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Abstract
Most zero-shot learning (ZSL) methods aim to learn a mapping from visual feature space to semantic feature space or from

both visual and semantic feature spaces to a common joint space and align them. However, in these methods the visual and

semantic information are not utilized sufficiently and the useless information is not excluded. Moreover, there exists a

strong bias problem that the instances from unseen classes always tend to be predicted as some seen classes in most ZSL

methods. In this paper, combining the advantages of generative adversarial networks (GANs), a method based on bidi-

rectional projections between the visual and semantic feature spaces is proposed. GANs are used to perform bidirectional

generations and alignments between the visual and semantic features. In addition, cycle mapping structure ensures that the

important information are kept in the alignments. Furthermore, in order to better solve the bias problem, pseudo-labels are

generated for unseen instances and the model is adjusted along with them iteratively. We conduct extensive experiments at

traditional ZSL and generalized ZSL settings, respectively. Experiment results confirm that our method achieves the state-

of-the-art performances on the popular datasets AWA2, aPY and SUN.
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1 Introduction

Image recognition trained on a large number of labeled

instances can get good results at present, but it takes a lot of

manpower and resources to collect these labeled images.

Especially, it requires experts to give identification for fine-

grained classification. How to complete image recognition

with only a few labeled instances or even some categories

without labels has become a very challenging and realistic

task.

Zero-shot learning (ZSL) [22, 33, 41] is an effective

method to solve the above problem. Zero-shot learning is a

special unsupervised domain adaptation method. Its pur-

pose is to learn a model based on a set of labeled source

data, and then transfer the learned knowledge to the target

domain to identify another set of unlabeled data. In zero-

shot learning setting, the data categories in these two

domains are assumed completely non-overlapping.

Because the source data during training are labeled, we

usually call the classes in source domain as seen classes,

and the classes in target domain as unseen classes. Zero-

shot learning can be divided into traditional ZSL and

generalized zero-shot learning (GZSL), which are called

ZSL and GZSL, respectively. The difference is that, in the

test, ZSL only classifies instances from target domain

without labeled visual samples, while GZSL classifies all

instances from both source and target domains. Zero-shot

learning can also be divided into two categories as induc-

tive ZSL and transductive ZSL. For inductive ZSL, we can

only use the labeled data from source domain for training;

while for transductive ZSL, we can use not only the labeled

data from source domain but also the unlabeled data from

target domain at the time of training. For inductive ZSL,

the predictions of instances from target domain depend

entirely on the knowledge learned from source domain. But

for transductive ZSL, the unlabeled data from target

domain can be used to adjust the trained model iteratively.

Since the unseen classes do not appear at all during the

training, we need some auxiliary information, that is,
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semantic description. These auxiliary information can be

semantic attributes vectors [1, 8], word2vec [29] and

human gaze [18], etc. For example, semantic attributes

vectors define some common characteristics between the

seen and unseen classes. If both the seen and unseen classes

are animals, the semantic attributes vectors will be fur,

color, and stripes, etc. By semantic attributes vectors, the

visual features from the seen or unseen classes can be

bridged. Thus, only auxiliary information are needed,

which greatly reduces the collection difficulty of labeled

data.

In the semantic embedding research direction, some of

existing zero-shot methods map the visual features to the

semantic space [4, 9, 21, 33]. But in this way, they reduce

the expression ability of visual information. Some methods

map the semantic features to the visual space [20, 35, 44].

However, the expression ability of semantic attributes

vectors is reduced and the noise will be introduced that are

not visual descriptions at all [6, 7, 32]. The remaining

methods project the visual and semantic features into a

common space [5, 26, 45] and align them. However, some

simple and rough alignments, such as the shortest Eucli-

dean distance between them, are usually adopted. We call

such alignment hard alignment. The visual and semantic

feature distributions by such hard alignments are not well

aligned at the overall level. Meanwhile, there exist an

obvious bias problem when incorrectly bridging visual and

semantic information as shown in Fig. 1. When classifying

instances from target domain, they are always predicted to

be some seen classes in source domain, which is a serious

issue that exists in many zero-shot learning methods.

In order to solve the above mentioned problems, we

propose a bidirectional mapping method. With the bidi-

rectional projections, we can make full use of the infor-

mation from two domains without introducing too much

noise. Motivated by the idea of cycleGAN [47], a couple of

GANs [13] are used to solve the problem of hard align-

ment. Two generators realize the bidirectional mappings

between the visual features and semantic features. At the

same time, we remap the information that has been mapped

to another domain back to the domain it belongs to, and

compare it with the information before the mapping. The

error between them is called cycle loss. Cycle loss and

classification task loss further guarantee that the important

information is kept and the alignment is correct. In order to

solve the bias problem better, a transductive method is

proposed to use pseudo-labels for model correction itera-

tively. At the test phase, we do not give a classification

result based on the features in only one space. The features

in both the visual and semantic feature spaces are com-

bined to give a decision. In summarization, this paper has

the following contributions:

1. A transductive method of bidirectional projections is

proposed. The method makes the visual features more

consistent with the corresponding semantic features

and greatly weaken the bias problem. Extensive

experimental results show that our model achieves

the state-of-the-art performance at both ZSL and GZSL

settings.

