceedance probabilities smaller between 70 and 100%,

FMM is the bias in the median runoff, EQPeak is the error of

peak runoff, and ETPeak is the error of time to peak runoff.

4 Results

The prediction performance is shown in Table 3. Since the

test dataset has an unprecedented event, Hurricane Harvey,

where flooding was so severe that inter-basin flow was

observed, we reported both the evaluation metrics of the

entire test set and the ones excluding Harvey.

Among all the methods we tested, the synced sequence

input and output model (SSIO) has the best overall per-

formance. It leads all the methods in terms of NSE, MAE,

RMSE, and qO;M. As the length of time window increases,

better overall prediction accuracy is observed for the

sequence input and single output models (SISO). NSE,

MAE, RMSE, and qO;M show a clear progressive increase

as the time window increases from 12 to 168 h. This

phenomenon suggests that the runoff at the studied

watershed indeed has a long term dependency on past

rainfall history; thus, architectures that could preserve long

term memory are required to model flood on a fine time

scale. Phase error (DISP) was the most significant con-

tributor to the RMSE, followed by amplitude error. For

large events, the developed model had a lead in predicting

the peak flow, which is probably the reason behind the

large DISP values. Table 3 also shows SSIO has the best

prediction performance in terms of hydrological related

evaluation metrics. SSIO has the best bias in median runoff

FMM among all the methods. The better performance of

the SSIO method in predicting the median discharge could

also be seen in Fig. 4a.

Figure 4b depicts the FDC for all test cases. The vertical

and horizontal axes show the exceedance rates and their

corresponding discharge rates (cfs), respectively. An

exceedance rate for a specific discharge rate means what

percents of all flows have a value greater than that rate.

Within the FDC (Fig. 4b) low-segment region (70–100%),

the SSIO model also shows superior performance. It has

significantly lower FLV compared to the other methods.

Note that for this metric excluding Hurricane Harvey does

not change the result significantly, because most of the data

points in Hurricane Harvey are outside this region due to

large discharge rates during this event. We believe the

SSIO model benefits from setting the initial hidden state to

be learnable during training. The setting essentially forces

the network to learn the base flow condition from data.

Figure 4a also provides a better illustration of the FDC

mid-segment region (corresponding bias: FMS) by show-

ing the 25, 50, and 75 percentiles of discharge values for all

test datasets. Here again, SSIO showed the most similar

pattern to the observed data, followed by SISO168 and 48.

Within FDC high-segment region, SSIO has similar FHV

with SISO48 and SISO168 on the entire dataset. If we

exclude Harvey, the SSIO has the smallest absolute value

of FHV. This suggests its superior prediction performance

within the high flow region, which is possibly due to its

ability to preserve the entire memory of runoff events with

a long duration. In flood risk management, we are partic-

ularly interested in predicting the magnitude and the time

of the peak flow for runoff events. Evaluation metrics for

two demonstrative events are shown in Table 4. In addition

to Hurricane Harvey, we also looked at the Tax Day Flood

event (2016), as the second-largest event in the history of

Brays Bayou, which is part of the validation dataset. This

particular storm was chosen because the peak flow on this
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event was very similar to Harvey. However, the duration

and RR behavior of Harvey were drastically different from

Tax Day Flood or any other historical events.

Even though the 2016 event is in the validation dataset

and used for hyperparameter tuning, we can still see the

superior performance of the SSIO method on FDC high-

segment regions. More importantly, from the prediction

evaluation metrics (see Table 3; Fig. 4), we can conclude

that the developed LSTM models could predict a very big

event (with flow rates as high as 27,200 cfs) with accept-

able error. Thus, the evaluation metrics show that the data-

driven method can precisely predict runoff of a historic

rainfall event. From the NSE/MAE/RMSE metrics in

Table 4, we can conclude the SSIO and SISO168 model

have similar overall prediction performance on both the

Tax Day Flood and Harvey. However, on Harvey, SSIO

underpredicted the peak flow by 2.5%, while SISO168

overpredicted it by 21.1%. Here again, it should be noted

that Hurricane Harvey was an unseen event in history (flow

rates as high as 35,000 cfs), so the models have to

extrapolate to predict its discharge rates. Figure 5 shows

the LSTM model predictions for Harvey compared to the

observed values. From ETPeak and Fig. 5, we can see that

all the methods were able to identify the correct pattern of

the disastrous runoff event (except SISO 12). But once

again, we observed progressively improved performance as

the lengths of input memory increases. As the time window

size of SISO reaches a week, prediction performance

becomes similar to the SSIO model.

To evaluate the LSTM models’ computational time and

costs the training times and stopping epochs were recorded.

