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Abstract
Achieving proper nonlinear properties and autocorrelation in the S-box structure is an open challenge in cryptography.

Besides, there have been numerous articles on the optimization of S-box, using two types of fitness functions for opti-

mization. This study investigated both types of functions and compares their performance. In addition, this study used

ergodic chaotic maps. First, the performance of particle swarm optimization (PSO) was improved using these maps. Then,

the new chaotic S-boxes were designed based on the ergodic maps. After that, the improved PSO was used for optimization

to obtain the best S-boxes. This optimization was performed once by selecting nonlinearity as a fitness function. At the

second optimization, the entropy source was selected as a fitness function for optimization by examining the P-value of the

mono-test frequency. Finally, the related results for the introduced chaotic S-boxes were compared to the optimized chaotic

S-boxes with two types of fitness functions. The introduced S-boxes were safe due to the use of ergodic maps with high

keyspace length. Furthermore, the simulation performance was analyzed and compared with other relevant approaches.

Keywords Substitution boxes (S-boxes) � Chaotic maps � Particle swarm optimization � Nonlinearity � Mono-test

frequency � Performance analysis

1 Introduction

Maintaining the security of information transmission is

important given the significant advances in network com-

munication technologies. A serious challenge in cryp-

tosystems is designing of substitution boxes (S-boxes) [1].

S-box designs are proposed based on mathematical struc-

tures, a group of theoretic approach [2]. S-box, performing

confusion, has been widely employed in traditional cryp-

tographic standards such as the Data Encryption Standard

(DES) [3] and the Advanced Encryption Standard (AES)

[4] for encryption and decryption process. Considering that

the previous designs still do not have the highest score for

the good S-box criteria, it is necessary to create a new

S-box structure. In order to determine how efficient the

S-box is, it has been examined in the form of a series of

criteria such as nonlinearity (NL), linear approximation

(LP), differential approximation (DP), strictly avalanche

criteria (SAC), and bit independence criteria (BIC) [5, 6].

Therefore, if it reaches 120 in nonlinearity attacks [7], it

will be one of the most ideal possible arrangements against

nonlinearity attacks. The best-obtained value of SAC is

0.500 [8]. The best values so far obtained for BIC, LP, and

DP are 112, 0.062, and 4, respectively [4]. Researchers

have recently developed some algorithms for S-box design

using the nonlinear properties of chaos. To use the chaotic

space of nonlinear dynamic systems, a logistic map was

used to design the S-box [9]. Subsequent studies have used

maps such as three-dimensional Baker [8] or a combination

of Baker and logistics [10] to develop the keyspace. Since

hyper-chaotic systems have unique features, these systems

were used in this article [11]. Studies on the use of chaos

theory in the design of S-boxes have focused on the

development of keyspace, and the use of chaotic boxes in

nonlinear systems has not been considered in previous

studies [12–18]. In ref. [19], the initial S-box was made

with a spatiotemporal chaotic system, and then, its
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elements were randomly changed. The use of fractional

derivatives as a superset of integer-order derivatives pro-

vides a more accurate description of natural phenomena

[20–23]. Various applications of these derivatives have

been found to solve problems such as mathematical biol-

ogy [24–26], RC-electrical circuits [27], heat [28, 29], and

fractal boundary value [30]. The fractional derivative of

known equations such as the Fokker–Plank has better

described the velocity of a particle in Brownian motion

[31]. Solving nonlinear fractional models has been con-

ducted even when the chaotic behavior has been studied

[32–34]. Further, some attempts have been made to use the

capabilities of fractional models combined with the chaotic

properties of nonlinear systems to improve the designed

S-boxes [35].

Optimization has been used to achieve stronger S-box.

Optimization methods such as ant colony optimization

[36], genetic algorithm optimization [37], firefly (FA)

optimization [38], and teaching–learning-based optimiza-

tion (TLBO) [39] have been used so far to increase the

safety of designed S-boxes.

Russell Eberhart and James Kennedy (1995) devised

particle swarm optimization [40]. PSO is a method based

on swarm intelligence and solves optimization problems

using optimized social behavior. The simplicity and simple

implementation of PSO make it useful for signal process-

ing and machine learning, neural networks, heat transfer,

and so on [41–43]. In Ref. [44], one-dimensional and two-

dimensional logistics and particle swarm optimization

(PSO) were used to form the S-box. The random distri-

bution capabilities of nonlinear dynamic systems can be

used to reduce the required steps to achieve better results

by the PSO method. Such a merger will improve the used

PSO method [45].

Due to the increasing development of computational

tools, it is necessary to review cryptographic methods and

tools. The daily development of virtual network users has

been accompanied by the need to increase keyspace.

Considering the above-mentioned necessities, attention is

paid to the forming and achieving of chaotic systems to

meet these needs. Encryption algorithms with the help of

S-box based on a strong chaotic system solve these prob-

lems while maintaining security. Increasing the complexity

of the chaotic system used in the S-box has a significant

effect on improving its criteria [46]. In order to improve the

keyspace and the usable intervals of the map, another

discrete map should be used to design the S-box.