2. We propose a new zero-shot classifier based on the

bidirectional projection method. The classifier combi-

nes both visual and semantic features to give the final

prediction, which makes full use of visual and semantic

information to reduce discriminant bias.

The reminder of the paper is arranged as follows. Sec-

tion 2 introduces the related works of transductive zero-

shot learning and zero-shot learning based on GANs. We

detail our BGT model in Sect. 3. The experimental results

are shown in Sect. 4 and conclusion is given in Sect. 5.

Fig. 1 Visualization of bias problem. The labeled instances are from

seen classes at the stage of training, so the unseen instance will often

be predicted as a similar seen class. As shown in the figure, the bobcat

from unseen classes has a high probability of being predicted as tiger

which is from seen classes
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2 Related work

Our approach is a transductive method based on GANs, so

we will firstly introduces some common transductive

methods and then some GAN-based methods. At the same

time, the similarities and differences between these meth-

ods and ours will be introduced.

2.1 Transductive zero-shot learning

Unlike the standard ZSL, transductive ZSL uses target

domain data during training phase to reduce the ubiquitous

domain offset problem. It does not violate the ‘‘zero-shot’’

setting because the data from target domain are unlabeled.

The transductive methods use unseen instances in mul-

tiple ways. Some methods first train a model with source

data, then use the trained model to get pseudo-labels of the

instances from target domain. On this basis, they use the

obtained pseudo-labels to further adjust the

model [3, 15, 34, 46]. Our method follows this research

line. It will also use pseudo-labels and unseen instances to

further train our model after getting the trained model to

make the model more suitable for unseen instances.

However, the performance of this approach largely

depends on the predictive ability of the trained model on

unseen instances. So the unseen instances are also used in

the phase of training in our method. We project the visual

features of the seen instances to the semantic domain and

then project them back to the visual domain. And it is

required that the distance between the projected visual

feature and the original visual feature should not be too

large. In this way, the model also learns how to map the

features of the unseen instance without losing information,

thus, the model could predict more accurate pseudo-labels

on unseen instances. Thereby the overall effect of the

model is improved.

Other methods are devoted to making the model more

adaptable to the target domain through special training or

prediction methods. In [10], classifications of the instances

from unseen classes are implemented in two steps. First,

canonical correlation analysis (CCA) is used to project

visual features and semantic features into a multi-view

embedding space, and then unseen unlabeled instances are

used to construct a hypergraph to achieve transfer from the

seen classes to the unseen classes. Kodirov et al. [20]

proposes to use a space shared by the seen and unseen

classes to improve the performance of the model on the

unseen class. Recently, Verma and Rai [39] proposes to

learn the data distribution from the attributes of the seen

and unseen classes, and then use unseen instances to adjust

the parameters of the distribution.

2.2 Zero-shot learning based on GANs

In recent years, a lot of research related GANs has

appeared [14, 27, 28], and GANs has performed well in

many scenarios [11, 12, 25, 43]. At the same time, some

GAN-based zero-shot learning methods are proposed. In

[30, 42, 48], semantic attributes vectors and random noise

are used directly to generate unseen instances. But simply

using noise and semantic attributes vectors to generate

unseen instances has great uncertainty because of GANs

property. Tong et al. [38] uses GANs to generate samples

with specified semantic attributes vectors to mitigate the

bias problem. In order to solve the problem of generative

diversity and reliability, LisGAN [24] introduces soul

samples and make all generated unseen instances similar to

them.

Different from these methods, our method does not use

GANs for feature generation, but uses GANs for feature

alignment. That is, a bidirectional generation motivated by

cycleGAN [47] is used in our method to project visual and

semantic information to each other’s domain. Then,

through adversarial learning, our model makes the pro-

jected features and the original features follow a similar

distribution and align them.

3 The proposed approach

3.1 Problem definition

Suppose that we have a set of Ns labeled images Ds ¼
fðxi; yi; ziÞgNs

i¼1 from Cs seen classes Ys ¼ f1; 2; . . .;Csg,
where xi 2 Xs � Rm�Ns is the visual feature of the ith

instance in Ds and m is the dimensionality of visual feature

space; yi 2 Ys is the corresponding label and zi 2 Zs �
Rn�Cs is the corresponding attributes vector where n is its

dimension. There is a corresponding relationship between

Ys and Zs; each column of Zs represents a semantic attri-

butes vector corresponds to a class in Ys. We also have a set

Du ¼ fðxj; yj; zjÞgNu

j¼1 from Cu unseen classes

Yu ¼ fCs þ 1;Cs þ 2; . . .;Cs þ Cug, where xj 2 Xu �
Rm�Nu is the visual feature of the jth instance in Du; yj 2 Yu

and zj 2 Zu � Rn�Cu is the corresponding label and

semantic attributes vector. While yj 2 Yu and zj 2 Zu �
Rn�Cu are unavailable during training. Similarly, there is a

corresponding relationship between Yu and Zu. The goal of

ZSL problem is to learn a function f : Xu!Yu. For the

GZSL problem, the goal is to learn a function

f : fXs;Xug!Ys[Yu. It is worth noting that Ys\Yu ¼ ;.
Table 1 shows the main notations used here in after.
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3.2 Bidirectional generative transductive (BGT)
model

3.2.1 Overall idea

The overall framework is shown in Fig. 2. First, the visual

features of both the source and target data are extracted by

a convolution neural networks as xs and xu, respectively.