It is found that for SISO architectures with short time

windows (12 h or one day), training of one epoch takes a

shorter time (3 s and 8 s, respectively) compared to the

SSIO model (21 s). As the window size increases to two

days and a week, the training time per epoch (25 s and 61 s

for 48 and 168 h, respectively) will be longer than the

SSIO model. Note that this is not a strict performance

timing test, and training time per epoch depends on the

number of parameters of the network, batch size, and

training strategy. However, the trend of SISO training time

suggests its inefficiency. We believe that the training pro-

cess of SISO architecture is more scalable since it allows

larger batch sizes (this batch size is still small enough).

Table 3 LSTM models prediction performance using the test dataset

Test name Data set NSE MAE RMSE SDbias qO;M DISP Bias FMS (%) FHV (%) FLV (%) FMM (%)

SSIO Test 0.943 132.7 614.9 421.0 0.982 443.4 - 65.32 - 21.1 - 16.5 - 64.7 2.6

Test no Harveya 0.936 72.0 242.0 - 47.8 0.971 237.1 - 5.42 - 20.2 - 0.8 - 67.0 2.4

SISO 12 Test 0.803 250.0 1145.0 768.1 0.923 847.4 - 54.96 - 88.0 - 30.3 - 250.9 - 9.8

Test no Harvey 0.887 146.9 322.7 - 20.4 0.946 318.5 47.28 - 87.3 - 5.0 - 256.0 - 10.1

SISO 24 Test 0.898 191.5 822.4 541.6 0.964 617.3 - 43.93 - 81.0 - 21.6 - 198.7 - 6.7

Test no Harvey 0.921 114.9 269.5 - 25.2 0.962 266.4 32.49 - 80.9 - 3.1 - 203.0 - 7.0

SISO 48 Test 0.928 163.0 694.1 445.1 0.974 531.3 - 38.48 - 48.9 - 15.9 - 128.4 - 2.6

Test no Harvey 0.914 96.2 281.5 - 80.4 0.964 268.9 22.71 - 50.1 1.4 - 131.6 - 2.8

SISO 168 Test 0.935 154.9 655.5 362.1 0.974 545.8 - 25.36 - 52.0 - 16.3 - 186.0 - 4.9

Test no Harvey 0.934 96.0 245.8 - 11.6 0.968 243.7 30.08 - 52.5 - 6.2 - 190.2 - 5.2

aSince Hurricane Harvey was an unseen event, the test dataset was also reported without this event

Fig. 4 a Box plot (outliers are not shown) and b flow duration curve

(FFC) of test cases for all tested architectures and the observed

discharge
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However, as the length of time window increases, the extra

computation required is going to offset the benefit of

scalability at some point. Particularly, during the training

of SISO168, we had to reduce the early stopping and

maximum training epochs so that the training could be

completed within the 24 h limits on TACC. Moreover, the

longer time window means a larger memory requirement,

which restricts the training batch size. For example, setting

the batch size to 4096 for SISO168 will exceed the GPU

memory limit.

5 Conclusion

In this study, we have shown the superiority of synced

sequence input and output (SSIO) LSTM architecture for

hydrologic analysis over existing methods that use

sequence input single output (SISO) architecture. The

experimental results from real-world hydrologic data vali-

dated that SSIO architecture is not only more accurate but

also consumes less computational resources. The

advantage of SSIO architecture is especially significant

under scenarios where fine temporal resolution is required.

Hydrological related evaluation metrics show that the SSIO

method has better performance from the hydrologic per-

spective. Moreover, our results show that particular rainfall

events could affect the runoff process in the test watershed

for at least a week. Thus, careful treatment of the long term

dependency is necessary for fine temporal resolution RR

modeling. To this end, we suggest that SSIO is a more

suitable architecture for RNN-based RR modeling.
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Table 4 LSTM models

prediction performance for

historically large events in

Brays Bayou

Test Data set NSE MAE RMSE ETPeak EQPeak (%)

SSIO 2016 Eventa 0.988 436.1 668.5 0.5 1.8

Harveyb 0.922 1891.6 3105.7 5.25 - 2.5

SISO 12 2016 Event 0.885 1141.1 2111.2 0.75 5.6

Harvey 0.708 3239.1 6026.3 4 - 16.5

SISO 24 2016 Event 0.973 724.9 1020.7 0.5 3.3

Harvey 0.854 2415.0 4264.3 5.75 - 11.3

SISO 48 2016 Event 0.987 464.7 707.2 2 3.4

Harvey 0.902 2101.5 3486.7 5.25 - 13.3

SISO 168 2016 Event 0.988 434.5 694.9 4.25 - 2.3

Harvey 0.910 1863.9 3337.6 5.5 21.1

aTax Day Flood (2016) was the largest event in the validation dataset
bHurricane Harvey (2017) was the largest event in the test dataset

Fig. 5 LSTM model predictions

for Hurricane Harvey compared

to the observed values
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