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Abstract
Proton exchange membrane fuel cell (PEMFC) is considered as propitious solution for an environmentally friendly energy

source. A precise model of PEMFC for accurate identification of its polarization curve and in-depth understanding of all its

operating characteristics attracted the interest of many researchers. In this paper, novel meta-heuristic optimization

methods have been successfully applied to evaluate the unknown parameters of PEMFC models, particularly Harris

Hawks’ optimization (HHO) and atom search optimization (ASO) techniques. The proposed optimization algorithms have

been tested on three different commercial PEMFC stacks, namely BCS 500-W PEM, 500W SR-12PEM and 250W stack,

under various operating conditions. The sum of square errors (SSE) between the results obtained by the application of the

estimated parameters and the experimentally measured results of the fuel cell stacks was considered as the objective

function of the optimization problem. In order to validate the effectiveness of the proposed methods, the results are

compared with that obtained in studies. Moreover, the I/V curves obtained by the application of HHO and ASO showed a

clear matching with data sheet curves for all the studied cases. Finally, PEMFC model based on HHO technique surpasses

all compared algorithms in terms of the solution accuracy and the convergence speed.

Keywords Fuel cell modeling � Parameter estimation � Meta-heuristic algorithms

1 Introduction

The greenhouse gases and the depletion of fossil fuels have

provoked the governments and industries to invest more in

renewable energy sources (RESs) such as PV, wind, tidal

and wave. Utilizing such new RES into power grids takes

new trends. It can be harnessed as a smart micro-grid or

can be integrated as an isolated standalone AC–DC power

grid [1]. However, due to its stochastic nature and during

load peak hours, backup supports are needed. Fuel cells are

an elegant choice which can play an important role in such

upcoming power grids.

Since 1990, fuel cell development has progressed

rapidly. Car manufactures and heating firms have discov-

ered the technology and aim to benefit from its positive

image. Fuel cell operation is based on chemical reaction

that occurs under controlled conditions. A fuel cell consists

of an electrode and a cathode with an electrolyte between

them. The anode is fed by pure hydrogen (H2) or a flamed

gas containing hydrogen, while oxygen (O2) or air is fed to

the cathode. Depending on electrolyte, gases used as a fuel

and the operating temperature, there are various classifi-

cations for the fuel cells. The polymer electrolyte fuel cell

(PEFC) and proton exchange membrane fuel cell (PEMFC)

are the most commonly used types. Its operating temper-

ature is around 80 �C, and it can run on with normal air and

reformed hydrogen as a fuel [2].
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The mathematical model of the fuel cell is considered as

the milestone on which the designing and testing of the fuel

cell can be performed in an appropriate way. Moreover, a

good mathematical model is essential to move forward the

integration of the fuel cell besides supporting the designers

with more information about the physical phenomena

occurring inside it. The electrochemical model of the fuel

cell has essential empirical and semiempirical equations

that depend on a combination set of unknown parameters.

The inherited coupled parameters make the modeling of a

fuel cell more difficult, which motivate the researcher to

search for a suitable solution. Due to its sufficient way to

obtain optimum solutions for complicated problems, meta-

heuristics can be adapted to provide robust parameter

estimation for fuel cell modeling. From this fact, the no-

free-lunch theorem has made a cogent remark that is

employed by several optimization techniques to solve

various engineering optimization problems [3, 4].

The adaptive differential evolution algorithm (ADE) is

one of the competitive methods which have been used for

solving the parameter estimation for PEMFC [5]. The main

contribution of the proposed ADE method is to decrease

the premature convergence and increase search efficiency.

A hybrid adaptive differential evolution is introduced in

[6]. It is a combination set between biological genetic

strategy and bee colony foraging method. The first method

enhances the parametric scaling for dynamic crossover

probability, while the former method improves the weak

local search. Hence, the ADE enhances the performance of

the optimization techniques. A grouping-based global

harmony search algorithm (GGHS) has been adopted for

obtaining a precise estimation for PEMFC parameters as

reported in [7]. The algorithm performance was compared

with different methods such as particle swarm optimization

(PSO) and seeker optimization algorithm (SOA). From

comparison, it had been concluded that the GGHS platform

exhibits better performance than other algorithms [7]. The

genetic algorithm has been applied for parameter estima-

tion of PEMFC [8–10]. In [8], a new formulation based on

genetic algorithm (GA) is used to deal with fuel cell

parameter evaluation. The main advantage of this method

is lower complexity, less time consumption, enhancing

accuracy and ease of implementation. A hybrid combina-

tion set between teaching learning-based optimization

method (TLBO) and differential evaluation algorithm (DE)

is introduced in [11] to obtain a proper estimation for the

parameter model of PEMFC. The TLBO-DE performance

is compared with different optimization algorithms. The

TLBO-DE proves its accuracy and robustness, besides its

ability to obtain optimum solution with lesser computation

time. The gray wolf optimization (GWO) algorithm is used

for identifying the PEMFC model parameters [12]. An

experimental test is performed to prove a superior

performance for GWO to other optimization methods such

as antlion optimizer (ALO) and dragonfly algorithm (DA).