Then semantic attributes vectors are projected into a

semantic space by a function U approximated by a neural

networks. There are two generators Gva and Gav which map

from the visual feature space to the semantic feature space

and vice versa, respectively. The fake semantic and visual

features asfake and xsfake are generated from the source visual

and semantic features xs and as, respectively. Then we

judge whether these are fake by the semantic and visual

feature domain classifiers Da and Dv, respectively. By this

bidirectional projections, the source visual features are

aligned with the semantic features in both the visual and

semantic spaces. For the visual feature of the target data,

we do similar operations which make the visual features of

target data consistent with the semantic features. The

implementation process at this stage is summarized in

Sect. 3.2.6.

In the test phase, we need to combine the divisions in

both the visual and semantic spaces to give final predic-

tions instead of giving judgments only in one space as

before. Next we will describe each part of our model in

details. In Sect. 3.3 we will show how to make further

adjustments to the model using pseudo-attributes vectors of

target samples.

3.2.2 Generator loss

Since in the source dataset the visual features have the

corresponding semantic features, two generators are

designed to realize the bidirectional projections which

Table 1 Notation used in our approach

Notation Description

Ns Number of seen instances

Nu Number of unseen instances

Cs Number of seen classes

Cu Number of unseen classes

m Dimensionality of visual feature space

n Dimension of semantic attributes vectors

Ds Sourse dataset

Xs Seen instance matrix

Xu Unseen instance matrix

Zs Semantic attributes vectors of seen classes

Ys Ground truth label set of seen classes

Zu Semantic attributes vectors of unseen classes

Yu Ground truth label set of unseen classes

k Hyper-parameter

r Self-marking ratio

Fig. 2 The overall architecture. The symbol - in the circle is the

calculation in Euclidean distance. We train a couple of generative

networks to bidirectionally generate visual features from semantic

features and projected semantic features from visual features,

respectively. In the test phase, by combining the information from

the visual and semantic spaces, the category of a target sample is

predicted
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align visual and semantic features in two spaces. The

generator losses are defined as follows:

LGva
¼ 1

Ns

XNs

i¼1

� logðDaðGvaðxsi ÞÞÞ; ð1Þ

LGav
¼ 1

Ns

XNs

i¼1

� logðDvðGavðUðzsi ÞÞÞÞ ð2Þ

where the function U is a mapping from the semantic

attributes vector zsi to the semantic space and xsi the visual

feature of the ith instance in the source dataset. By defining

loss in this way, we can make the generated feature as

similar as the original feature in the source domain. In the

end, the total loss is

LG ¼ LGva
þ LGav

: ð3Þ

3.2.3 Discriminator loss

The discriminators Da and Dv are used to determine whe-

ther the generated feature is real. The losses of discrimi-

nators are defined as follows:

LDa
¼ 1

Ns

XNs

i¼1

ð� logð1� DaðGvaðxsi ÞÞÞ � logðDaðUðzsi ÞÞÞÞ;

ð4Þ

LDv
¼ 1

Ns

XNs

i¼1

ð� logð1� DvðGavðUðzsi ÞÞÞÞ � logðDvðxsi ÞÞÞ:

ð5Þ

Through these losses, the discriminator can bee learned to

identify that the generated feature is fake, and the original

is true. In the end, the total loss is

LD ¼ LDa
þ LDv

: ð6Þ

3.2.4 Cycle loss

In order to ensure that the generator does not lose important

information, cycle loss for the source data is defined as

follows:

LCa
¼ 1

Ns

XNs

i¼1

Uðzsi Þ � GvaðGavðUðzsi ÞÞÞ
�� ��

2
; ð7Þ

LCv
¼ 1

Ns

XNs

i¼1

xsi � GavðGvaðxsi ÞÞ
�� ��

2
: ð8Þ

At the same time, in order to ensure that these generators

have a good performance on the target dataset, we also

introduce the cycle loss to the target dataset during the

training process, which is defined as follows,

LCu
v
¼ 1

Nu

XNu

j¼1

xuj � GavðGvaðxuj ÞÞ
���

���
2
; ð9Þ

where xuj the visual feature of the jth instance in the target

dataset. Finally the final cycle loss is the following:

LC ¼ LCa
þ LCv

: ð10Þ

We participate in training with LG and LC as a whole,

thus the combination loss is:

LGC ¼ LG þ LC: ð11Þ

3.2.5 Task loss

After ensuring that our generators can do a good job of

mapping between the two spaces, we need to further match

the visual and semantic features. To achieve accurate

classification, we define the task losses in both the visual

and semantic spaces, respectively, as follows:

LTa ¼
1

Ns

XNs

i¼1

Uðzsi Þ � Gvaðxsi Þ
�� ��

2
þk Wvak k; ð12Þ

LTv ¼
1

Ns

XNs

i¼1

xsi � GavðUðzsi ÞÞ
�� ��

2
þk Wavk k ð13Þ

where Wav, Wva are the learning parameters in Gav and Gva,

and k is a regularization parameter which is a constant.

Through the regularization we can effectively reduce the

bias problem and improve the effect. In the end, the total

loss is defined as follows,

LT ¼ LTa þ LTv : ð14Þ

3.2.6 Training process

The training process is shown in Algorithm 1. The training

steps for each epoch are: First we train the two generators

and U according to the LT. Then the two generators, dis-

criminator and / are trained according to LGC and LD.

Finally we train the two generators and U according to the

LCu
v
. We repeat the above steps until the model converges.

Neural Computing and Applications (2021) 33:5313–5326 5317

123



3.2.7 Classification

Finally, we combine the information in both the visual and

semantic spaces to give a prediction, as shown in Fig. 3.

For an instance x, its predicted semantic attributes vector at

the ZSL setting is

argmin
z2Zu

kx� GavðUðzÞÞk2 þ kUðzÞ � GvaðxÞk2: ð15Þ

For GZSL, it is

argmin
z2Zs[Zu

kx� GavðUðzÞÞk2 þ kUðzÞ � GvaðxÞk2: ð16Þ

Since the semantic attributes vector has a clear corre-

spondence with the class, we can get its corresponding

label through the semantic attributes vector. So the above

formulas can be used for classification. Whether using this

classifier is more effective than traditional single-domain

classifiers will be discussed further in Sect. 4.4.2.

3.3 Self-labeled strategy

The process of self-labeled strategy is summarized in

Algorithm 2. At the first stage, the model is trained using

the datasets Ds and Xu. When the model converges, we get

fG�
av;G

�
va;D

�
v;D

�
a ;/

�g ¼ argminfLGC; LD; LCu
v
; LTg;

ð17Þ

where fG�
av;G

�
va;D

�
v;D

�
a ;/

�g represents the optimal gen-

erators, discriminators, and semantic mapping learned in

the training phase. At the second stage, the different

strategies for ZSL and GZSL are used. In the following two

subsections we will give a detailed introduction.

3.3.1 ZSL

We use fG�
av;G

�
va;D

�
v;D

�
a ;/

�g as initial parameters. Then

the prediction is performed for the instances in Xu

according to Eq. (14), and the predicted semantic attributes

vector is referred to as pseudo-semantic attributes vector.

Fig. 3 Visualization of the classifier. Given an instance x, we take a

semantic attributes vector z and map z to the semantic space through

U to get the semantic feature UðzÞ. Then /ðzÞ is mapped to the visual

domain through the generator Gav to get the generated visual feature,

then we calculate the distance between it and x. At the same time, we

map x to the semantic domain through the generator Gva to obtain the

generated semantic feature and calculate the distance between it and

UðzÞ. Finally, two distances are added to get the score of z for the

instance x. We predict the label of instance x as the corresponding

class of semantic attributes vector with the lowest score
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On this basis we use Eq. (14) to compute the task losses of

all instances in target domain, and sort all instances and

their pseudo-semantic attributes vectors according to their

task losses. After setting a self-marking ratio r, then r � Nu

instances with the smallest task loss are selected and the

same number of samples in Ds are replaced. The parame-

ters fG�
av;G

�
va;D

�
v;D

�
a ;/

�g are updated according to

Eqs. (11) and (14). The above steps are repeated until the

training converges.

3.3.2 GZSL

As mentioned earlier in this paper, the instances in the

unseen classes are always classified to some seen cate-

gories. So we use pseudo-semantic attributes vectors to

make adjustment for our model. Since in the adjustment

process, the performance of the model will gradually be

biased towards the unseen classes. So we further use Ds to

update the parameters of fG�
av;G

�
va;D

�
v;D

�
a ;/

�g by the

losses (11) and (14) after doing the same operations as that

in ZSL.
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4 Experiments

4.1 Datasets and setting

4.1.1 Datasets

AWA2 (Animal With Attribute 2) includes 30,475 instan-

ces from 50 classes, 40 of which are used as seen classes

and 10 classes as unseen classes, and their semantics are

described as 85-dimensional attributes.

aPY (aPascal-aYahoo) includes 15339 instances from 32

classes. We use 20 classes of data as seen classes, and the

remaining 12 classes as the unseen classes. Its semantics

are described as 64-dimensional attributes.