In this study, the examples of Chebyshev polynomial of

type one, two, their coupling, and hierarchy of rational-

order maps were mentioned. Behavioral differences in

these maps were used to improve PSO. Such differences

can be seen again in the formation of the chaotic S-box.

Finally, the performance of the produced chaotic S-boxes

was optimized using the best results of improved PSO with

two types of fitness. This study aimed to look for the best

results by reviewing the available fitness (objective)

functions.

This study is organized as follows: Section 2 presents

the model. Section 3 provides the improved PSO. Sec-

tion 4 includes the design of the S-box. The S-box analysis

is indicated in Sect. 5. The final section presents the

conclusion.

2 The model

In the previous studies, the polynomial of chaotic maps is

proposed [47–49]. The coupling of these maps will also

increase the keyspace [50]. Such studies continued with the

introduction of the hierarchy of rational-order chaotic maps

from the same family of maps [51]. The above-mentioned

maps are used in subsequent sections in the generation of

improved PSO, chaotic S-box, and optimized chaotic

S-box. The use of these ergodic maps increases the speed

of achieving the desired model in the optimization.

2.1 One-parameter families of chaotic maps

The ratio of polynomials of degree N is considered as

follows:

Uðx; aÞ ¼ a2F
1þ a2 � 1ð ÞF ;

where F can be substituted with the Chebyshev polyno-

mial of type one for Uð1Þ
N and Chebyshev polynomial of

type two for Uð2Þ
N . It should be noted that for certain value,

the formed polynomial of type two is reduced to the

logistic map. Using the first and second types of Chebyshev

functions will lead to different types by this polynomial. In

addition, the sentences of the odd and even present distinct

behaviors. The chaotic interval is for even N and the first

type in a 2 ð0;NÞ, while the second-type chaotic interval

occurs in a 2 ð1=N;1Þ [47]. Besides, for odd N, the

chaotic interval is observed in a 2 ð1=N;NÞ.
The Kolmogorov–Sinai entropy and invariant measures

of these maps are calculated in [47]. Three of these maps

are given below:

Uð1Þ
2 ¼ a2ð2x� 1Þ2

4xð1� xÞ þ a2ð2x� 1Þ2
; ð1Þ

Uð2Þ
2 ¼ 4a2xð1� xÞ

1þ 4 a2 � 1ð Þxð1� xÞ ;
ð2Þ

Uð1;2Þ
3 ¼ a2xð4x� 3Þ2

a2xð4x� 3Þ2 þ ð1� xÞð4x� 1Þ2
: ð3Þ
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Figure 1 indicates the time series diagram of Chebyshev

polynomial of type one and Chebyshev polynomial of type

two. The sensitivity of the maps to the partial change of

their initial values is seen in these figures. In all of three

figures, the control parameter a ¼ 0:75 is set, and the initial

condition changes. Figure 1.1 is plotted for x0 ¼ 0:705 and

x0 ¼ 0:706, indicating that despite a slight change in the

initial value of x0, time series diagrams are obtained by a

completely different way. Figure 1.2 is drawn for x0 ¼
0:307 and x0 ¼ 0:308, and again with a slight change in the

initial value of x0, we see two different time series charts.

We plotted Fig. 1.3 for x0 ¼ 0:88899 and x0 ¼ 0:88891,

Fig. 1 The sensitivity of the chaotic map to initial conditions (1)

Uð1Þ
2 ðx; aÞ for x0 ¼ 0:705 and x0 ¼ 0:706, (2) Uð2Þ

2 ðx; aÞ for x0 ¼ 0:307

and x0 ¼ 0:308, (3) Uð1;2Þ
3 ðx; aÞ for x0 ¼ 0:88899 and x0 ¼ 0:88891

where the control parameter a ¼ 0:75, (4) the chaotic coupled map

lattices for x0 ¼ 0:803 and x0 ¼ 0:804 where the control parameter

a1 ¼ 1:5, a2 ¼ 2:4, N1 ¼ 6, N2 ¼ 10, e ¼ 0:4 and y0 ¼ 0:756, (5)
hierarchy of rational-order chaotic maps for x0 ¼ 0:0055 and x0 ¼
0:0056 where the control parameter a1 ¼ 2:61 and a2 ¼ 3:168
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where the difference between the time series charts for

minor changes in x0 is evident.

Dependence on control parameter is quantified by

Lyapunov exponent. In other words, the Lyapunov expo-

nent of the chaotic system shows that neighboring orbits

are exponentially separated. Positive Lyapunov exponent

shows the chaotic area of the parameter and the measura-

bility of system. In addition, a possible way to describe the

keyspace may be in terms of positive Lyapunov exponents

[52]. Lyapunov exponent curves for the maps of Eqs. 1, 2,

3 are shown in Figs. 2(1,2,3), respectively. It was obvious

that in the various maps, the chaotic domains were

different.