New meta-heuristic approaches have been employed to

adapt the PEMFC model parameter such as grasshopper

optimization algorithm (GOA), salp swarm optimizer

(SSO) and shark smell optimizer (SSO) [13–15]. The

advantages of these methods are better convergence to

optimum solution, tuning its controlling parameters with

low effort of computation and faster process execution. In

[16], JAYA algorithm was deployed to estimate the

PEMFC parameters effectively. Compared to other opti-

mization techniques, JAYA has better convergence time,

accuracy and stability. In [17], the cuckoo search (CS)

algorithm is used to obtain the parameters of the PEMFC.

Author has proposed an explosion operator to fine tune the

step size of the CS. The cuckoo search algorithm with

explosion operator (CS-EO) proves its ability to avoid

precipitate convergence and enhances the overall perfor-

mance of the CS. Moreover, the application of multi-ob-

jective optimization algorithms of multi-objective genetic

algorithm to handle the parameter estimation for PEMFCs

has been discussed in [18]. All these algorithms are pre-

sented and applied for estimating the parameters of the

PEMFC model for improving the estimation accuracy.

However, most of these works could not strengthen the

estimation accuracy. Therefore, it is necessary to present

and validate recent methods which have the ability to

accurately estimate the parameters of the PEMFC model

with good convergence characteristics.

Recently, a contemporary optimization method has been

proposed to solve complicated problems; this method is the

atom search optimization (ASO) method. It is a simple

structure method. Its advantages underlying, fewer con-

trolling parameters, self-adaption to its parameters, can be

adapted easily with other methods to obtain better con-

vergence for optimal solutions [19]. However, this method

is not deeply applied for solving electrical engineering

problems. Moreover, one of the outstanding optimization

techniques that have been discovered not a long time ago is

the Harris Hawk optimization (HHO). Its performance is

driven from the behavior of predator birds (‘‘This species is

called Harris’s hawk (Parabuteo unicinctus), but the algo-

rithm is Harris Hawks Optimization algorithm’’) [20]. It

has a superior performance to act with the global opti-

mization problems rather than the other optimization

techniques. It possesses better exploration for the optimum

solution without getting stacked to the local search.

In this paper, HHO and ASO have been used for esti-

mating the parameters of a number of commercial proton

exchange membrane fuel cells. To validate the effective-

ness of the ASO- and HHO-based optimization methods,

comparisons and different operating scenarios have been

studied. The novelty in this work includes the
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implementationof twounprecedentedoptimizationalgorithms,

namely HHO and ASO, for defining the equivocal parameters

of fuel cell model and a comprehensive comparison with other

competitive techniques provided in the literature.

2 Problem formulation

2.1 Basic physical operation

Fuel cells are considered as a direct method on converting

the chemical energy into electrical energy. The construc-

tion of a typical proton exchange membrane (PEM) fuel

cell is described in Fig. 1. As seen from the figure, the

PEM fuel cell model comprises two electrodes (anode and

cathode), between which a catalyst and a membrane layers

are stacked. In addition, at the anode and cathode sides,

two channels are used for supplying hydrogen and air,

which will be diffused through the electrodes.

A simple way for understanding the base operation of

the fuel cell is to say that the hydrogen gas is being ‘‘burnt’’

or combusted in the simple chemical reaction described as

follows [21]:

2H2 þ O2 ! 2H2O ð1Þ

However, in this case, instead of heat energy being

released, electrical energy is generated. The reaction takes

place at the anode and cathode and can be declared as

follows:

At the anode of the fuel cell, the hydrogen gas ionizes,

releasing electrons and creating H? ions (or protons).

2H2 ! 4Hþ þ 4e� ð2Þ

This reaction releases electrical energy presented by the

negative electrons e-. At the cathode side, oxygen reacts

with the electrons which are taken from the injected air at

the electrode, and the H? ions produced from the elec-

trolyte, to finally form water.

O2 þ 4e� ! 2H2O ð3Þ

2.2 Mathematical model of PEMFC

An electrochemical-based model for PEMFC has been

adopted by Amphlett et al. [22], which considered a number

of fuel cellsNcells connected in series to form a fuel cell stack

system. Thismodel is a helpful tool to engineers interested in

evaluating the performance of PEMFC and optimizing the

system parameters. The output voltage across the terminals

of the fuel cell stack can be presented as follows [6]:

VFc ¼ Ncells � ENernst � Vact � Vohmic � Vconð Þ ð4Þ

where ENernst represents the fuel cell reversible voltage in

an open circuit electrodynamic balance and is calculated

using (5) [6–8]. Vact presents the activation voltage drop

caused by the kinetics of the chemical reactions around the

surface of the electrodes, which causes a sharp drop in the

I/V polarization curve of the fuel cell stack at lower cur-

rents [23]. Vohmic presents the ohmic voltage drop, which

results from the resistance of transferring the protons and

electrons in the electrolyte. For intermediate currents, the

ohmic voltage drops smoothly and linearly as a result of the

ohmic losses. Vcon is the concentration voltage drop, which

appears due to the sophisticated processes of transport, and

which lets the output voltage of the fuel cell fall sharply

another time at higher currents [24].

ENernst ¼ 1:229� 0:85� 10�3 T � 298:15ð Þ þ 4:3085

� 10�5 � T ln PH2
ð Þ � 1

2
ln PO2
ð Þ

� �

ð5Þ

where T is the operating temperature of the fuel cell in

Kelvin; PH2
and PO2

denote for the partial pressures of

hydrogen and oxygen, respectively. The partial pressure of

the gases depends on the nature of the components of the

chemical reaction. According to [19], the partial pressures

can be estimated as follows.