SUN (SUN Attribute) includes 14,340 instances from

717 categories. Among them, 645 classes are used as the

seen classes and 72 classes are used as the unseen classes.

Its semantics are described as 102-dimensional attributes.

In this paper, the original image is not used as the

training data, but the 2048-dimensional feature extracted

by resnet101 [17] pre-trained on ImageNet is used as the

visual feature. More details are shown in Table 2. And

these datasets have two splits as SS and PS which are same

with the previous work [41].

4.1.2 Methods for comparisons

Our method is based on GANs, so we chose some methods

that are also based on GANs for comparison. They are:

generative adversarial approach for zero-shot learning

(GAZSL) [48], Wasserstein GAN with a Classification

Loss(f-CLSWGAN) [42], Leveraging invariant side

GAN(LisGAN) [24]. At the same time, our method is also

a transductive method, so we also selected some trans-

ductive methods for comparison. They are: transductive

multi-view zero-shot learning (TMV) [10], shared model

space (SMS) [16], quasi-fully supervised learning (QFSL)

[37]. Some other methods are also selected for comparison

which do not have many similarities with ours. Because

they have greatly promoted the development of ZSL

research and they are often regarded as baselines by other

researchers. They are: direct attribute prediction (DAP)

[23], deep visual semantic embedding (DEVISE) [9], cross

modal transfer (CMT) [36], convex combination of

semantic embeddings (CONSE) [31], semantic similarity

embedding (SSE) [45], structured joint embedding (SJE)

[2], embarrassingly simple approach to zero-shot learning

(ESZSL) [33], latent embeddings (LATEM) [40], attribute

label embedding (ALE) [2], synthesized classifiers (SYNC)

[5], semantic autoencoder (SAE) [21], generative frame-

work for zero-shot learning (GFZSL) [39], deep embed-

ding model (DEM) [44].

These methods use a variety of strategies to accomplish

ZSL and GZSL tasks. GAZSL [48] uses Wikipedia to

generate features of unseen classes and use these generated

features for training. The f-CLSWGAN [42] generates

features of unseen classes for training and optimizes the

wasserstein distance. LisGAN [24] introduces soul samples

to ensure GANs’s generation diversity and generation

reliability, thereby improves the performance of model.

TMV [10] proposes a transductive multiview embedding

space to solve the problem of mapping offset and uses the

multi-view information of visual features in this space.

SMS [16] realizes knowledge transfer by learning model

sharing space of multiple models. QFSL [37] uses labeled

data to train the relationship between visual information

and semantic information, and uses unseen data to reduce

bias. DAP [23] learns an attribute probability classifier, and

then uses this classifier for classification. DEVISE [9] uses

pairwise ranking objective method to make predictions. For

the first time, CMT [36] projects the image into semantic

space and align it with the class name. CONSE [31] maps

the image to semantic space through a convex combination

of the label embedding vectors and then aligns them. SSE

[45] compares the similarity between visual information

and semantic information in visual space and semantic

space at the same time. SJE [2] optimizes a structural SVM

loss to learn a bilinear compatibility. ESZSL [33] learns a

bilinear compatibility and explicitly regularizes the objec-

tive frobenius norm using square loss. LATEM [40]

extends the SJE [2] to be a piecewise linear mappings.

ALE [2] uses a ranking loss to learn a bilinear compati-

bility function between the visual space and the attributes

space. SYNC [5] uses a linear combination of multiple

classifiers learned by seen classes to construct an unseen

classifier. SAE [21] uses a semantic auto-encoder to

reconstruct the image features. GFZSL [39] models each

class as a gaussian model, and then learns a regression

function to project them into a common space. DEM [44]

projects visual information into visual space, and then uses

a multi-modality fusion method to combine more semantic

information.

4.1.3 Evaluation metrics

We use the similar accuracy evaluation metrics as [41]. For

ZSL, the top-1 accuracy average of per-class is computed

in the following way,

accY ¼ 1

jYj
XjY j

c¼1

#correct predictions in c

#samples in c
ð18Þ

where jYj is the total number of categories at the time of

testing. For GZSL, we need to consider the performance on

both the seen and unseen classes. The harmonic mean of
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accuracies respect to seen and unseen classes is calculated

as follows,

Hacc ¼
2� accYs � accYu
accYs þ accYu

ð19Þ

where accYs is the accuracy on the seen data and accYu is the

accuracy on the unseen data.

4.2 Implementation

The generators are all composed of three fully connected

layers. Each fully connected layer is followed by ReLU

layer. All generators from the visual space to the semantic

space share weights, and all generators from the semantic

space to the visual space share weights. Discriminators also

use a three fully connected layers. The first two layers are

activated by ReLU function, and the last layer is activated

by Sigmod function.