Fig. 1 Electrode reactions and

flow of charge in fuel cell
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If the components of the chemical reaction are air and

hydrogen, then according to [19], the partial pressure of

each reactant can be estimated by the following formulas:

PN2
¼ 0:79

0:21
PO2

ð6Þ

where

PO2
¼ Pc � RHcP

sat
H2O

� PN2
� exp

0:291 Ifc=A

� �
T0:832

0
@

1
A ð7Þ

The saturation pressure of the water vapor Psat
H2O

is

estimated by the following expression [20]:

log10 Psat
H2O

� �
¼ 2:95� 10�2 T � 273:15ð Þ � 9:18

� 10�5 T � 273:15ð Þ2þ1:44

� 10�7 T � 273:15ð Þ3�2:18 ð8Þ

when the reactants are oxygen and hydrogen, and then,

PO2
¼ RHcP

sat
H2O

exp
4:192 Ifc=A

� �
T1:334

0
@

1
A�

RHcP
sat
H2O

Pa

0
@

1
A

�1

�1

2
64

3
75 ð9Þ

The partial pressure of hydrogen PH2 in both conditions

can be calculated from the following expression [19]:

PH2
¼ 0:5RHaP

sat
H2O

exp
1:635 Ifc=A

� �
T1:334

0
@

1
A�

RHaP
sat
H2O

Pa

0
@

1
A

�1

�1

2
64

3
75

ð10Þ

where RHc and RHa are the relative humidity of vapor at

the cathode and anode, respectively; Pa and Pc are the

channel pressure (atm) at the anode and cathode, respec-

tively; PN2
is the partial pressure of nitrogen at the flow

channel of gas at the cathode (atm); and A is the active

surface area of the membrane.

The activation voltage drop Vact can be determined as

follows [8]:

Vact ¼ � n1 þ n2T þ n3T ln CO2
ð Þ þ n4T ln Ifcð Þ½ � ð11Þ

where n1, n2, n3, n4 present semiempirical coefficients; Ifc
is the output current from the fuel cell stack; and CO2

is the

concentration of oxygen at the surface of the cathode

(mol cm-3) and is calculated as [20]:

CO2
¼ PO2

5:08� 106 � e� 498=Tð Þ ð12Þ

The ohmic loss Vohmic is calculated depending on the

fundamentals of Ohm’s law and directly depends on the

current density.

Vohmic ¼ Ifc RM þ RCð Þ ð13Þ

where RM and Rc present the resistance of the membrane

and the equivalent resistance that the protons face when

transported through the membrane and it is considered as a

constant value [19, 20]. Accordingly, the resistance of the

membrane surface can be given from the following

expression:

RM ¼ qMl
A

ð14Þ

where l denotes the effective thickness of the membrane

surface (cm), A is the area of the membrane surface (cm2),

and qM denotes the resistivity of the membrane against the

flow of electrons (X cm) and is calculated empirically for

Nafion membrane from the following expression [22–24],

qM ¼
181:6 1þ 0:03 Ifc

A

� �
þ 0:062 T

303

� �2 Ifc
A

� �2:5h i
k� 0:634� 3 Ifc

A

� �� 	
� exp 4:18 T�303

T

� �� 	 ð15Þ

where k denotes to an adjustable parameter, which indi-

cates the water content of the membrane material. The

value of k can be adjusted between 13 and 24 [6, 7].

The last part of these losses is the concentration voltage

drop Vcon, which appears due to the changes in the con-

centration of hydrogen and oxygen or fuel crossover and is

calculated according to the following expression:

Vcon ¼ �b ln 1� J

Jmax


 �
ð16Þ

where b denotes the adjusting parametric coefficient; J and

Jmax denote the current density and the maximum current

density (A cm-2), respectively.

2.3 Objective function

From the mathematical expressions described by Eqs. (4–

16), it is obviously noticed that the operation and perfor-

mance characteristics of the PEMFC stack system origi-

nally depend on a number of parameters. A part of these

parameters are not available in the data sheet of the man-

ufacturer and have to be carefully estimated to guarantee

an accurate representation of the PEMFC, which gives

results that match with experimental data. After the closer

study of the above-mentioned equations, it is found that a

set of parameters (n1, n2, n3, n4, b, Rc and k) are not rec-

ognized in the data sheet and have to be extracted. The

degree of matching between the model of the PEMFC and

the experimental data is obtained by calculating the dif-

ferences between the output voltage of the proposed model

and that measured experimentally under different operating

currents. In this paper, the sum of squared errors (SSE)

between the measured values of voltage and the values of

output voltage of the PEMFC model is considered as the

objective function (OF). The objective function to mini-

mize the SSE is commonly used in many studies [5, 6, 13]

and is expressed by
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OF ¼ min SSEðXÞ ¼
XN
i¼1

Vmeas � Vestð Þ2 ð17Þ

The objective function of Eq. (17) is ruled by the fol-

lowing constraints:

nkmin � nk � nkmax; k ¼ 1 : 4

bmin � b� bmax

RCmin �RC �RCmax

kmin � k� kmax

ð18Þ

where X is a vector of the seven unknown parameters that

have to be determined, Vmeas is the output voltage obtained

experimentally from actual PEMFC, Vest is the output

voltage obtained from the proposed model, and N is the

length of the experimental data series used for validation.

Harris Hawks optimization (HHO) and atom search opti-

mization (ASO) methods are proposed for determining the

optimal values of these parameters of the PEMFC model to

give a high agreement with the results of the actual fuel cell

stacks.

3 Harris’ Hawks Optimization (HHO)

The proposed HHO algorithm consists of two stages: The

first stage is pertinent to the exploration of the preys (i.e.,

the rabbits). In this stage, the Harris’ Hawks start searching

for the prey, and then, they surprise the prey with different

striking and batting techniques. Since the HHO operation

depends on analyzing the behavior of the birds population,

it can be applied to any optimization problem, and here, it

is utilized for the estimation of PEMFC parameters. Fig-

ure 2 shows a detailed overview of the HHO implemen-

tation [20].

By animating the real behavior that the Harris’ Hawks

can perform in the nature, the action taken by the HHO

during the exploration stage can be expected. In HHO

algorithm, the Harris’ Hawks are the feasible solutions that

can be obtained and the best solution which tracks and

captures the prey firstly is chosen as the optimal solution.

In HHO algorithm, the Harris’ Hawks are standing on

random locations and they start waiting for observing a

prey; usually, this action is performed through two possible

tactics. The first tactic is performed when the Harris’

Hawks stand on a place or location which is near to other

family members; this action gives them better chance to

attack and capture the prey. There is a factor (q) which is

relevant to this tactic which specifies the distance between

the family members of the hawks which take a value of

q\ 0.5.

The second standing tactic is performed when the Har-

ris’ Hawks stand on random locations; for example, on

very tall trees, but they are still located within a specified

range, and in this case, the q factor gets a value of q[ 0.5.

Both standing tactics can be expressed mathematically

as follows [20, 25]:

X t þ 1ð Þ ¼ Xrand tð Þ � r1 Xrand tð Þ � 2r2X tð Þj j q� 0:5
Xrabbit tð Þ � Xm tð Þð Þ � r3 LBþ r4 UB� LBð Þð Þ q\0:5

�

ð19Þ

where X t þ 1ð Þ is the position of Harris’ Hawks in the next

iteration, Xrabbit tð Þ is the position of the prey, X tð Þ is the

current location of the Harris’ Hawks, and r1, r2, r3, r4, q

are arbitrary numbers between 0 and 1 to simulate the

random allocations of the Hawks and which are updated for

each iteration. LB and UB are the lower and upper bands of

the subjected variables and Xrand tð Þ is a Hawk which is

selected randomly from the population, and Xm tð Þ is the

intermediate position of the Hawks in the population. The

intermediate location of the Hawks can be evaluated by:

Xm tð Þ ¼ 1

N

XN
i¼1

Xi tð Þ ð20Þ

where Xi tð Þ is the position of the individual Hawk in iter-

ation t and N refers to total Hawks number. Usually, the

prey escaping energy decreases by time. To model this

action, the rabbit’s energy can be evaluated by:

E ¼ 2Eo 1� t

T

� �
ð21Þ

where E is the rabbit’s escaping energy, T is the highest

number of iterations to be executed, and Eo is the initial

value of stored energy. In HHO algorithm, Eo ranges from

- 1 to 1 for each iteration.

There are four feasible methodologies which can be

utilized to model the sudden attack action. As the preys are

usually trying to escape, thus via supposing that r

q≥0.5

q˂0.5

r≥0.5

Exploration Exploitation

Weak blockade

Strong blockade

r˂0.5Weak blockade w
ith

Contin
uous fa

st 

diving

Stro
ng blockade w

ith

Contin
uous fa

st 

diving

1=

1≥ 5
≥ 5

〈

Landing on the 

positions of other 

hawks

Landing on 

Random

positi
ons

Fig. 2 Implementation stages of HHO algorithm
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represents the possibility of escape for the prey which takes

the value of r\ 0.5 for unsuccessful escaping or r� 0:5

before the sudden attack on the prey. Anyhow, as the prey

acts, the Hawks will exert strong or weak attack to capture

this prey [26]. To represent mathematically the transition

action from the exploration to the exploitation stage, the

parameter E is used. Thus, when Ej j � 0:5, the exerted

force will be lower and the weak attack is present, while if

Ej j\0:5, then a strong attack is performed.

• When Ej j � 0:5 and r� 0:5, the prey is still possessing

sufficient energy to escape through performing random

jumping actions, but it finally fails to escape. During the

escaping action, the Hawks circulate with low force

around the prey to make it more exhausted, and then,

they take the decision of sudden attack. This behavior

can be described mathematically by [20]:

X t þ 1ð Þ ¼ DX tð Þ � E JXrabbit tð Þ � X tð Þj j ð22Þ
DX tð Þ ¼ Xrabbit tð Þ � X tð Þ ð23Þ

where X tð Þ is the position difference between the prey

and the current position in iteration t, J ¼ 2 1� r5ð Þ is
used to express the random jumping strength of the prey

within the escaping area, and r5 is a random value

between 0 and 1. The J value is randomly changed for

each iteration to imitate the actual prey jumping

motions.