This paper uses the semantic attributes vectors provided

by the dataset as auxiliary information. Then, we use the

mapping U which is composed by a fully connected layer

activated by ReLU to map the original attributes vector

into the semantic space mentioned before. Then in the

training process, training will stop once convergence is

achieved, because excessive training will aggravate the

bias problem. The regularization coefficient k in task losses

is set to 1e-4 when training with AWA or aPY and is set to

0 when training with SUN. The learning rate is set to 1e-5,

and we use Adam [19] for training.

In the training phase, the generators and discriminators

in our GANs and the U are trained synchronously. In the

phase of training, at each epoch we first use the source

dataset for training, and then use the target dataset for

training. For the source data for each batch, we first min-

imize LT and then minimize LGC and then minimize LD.

After an epoch, we train the model by minimizing LCu
v
. In

the self-labeled phase, we still train the generator and

discriminator and U at the same time. For ZSL seting, we

first replace the corresponding part of Ds with the selected

pseudo-labeled instances. Then the losses LT and LGC are

minimized successively. For GZSL after we do the same

operation as ZSL does, and the losses LT and LGC on Ds are

minimized successively.

4.3 Comparison results

4.3.1 Comparisons at ZSL setting

Table 3 shows that our method has good performance

compared with existing methods known to us. When we

use SS split for SUN, we achieve similar results to the

current best methods. For other situations our method

improved by 1.6–14.9% over the best method.

We found that GAN-based ZSL methods such as

GFZSL, f-CLSWGAN, LisGAN and our method tend to

have better results than traditional embedding methods.

This shows that GANs could be a powerful tool for ZSL

research. At the same time we can use GANs in many ways

in ZSL research. GFZSL, f-CLSWGAN, LisGAN all use

GANs to generate visual features, our method uses the

characteristics of GANs to achieve flexible alignment

between visual and semantic information. These two

approaches do not conflict, so combining these two kind of

methods may achieve good results.

4.3.2 Comparisons at GZSL setting

Table 4 shows the comparison results. On the dataset

AWA and aPY, the Hacc of our method is 4.4% and 5.3%

higher than the current best method. Our method also

achieves good results on the SUN. The main reason for this

result is that our model performs well when predicting

unseen instances. This shows that generalization ability of

our model is better. And we found that many previous

methods such as DAP, ESZSL and SAE have a good

performance in the traditional ZSL problem but their per-

formance drops sharply in the GZSL problem. Therefore,

these models will be greatly limited in practical applica-

tions, and our models do not have to worry about this.

We use Hacc as the main evaluation index of GZSL,

which is a more objective method. It is affected by the

prediction accuracy of both the seen and unseen instances.

Although some methods such as SAE, GFZSL, DEM,

GAZSL guarantee a high prediction accuracy of seen

instances, the prediction accuracy of unseen instances is

very low. While f-CLSWGAN and LisGAN have achieved

high Hacc, but in order to obtain higher prediction accuracy

on unseen instance, the prediction accuracy on the seen

instances is sacrificed. So to sum up, our method can

achieve better performance because we consider both two

aspects. First of all, we have the structure of cycleGAN to

ensure better binding of visual information and semantic

information, and introduce the reconstruction process of

unseen visual information in the training phase. These

Table 2 The details of the datasets we used

Datasets AWA2 aPY SUN

#Images 30,475 15,339 14,340

#Seen classes 40 20 645

#Unseen classes 10 12 72

#Attributes 85 64 102

# Indicates the size
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strategies ensure that the knowledge learned from the seen

domain could be smoothly transferred to the unseen

domain, thereby ensuring that a high prediction accuracy

on unseen instances could be obtained. On the other hand,

in order not to sacrifice too much prediction accuracy on

the seen instances, we adopt a strategy different from the

strategy of ZSL setting in the self-labeled stage. While

using the unseen instances to adjust the model, the seen

instances are also used to adjust the model.

Our model has achieved good performance in the SUN

dataset but does not have the same advantages in the AWA

and aPY datasets. This is because the number of categories

in the SUN dataset is much larger than the other two

datasets. So the model has to face more diverse data, and it

is more difficult to generate a similar distribution respect to

the visual or semantic features.

4.4 Model analysis

4.4.1 Parameter sensitivity

Our model has an important parameter, which is the ratio

of the unlabeled instances in the target dataset we used in

the self-labeled phase. Figure 4 shows our experimental

analysis about this parameter.

At the ZSL setting, the accuracy on AWA is gradually

stabilized with the increase of the ratio. For the aPY and

SUN datasets, the classification accuracy first increases

with the increase of ratio, but after reaching a peak, the

classification accuracy decreases with the increase of ratio.

This is because the model does not have a particularly good

classification ability for the unseen instances in the datasets

aPY and SUN. When the ratio is increased to a certain

extent, too many false predictions are introduced which

may spoil the learned mode. At the GZSL setting, the

harmonic mean accuracies have similar phenomenons.