• When Ej j\0:5 and r� 0:5, the stored energy of the

prey starts to be exhausted more and its motion starts to

slow down and at this instant, the Hawks start to

perform the circulation and after that, a sudden attack is

performed to catch the prey, and accordingly, the

current Hawks positions are updated according to the

following expression

X t þ 1ð Þ ¼ Xrabbit tð Þ � E DX tð Þj j ð24Þ

• When Ej j � 0:5 and r\0:5, the prey is still possessing

enough energy which can be used for escaping, while

the weak attack action is still acting on. Thus, this case

is more sophisticated than the previous state, and to

model it, the Levy flight (LF) principle is utilized [27].

The LF principle is used to simulate the actual zigzag

motions of the rabbits (preys). In order to solve the

issue of having weak attack with the stored prey energy,

the Hawks are supposed to be capable of identifying

their next movement toward the prey using the follow-

ing expression

Y ¼ Xrabbit tð Þ � E JXrabbit tð Þ � X tð Þj j ð25Þ

At this time, the Hawks start to dive using the LF pat-

terns according to the following expression

Z ¼ Y þ S � LF Dð Þ ð26Þ

where S is a vector with size 1 * D, D is the dimension of

the optimization problem, and LF is the Levy flight pattern

function which can be evaluated as given in [27, 28] by

LF xð Þ ¼ 0:01 � u � r
mj j

1
b

;

where r ¼
C 1þ bð Þ � sin pb

2

� �

C 1þb
2

� �
� b � 2

b�1
2ð Þ

0
@

1
A

1
b ð27Þ

where u and m are values selected randomly within a range

from 0 to 1, and b is a constant with value of 1.5.

In conclusion, the adopted strategy for updating the

Hawks position during the weak attack stage can be for-

mulated mathematically by

X t þ 1ð Þ ¼ Y
Z

�
if F Yð Þ\F X tð Þð Þ
if F Zð Þ\F X tð Þð Þ ð28Þ

where Y and Z are obtained using (25) and (26).

• When Ej j\0:5 and r\0:5, the rabbits stored energy is

exhausted, while the Hawks are acting on the rabbits

with strong attack force until the prey is captured. This

action can be represented mathematically by [25]:

X t þ 1ð Þ ¼ Y
Z

�
if F Yð Þ\F X tð Þð Þ
if F Zð Þ\F X tð Þð Þ ð29Þ

where Y and Z under this case are calculated by

Y ¼ Xrabbit tð Þ � E JXrabbit tð Þ � Xm tð Þj j ð30Þ
Z ¼ Y þ S � LF Dð Þ ð31Þ

where Xm tð Þ is calculated using (20). The HHO

implementation procedure can be summarized in the

flowchart shown in Fig. 3.

4 Atom search optimization algorithm

The proposed ASO technique is considered as physics-

based algorithm combined with swarm-based characteris-

tics which is concerned mainly with finding the global

optima, and thus, the ASO is designed with the help of

analyzing the molecules dynamics and utilizing a heuristic

algorithm which depends on the preserved population. In

other words, it can be supposed that the operation of the

proposed ASO relying on the search for the global optima

though imitating the motion of the atoms which are con-

trolled by interactivity and reservation forces [19, 29]. The

construction of the ASO technique is very simple, while its

performance is very competent. The ASO is used here to

estimate with high degree of precision the PEMFC
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parameters, and its performance is compared with the HHO

algorithm presented earlier and other previous techniques

presented in the literature. Now, the total force acting on

the ith atom can be calculated through adding all force

components with different weights to each other which

results in [30]:

Start

Initializing a random populationof Hawks 
Xi (i=1, .., N)

Calculate the fitness value of each Hawk

Xrabbit=the position of the 
rabbit (optimal solution)

if |E| ≥ 1

Update the position 
using (29)

if |E| ≥ 0.5

if j>max_iter 

update Hawks depending on the 
upper and lower bounds

i=i+1

J=j+1

i=1

Output the best position

End

No

No

yes

yes

No

No

Update the position 
using (28)

if i<N 
yes

Update the position
using (19)

Yes

Update the initial energy Eo and the 
jumping force J, and then update E 

using (21)

if r ≥ 0.5if r  ≥ 0.5

Update the position 
using (24)

Update the position 
using (22)

yes

No

yes

No

Fig. 3 Flowchart of HHO optimization technique
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Fd
i tð Þ ¼

X
j2Kbest

randjF
d
ij tð Þ ð32Þ

where randj is an arbitrary number ranging from 0 to 1;Kbest

is the first k atomwhich has the best fitness value in the subset

of the atom population. Thus, in the proposed ASO, the

exploration is enhanced during the first iterations through

making each atom interact with the atoms which have better

fitness values corresponding to their k neighbors. Then, the

exploitation is enhanced at the late stages of iterations through

making the atoms interact with few numbers of best fitted

atoms. Thus, the K factor by which the interaction can be

measured is expressed by

K tð Þ ¼ N � N � 2ð Þ �
ffiffiffiffi
t

T

r
ð33Þ

where N denotes the total number of atoms forming an

atomic structure, t denotes the present iteration, and T is the

total number of iterations. The interaction force due to the

(L–J) potential is themost important variablewhichmanages

themotion of the atoms. The potential energy function iswell

analyzed and represented, and then, the force by which the

atom j effects on the atom i can be expressed by [31]:

Fd
ij ¼ �g tð Þ 2 hij tð Þ

� ��13� hij tð Þ
� ��7

h i r~ij

rij
ð34Þ

where g(t) is a function which is used to modify the depth

and length of the attraction and repulsion regions; hij(t) is

the ratio between the distance between two subsequent

atoms rij, and the scaled distance between them r(t).

hij tð Þ ¼
rij
r tð Þ ð35Þ

g tð Þ ¼ a 1� t � 1

T


 �3

e�
20t
T ð36Þ

where a denotes the depth weight. The dynamic behavior of

function (36) with different g values and with h ¼ r
r from 0.9

to 2 is shown in Fig. 4. It can be noticed that the attraction is

achieved for a range of h from 1.12 to 2 with the equilibrium

line existing at h = 1.12. It can be also noticed that the

attraction is increasing proportionally to h and reaches to its

maximum value at h = 1.24, and then, the attraction starts to

decrease again until it reaches zero at h = 2.

Based upon this, the ASO has to consider two limits:

one for the repulsion with lower limit of h = 1.1 and one

for the attraction with upper limit of h = 1.24 and

accordingly, the value of h can be defined as follows:

hij tð Þ ¼

hmin

rij tð Þ
r tð Þ \hmin

rij tð Þ
r tð Þ hmin �

rij tð Þ
r tð Þ � hmax

hmax

rij tð Þ
r tð Þ [ hmax

8>>>>>><
>>>>>>:

ð37Þ

where hmin and hmax describe the upper and lower limits of

the distance (h), respectively, and determined by the fol-

lowing formula:

hmin ¼ g0 þ g tð Þ
hmax ¼ u

�
ð38Þ

where kbest is the first k atom which has the best fitness

value in the subset of the atom population, while g is a

factor which is responsible for changing the algorithm

behavior from exploration to exploitation and is repre-

sented by

g tð Þ ¼ 0:1� sin
p
2
� t

T

� �
ð39Þ

The length dimension r tð Þ is expressed by

r tð Þ ¼ xij tð Þ;
P

j2Kbest xij tð Þ
K tð Þ

����
����
2

ð40Þ

where g0 and u denote the lower and upper limits,

respectively. g(t) denotes a drift factor to give the algo-

rithm the ability to transform from exploration to

exploitation stage.

One of the most important factors which affect the atom

motion is the geometric constraint. Each atom in the ASO

is tied with the best element through a covalence bond, and

thus, the best atom acts with different forces on the other

atoms, and this action can be described by the following

expression

hi tð Þ ¼ xi tð Þ � xbest tð Þj j2�b2i;best

h i
ð41Þ

where xbest is the location of the best element at the tth

iteration, and bi;best is a constant bond length between the

best element and the specified ith atom. Thus, the devel-

oped constraint force can be evaluated by

Gd
i tð Þ ¼ �c tð Þrhdi tð Þ ¼ �2c tð Þ xdi tð Þ � xdbest tð Þ

� �
ð42Þ

Fig. 4 The behavior of the interaction force function with the scaled

distance (h) under different depth values [29]
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where c tð Þ ¼ we
�20t
T is the Lagrangian multiplier and w is a

weighting factor.

After the determination of geometric constraint and

interaction force, the acceleration of the ith atom in the

population can be evaluated by [29, 30]:

adi tð Þ ¼ Fd
i tð Þ

md
i tð Þ þ

Gd
i tð Þ

md
i tð Þ

¼ a 1� t � 1

T


 �3

e�
20t
T

�
X

j2Kbest

randj 2 hij tð Þ
� ��13� hij tð Þ

� ��7
h i

mi tð Þ

�
xdj tð Þ � xdi tð Þ

� �
x~i tð Þ; x~j tð Þ

�� ��
2

þ be�
20t
T

xdbest tð Þ � xdi tð Þ
� �

mi tð Þ

ð43Þ

where mi tð Þ is the weight of the ith atom at a specified tth

iteration. In addition, the value of mi tð Þ can be determined

by:

mi tð Þ ¼
Mi tð ÞPN
j¼1 Mj tð Þ

ð44Þ

where Mi tð Þ ¼ e
� Fiti tð Þ�Fitbest tð Þ

Fitworst tð Þ�Fitbest tð Þ ð45Þ

where Fiti tð Þ is the fitness value of the ith atom at the tth

iteration, and Fitbest tð Þ and Fitworst tð Þ are the best and worst

fitness values of the atoms at the tth iteration which can be

expressed by

Fitbest tð Þ ¼ min
i2 1;2;...Nf g

Fiti tð Þ ð46Þ

Fitworst tð Þ ¼ max
i2 1;2;...;Nf g

Fiti tð Þ ð47Þ

To clarify more the ASO operation methodology, let’s

express the position and velocity of an ith atom at iteration

(t ? 1)th by

vdi t þ 1ð Þ ¼ randdi � vdi tð Þ þ adi tð Þ ð48Þ

xdi t þ 1ð Þ ¼ xdi tð Þ þ vdi t þ 1ð Þ ð49Þ

Table 2 Parameter fitting

results of BCS 500W based on

ASO and HHO optimization

techniques; the bold results are

the best for HHO

Parameter ASO HHO GWO [12], 2017 SSO [15], 2019 CS-EO [17], 2019

n1 - 1.0432 - 1.09311 - 1.018 - 1.018 - 1.1365

n2 9 10-3 3.6745 3.28041 2.3151 2.3151 2.9254

n3 9 10-5 8.8772 5.67397 5.2400 5.2400 3.7688

n4 9 10-4 - 1.8775 - 1.89666 - 1.2815 - 1.2815 - 1.3949

k 23.3295 20.0436 18.8547 18.8547 18.5446

b 0.016495 0.015148 0.0136 0.0136 0.0136

RC 9 10-4 5.81379 2.25793 7.504 7.5036 8.000

Min. optimal 0.02661 0.014879 7.1889 7.1889 5.5604

Table 1 Parameters of the

commercial PEMFC stacks and

the search range of the unknown

parameters

Datasheet parameters Search ranges

FC stack type BCS 500W SR-12 modular 250W stack Parameter Minimum Maximum

N (cells) 32 48 24 n1 - 1.1997 - 0.08532

A (cm2) 64 62.5 27 n2 9 10-3 0.8 6.00

l (lm) 178 25 178 n3 9 10-5 3.60 9.80

Jmax (A/cm
2) 0.469 0.672 0.680 n4 9 10-4 - 2.60 - 0.954

PH2
(atm) 1 1.47628 1 k 10.00 24.00

PO2
(atm) 0.2075 0.2095 1 b 0.0136 0.5

T (K) 333 323 343 RC 9 10-4 1.00 8.00
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where xi tð Þ represents the position of the ith atom and adi tð Þ
refers to the atom acceleration and vdi tð Þ refers to the atom

velocity. In conclusion, the sequence of implementation for

the ASO algorithm can be summarized as follows:

5 Results

The simulation tests have been carried out to validate the

proposed optimization algorithms (HHO and ASO). Both

algorithms have been applied for estimating the parameters

of PEM fuel cells. The two algorithms have been tested for

estimating the parameters of three different modules of fuel

cells, namely BCS 500W, SRR_12 modular and 250W

stack. The data sheet parameters of these commercial

PEMFC stacks are obtained from [6–8, 11, 12] and are

presented in Table 1. Moreover, the estimated model

parameters are n1, n2, n3, n4, b, RC and k in PEMFC. The

upper and lower limits of the unknown parameters for all

case studies are given in [5, 7, 13, 14] and presented in

Table 1 (last three columns in the right). The results of the

two algorithms have been compared with each other and

with those obtained using other techniques from the liter-

ature. Moreover, the optimized parameters using HHO and

ASO methods have been used to estimate the performance

and characteristics of the PEMFC at different operating

conditions. Furthermore, the characteristics have been

compared with the measured data of each module.

For the simulation, a dedicated software program for

fuel cell parameter extraction problem is developed in

MATLAB for HHO and ASO based upon their theories of

operation which are described before. Simulations are

performed using an Intel� core TM i5-4210U CPU,

1.7 GHz, 8 GB RAM Laptop.

5.1 PEMFC of BCS 500W

To test and validate the proposed optimization algorithms,

the proposed algorithms have been applied with the prob-

lem formulation PEM fuel cell of BCS 500W. The selected

BCS 500W is studied because several studies have been

introduced earlier for this purpose, but the majority have

failed in achieving an accurate estimation for the parame-

ters. The results of applying the HHO- and ASO-based

algorithms to estimate the finest values of BCS 500W stack
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Fig. 6 The I/V and I/P curve characteristics of BCS 500W based on

HHO optimization algorithm
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parameters are illustrated in Table 2. As shown from the

table, the results gained by the HHO are better than those

obtained by the ASO technique and also are better than the

other methods from the literature. The convergence curves

of the HHO and ASO are shown in Fig. 5, which reports

that the HHO has the best convergence curve with respect

to the speed of convergence and reaches the best minimum

value of the objective function. From this figure, the HHO

optimization algorithm reaches to a minimum value of

0.014879, while the ASO reaches to its minimum which is

equal to 0.02661. It should be noted the small difference

between the results of the two algorithms. Table 2 shows

the comparison between the estimated parameters of the

PEMFC model using HHO and ASO and other techniques.

To validate more the effectiveness of HHO optimization

algorithm, the obtained results have been used to estimate

the characteristics of the PEMFC by estimating the voltage

and power curves versus the current. Furthermore, the

estimated characteristics have been compared with the

measured one as shown in Fig. 6. The figure shows a very

Fig. 7 Characteristics of BCS 500W with the variation of the temperature and pressure based on HHO optimization algorithm
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good matching between the estimated and measured char-

acteristics. Moreover, the characteristics of the PEMFC

have been plotted at different operating conditions of

pressure of PH2/PO2 of 1.000/0.2075 bar, 1.5/1.0 bar, 2.0/

1.25 and 2.5/1.5 bar; and temperature of 303 K, 313 K,

323 K and 333 K as shown in Fig. 7.

5.2 SR-12PEM 500W

The second case of study is applied to estimate the model

parameters of the SR-12PEM 500W. The parameters and

data specification of the SR-12PEM 500W are listed in

Table 1. The results of the estimated parameters are listed

in Table 3. Also, Table 3 consists of a comparison between

the ASO and HHO algorithms and with the obtained results

by other researchers. From the table, the best solution has

been reached by the ASO and equals 1.0803, while the best

optimal value with the HHO is 1.0678. Moreover, the

table shows that the other researchers with other opti-

mization techniques could not reach the same solution.

Furthermore, a comparison between ASO and HHO with

respect to the convergence characteristics is shown in

Fig. 8. The figure shows that the convergence speed of the

HHO is better than that of the ASO.

The results of the characteristics of SR-12PEM 500W

based on the estimated parameters using HHO and the

experimental data are shown in Fig. 9. The figure shows

Table 3 Parameter fitting

results of SR-12PEM 500W

based on ASO and HHO

optimization techniques; the

bold results are the best for

HHO

Parameter ASO HHO GWO [12], 2017 SSO [15], 2019 SC-EO [17], 2019

n1 - 1.04314 - 0.854307 - 0.9664 - 0.9664 - 1.0353

n2 9 10-3 3.5928 2.41616 2.2833 2.2833 3.3540

n3 9 10-5 7.709345 4.21946 3.40 3.40 7.2428

n4 9 10-4 - 0.9540 - 0.955377 - 0.95400 - 0.9540 - 0.9540

k 15.9375 13.2011 15.7969 15.7969 10

b 0.16905 0.176565 0.1804 0.1804 0.1471

RC 9 10-4 7.9999 3.5029 6.6853 6.6853 7.1233

Min. optimal 1.0803 1.0678 1.517 1.517 7.5753
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Fig. 9 The I/V and I/P curve characteristics of SR-12PEM 500W

based on HHO optimization algorithm
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that the obtained characteristics from the proposed HHO

optimization algorithm introduce high matching degree

with the experimental data. Moreover, due to the explo-

ration characteristics of HHO, which is related to global

search, the HHO keeps improving longer time than ASO.

For more validating, the estimated model based on the

HHO is used for plotting the characteristics at different

operating conditions such as the variation of temperature

and pressure as shown in Fig. 10.

5.3 250W stack

For more justification, the two algorithms of HHO and

ASO have been applied for extracting the model parame-

ters of the 250W stack. The data specifications of the 250W

stack are listed in Table 1. The results of the estimated

parameters are concluded in Table 4. From the table, it is

revealed that the HHO algorithm has the best result with

Fig. 10 Characteristics of SR-12PEM 500W with the variation of the temperature and pressure based on HHO optimization algorithm
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respect to reaching the minimum value of the objective

function. The best optimal value of HHO is equal to

0.64577, while the best value with ASO equals 0.75884.

Also, the table presents a comparison with other techniques

from the literature. From the comparison, the optimal

values of the objective function obtained by the HHO and

ASO are better than the other techniques.

In order to analyze the convergence characteristics of

the two algorithms, the convergence curves of the ASO and

HHO algorithms via iterations are shown in Fig. 11. The

figure shows that the HHO has a better convergence speed

to solve the optimization problem compared with the ASO

technique.

The validation of the results has been proved by plotting

the voltage and power characteristics versus the current as

shown in Fig. 12. From the figure, the precise matching

between the estimated characteristics and the experimental

data of the fuel cell can be easily investigated. Moreover,

the characteristics of the module with the variation of the

temperature and pressure are shown in Fig. 13.

6 Conclusion

A PEMFC is a nonlinear complicated dynamic system,

which involves many interrelated parameters. This paper

comprises the formulation of an optimization problem,

which is devoted for optimal identification of the seven

unknown parameters of the PEMFC. The HHO and ASO

optimization techniques have been utilized for solving the

optimization problem, while the fitness function is pre-

sented by the sum of square errors (SSE) between the

Table 4 Parameter fitting

results of 250W stack based on

ASO and HHO optimization

techniques; the bold results are

the best for HHO

Parameter ASO HHO HADE [6], 2015 JAYA [16], 2019 CS-EO [17], 2019

n1 - 1.109267 - 1.10972 - 0.9440 - 0.95200 - 0.8532

n2 9 10-3 3.11831 3.4586 3.0778 3.1000 2.8121

n3 9 10-5 6.176176 8.31679 7.8000 8.000 8.1180

n4 9 10-4 - 1.419328 - 1.51684 - 1.8800 - 1.900 - 1.2623

k 17.65681 22.9454 23.000 23.000 14.4722

b 0.053566 0.0542644 0.032672 0.03270 0.035251

RC 9 10-4 1.000 3.83084 1.000 1.000 1.000

Min. optimal 0.75884 0.64577 15.669 9.9010 8.0665
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actual and estimated models. The proposed methods

introduced high performance with high matching degree

with respect to the measured data of different fuel cell

stacks. The HHO and ASO proved their effectiveness in

reaching the optimal solution in a better way compared

with the results in studies. From the comparison, it is

concluded that the HHO is an accurate method which can

precisely extract the parameters of the PEMFC with dif-

ferent cases of study. Therefore, it is recommended that the

HHO algorithm can be implemented for solving sophisti-

cated highly integrated optimization problems.

From the practical point of view, the estimated model

can be used online with PEMFC for fault diagnosis and

condition monitoring. Moreover, the estimated model also

may be helpful with designing the real-time control

PEMFC systems as well as system analysis. In the future

work, the analysis of the parameter’s variations of the

PEMFC model far from the standard operating conditions

Fig. 13 Characteristics of 250W stack with the variation of the temperature and pressure based on HHO optimization algorithm
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considering the presence of measuring noise should be

performed.
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