The results show that the optimal ratios are 0.85, 1, 0.8,

0.2, 0.9 and 0.8 for AWA(ss), AWA(PS), aPY(ss),

aPY(PS), SUN(SS), SUN(PS) at the ZSL setting, respec-

tively. The optimal ratios are 0.8, 0.8 and 0.9 for AWA,

aPY and SUN at the GZSL setting, respectively. However,

as shown in Fig. 4, these settings are not absolute, and

good results can also be achieved by floating around the

optimal ratios.

4.4.2 Significance test

In general, we can not know the generalization accuracy of

the model, and we can only approximate the generalization

accuracy by the mean value of multiple experimental

results. As shown in Tables 3 and 4, the results are the

mean values given after many experiments. We assume

that there is more than 95% confidence that there is no

significant difference between the results given in this

paper and the generalization accuracy. In order to verify

the hypothesis we put forward, the ‘‘Student’s t test’’ is

used to verify our hypothesis. Specifically, we conducted

10 repeated experiments and obtained 10 sets of Top-1

accuracy and Hacc under ZSL and GZSL for different

datasets, respectively. Then we use these data and the

results in Tables 3 and 4 to perform a significant test

through ‘‘Student’s t test’’ with the statistical significance

level a ¼ 0:05. The results are shown in Table 5.

From Table 5, we can see that the p value of the results

on each dataset under ZSL or GZSL is greater than 0.05,

which proves that our hypothesis is accurate. That is, the

results given in Tables 3 and 4 and the model’s general-

ization accuracy are not significantly different.

4.4.3 Ablation

We adopt a Bidirectional Generative method, and put

forward the classifier shown in Sect. 3.2.6 which is called

VSC. In order to better verify the effectiveness of our

classifier, two kinds of settings are designed to complete

the ablation experiment.

Table 3 Top-1 accuracies of different methods on three datasets with

two splits

Method T/

I

AWA aPY SUN

SS PS SS PS SS PS

DAP I 58.7 46.1 35.2 33.8 38.9 39.9

DEVISE I 68.6 59.7 35.4 39.8 57.5 56.5

CMT I 66.3 37.9 26.9 28.0 41.9 39.9

CONSE I 67.9 44.5 25.9 26.9 44.2 38.8

SSE I 67.5 61.0 31.1 34.0 54.5 51.5

SJE I 69.5 61.9 32.0 32.9 57.1 53.7

ESZSL I 75.6 58.6 34.4 38.3 57.3 54.5

LATEM I 68.7 55.8 34.5 35.2 56.9 55.3

ALE I 80.3 62.5 30.9 39.7 59.1 58.1

SYNC I 71.2 46.6 39.7 23.9 59.1 56.3

SAE I 80.7 54.1 8.3 8.3 42.4 40.3

GFZSL I 79.3 63.8 51.3 38.4 62.9 60.6

DEM I – 68.4 – 35.0 – 61.9

GAZSL I – 68.2 – 41.4 – 61.3

f-CLSWGAN I – 68.2 – 40.5 – 60.8

LisGAN I – 70.6 – 43.1 – 61.7

TMV T – – – – 61.4 –

SMS T – – 39.0 – 60.5 –

QFSL T 84.8 79.7 – – 61.7 58.3

BGT(ours) T 95.6 82.4 57.9 49.8 62.2 63.5

The best results are shown in bold. Tmeans the corresponding method

is transductive; I means the corresponding method is inductive
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1. The classifier only depends on the distance in the visual

domain. As shown in Eq. (20), the classifier in this

setting is called VC,

argminz2Zu kxt � GavðUðzÞÞk2; for ZSL;

argminz2Zs[Zu kxt � GavðUðzÞÞk2; for GZSL:

(

ð20Þ

2. The classifier only depends on the distance in the

semantic domain. As shown in Eq. (21), the classifier

in this setting is called SC,

argminz2Zu kUðzÞ � GvaðxtÞk2; for ZSL;

argminz2Zs[Zu kUðzÞ � GvaðxtÞk2; for GZSL:

(

ð21Þ

The experimental results are shown in Table 6.

According to the experimental results, it is found that

our classifier is significantly better than those which only

use the distance in a single domain as the classification

basis, which also proves the opinion mentioned before in

Table 4 Comparisons at GZSL

setting
Method Venue AWA aPY SUN

ts tr H ts tr H ts tr H

DAP TPAMI, 2013 0 84.7 0 4.8 78.3 9.0 4.2 25.7 7.2

CMT NIPS, 2013 0.5 90.0 1.0 1.4 85.2 2.8 8.1 21.8 11.8

DEVISE NIPS, 2013 17.1 74.7 27.8 4.9 76.9 9.2 16.9 27.4 20.9

CONSE ICLR, 2014 0.5 90.6 1.0 0.0 91.2 0.0 6.8 39.9 11.6

SSE ICCV, 2015 8.1 82.5 14.8 0.2 78.9 0.4 2.1 36.4 4.0

SJE CVPR, 2015 8.0 73.9 14.4 3.7 55.7 6.9 14.7 30.5 19.8

ESZSL ICML, 2015 5.9 77.8 11.0 2.4 70.1 4.6 11.0 27.9 15.8

LATEM CVPR, 2016 11.5 77.3 20.0 0.1 73.0 0.2 14.7 28.8 19.5

ALE TPAMI, 2016 14.0 81.8 23.9 4.6 73.7 8.7 21.8 33.1 26.3

SYNC CVPR, 2016 10.0 90.5 18.0 7.4 66.3 13.3 7.9 43.3 13.4

SAE CVPR, 2017 1.1 82.2 2.2 0.4 80.9 0.9 8.8 18.0 11.8

GFZSL ECML, 2017 2.5 80.1 4.8 0.0 83.3 0.0 0.0 39.6 0.0

DEM CVPR, 2017 30.5 86.4 45.1 11.1 75.1 19.4 20.5 34.3 25.6

GAZSL CVPR, 2018 19.2 86.5 31.4 14.2 78.6 24.0 21.7 34.5 26.7

f-CLSWGAN CVPR, 2018 57.9 61.4 59.6 32.9 61.7 42.9 42.6 36.6 39.4

LisGAN CVPR, 2019 52.6 76.3 62.3 34.3 68.2 45.7 42.9 37.8 40.2

BGT(ours) 56.2 82.2 66.7 39.3 72.9 51 40.2 30.4 34.6

The symbols ts and tr are the top-1 accuracies of the unseen and seen instances, respectively. The symbol H

is the harmonic mean respect to the seen and unseen instances. The best results are shown in bold

Fig. 4 Parameter sensitivity. The horizontal axis represents the proportion of unlabeled instances we used in the self-labeled phase for all unseen

instances
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this paper, i.e., the bidirectional mapping will retain

more useful information and better classification results

can be obtained by adopting the classifier proposed in

this paper.

4.4.4 Class-wise accuracy

To analyze the sensitivity of our model to different cate-

gories of images, we analyze classification results of our

model for different categories. In order to obtain a more

objective evaluation, we choose a same GAN-based model

f-CLSWGAN for comparison, which offers confusion

matrix in their paper. Figure 5 is the confusion matrix on

the aPY dataset. From Fig. 5, we can observe that our

method have better performance. Especially for some cat-

egories, f-CLSWGAN can not give reasonable judgments,

Table 5 The result of Student’s

t test
ZSL GZSL

AWA aPY SUN AWA aPY SUN

SS PS SS PS SS PS

t-value - 1.44 - 0.35 - 1.31 0.13 - 0.25 - 1.16 0.53 0.06 0.6

p-value 0.18 0.73 0.22 0.89 0.81 0.27 0.61 0.95 0.56

For ZSL we analyze Top-1 accuracies for different datasets, and for GZSL we analyze harmonic mean

accuracies

Table 6 Comparison results of different classifiers

classifier ZSL/GZSL AWA aPY SUN

SS PS SS PS SS PS

VC ZSL(top-1) 75.1 69.6 43.7 40.3 46.3 58.4

GZSL(Hacc) – 57.3 – 40.3 – 26.6

SC ZSL(top-1) 78.8 73.6 41.6 35.5 41.4 17.7

GZSL(Hacc) – 44.8 – 24.4 – 4.3

VSC ZSL(top-1) 95.6 82.4 59.9 49.8 62.0 63.5

GZSL(Hacc) – 66.7 – 51 – 34.6

At ZSL setting, the top-1 acc defined by Eq. (18) is shown for dif-

ferent classifiers

At GZSL setting, Hacc defined by Eq. (19) is shown for different

classifiers

Fig. 5 The confusion matrices on the aPY dataset. The subfigure (a) and subfigure (b) are the confusion matrices of f-CLSWGAN and our

method, respectively

5324 Neural Computing and Applications (2021) 33:5313–5326

123



but our method can classify them well. Especially, for

potted plant, sheep, statue, the classification accuracies of

our method are 45%, 49% and 67% higher than

f-CLSWGAN.

There also exists an interesting phenomenon in the

experimental results. In terms of ZSL, researchers usually

think that misclassification is because two things are

visually similar, such as goat and donkey. However, we

find that whether using our model or f-CLSWGAN, when

classifying tvmonitor and pottedplant, there is always a

high probability of misclassifying them as each other.

While it is obvious that these two things are not visually

similar. The reason for this misclassification is that they

usually appear in similar environments, that is, their visual

features contain the similar background information. This

extra unnecessary background information influences the

judgment of our model. So how to eliminate the influence

of background information on our model may become one

of our future research directions.

5 Conclusions

This paper proposes a zero-shot learning method based on

bidirectional projections, which are used to map visual

features and semantic features to each other and align their

distributions. And it also ensures that no effective infor-

mation is lost in the mapping process. At the same time, we

introduce the cycle loss of unseen unlabeled data in the

training process and the predicted pseudo-labels of these

samples to correct the model, which greatly alleviates the

bias problem in zero-shot learning. Experimental results on

three popular datasets show that our method is superior to

most of the existing state-of-the-art methods.
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