2.2 The chaotic coupled map lattices

The chaotic coupled map lattices were introduced and used

in cryptography [50]. The form of these maps is as follows:

UcoupledðXnþ1; Ynþ1Þ ¼
Xnþ1 ¼ ð1� eÞf1ðxnÞ þ ef2ðynÞ;
Ynþ1 ¼ ð1� eÞf1ðynÞ þ ef2ðxnÞ:

�

ð4Þ

Here, the strength of the coupling is shown with e. f1 and f2
are the chaotic trigonometric maps:

f1 xn; a1ð Þ ¼ 1

a21
tan2 N1 arctan x

1
2

n�1

� �� �
;

f2 xn; a2ð Þ ¼ 1

a22
cot2 N2 arctan x

�1
2

n�1

� �� �
;

8>><
>>:
where a1 and a2 represent control parameters. Time series

and Lyapunov exponent curve are shown in Figs. 1.4, 2.4,

respectively. Figure 1.4 is plotted for constant parameter

a1 ¼ 1:5, a2 ¼ 2:4, N1 ¼ 6, N2 ¼ 10, e ¼ 0:4 and y0 ¼
0:756 as well as variable initial value x0 ¼ 0:803 and

x0 ¼ 0:804.

2.3 Hierarchy of rational-order chaotic maps

Hierarchy of rational-order chaotic maps was introduced in

[51]. Numerical results and analytical calculations for

Lyapunov exponent and Kolmogorov–Sinai entropy were

obtained [51]. An example of this maps is:

xnþ1 ¼
a1
a2

� 1� 3x2n
3xn � x3n

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a1

a2
� 1� 3x2n
3xn � x3n

� �2
s

; ð5Þ

where a1 and a2 represent control parameters. Figure 1.5

shows the corresponding time series diagram of dynamical

system Eq. 5. Figure 1.5 is plotted for constant control

parameter a1 ¼ 2:61 and a2 ¼ 3:168 as well as variable

initial value x0 ¼ 0:03 and x0 ¼ 0:030001. Lyapunov

exponent curve is shown in Fig. 2.5.

3 Improved PSO

Difficulty in well adjusting the global and local search

capabilities and the possibility of being locked into stag-

nation are some of the problems that conventional PSO

faces [53]. In order to solve this problem, the PSO algo-

rithm was improved by chaotic behaviors. These algo-

rithms included chaos initialization or updating step by

chaotic map [45]. This section describes the PSO steps and

how to use chaotic maps to determine its initial population

and update its particle location and velocity. The best result

of this section was used as an improved PSO for later

designing of the S-box in sect. 4.

3.1 PSO algorithm

In PSO, the swarm comprises particles with position and

speed, each one showing a possible solution in the opti-

mization problems. PSO algorithms are divided into types

such as the linearly decreasing inertia weight PSO

(LDwPSO) [54], the nonlinearly decreasing inertia weight

PSO [55], and chaotic inertia weight PSO [56], in terms of

how the w parameter changes. This study used the linearly

decreasing inertia weight PSO (LDwPSO). The steps of the

PSO algorithm are as follows:

Step 1 Defining the problem parameters

Cost function, number of decision variables (for

example:nVar ¼ 10), size of decision variables

matrix (for example:VarSize ¼ ½1 nVar�), lower
bound of variables (for example:VarMin ¼ �10;)

and upper bound of variables (for

example:VarMax ¼ 10) is determined in this step.

Step 2 Number the PSO Parameters

Maximum number of iterations (for

example:MaxIt ¼ 1000), population size (for

example:nPop ¼ 100), inertia weight (for

example:w ¼ 1), inertia weight damping ratio

(wdamp=0.99), personal learning coefficient (for

example:c1 ¼ 1:5), global learning coefficient (for

example:c2 ¼ 2:0) is determined.

Step 3 Having initial population production using unifrnd

function and call cost function for all primary

particles and calculation of personal and global

best for this population.
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Fig. 2 The variation of the Lyapunov characteristic exponent (1)

Uð1Þ
2 ðx; aÞ in terms of parameters a ¼ a, (2) Uð2Þ

2 ðx; aÞ in terms of

parameters a ¼ a, (3) Uð1;2Þ
3 ðx; aÞ in terms of parameters a ¼ a, (4) the

chaotic coupled map lattices in terms of parameters a1, (5) hierarchy
of rational-order chaotic maps in terms of parameters a1
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Step 4 Updating the speed and position of its jth dimension

at iteration t of each particle i using the following

relationships and local and global search to achieve

the best solution.

Vi;jðt þ 1Þ ¼wVi;jðtÞ þ ðc1Þðr1ÞðBestXi;jðtÞ � Xi;jðtÞÞ
þ ðc2Þðr2ÞðGlobalBestðtÞ � Xi;jðtÞÞ;

ð6Þ

Xi;jðt þ 1Þ ¼Xi;jðtÞ þ Vi;jðt þ 1Þ; ð7Þ

where Vi;jðtÞ represents a velocity of particle i at

iteration t; Xi;jðtÞ represents a position of i particle at

iteration t; r1 and r2 indicate two random number

between (0,1); BestXi;jðtÞ indicates the local best

particle i in all swarm; and GlobalBest(t) indicates

the leader of the swarm or global best position of all

population.

Well-known benchmark function (minimization) was used

to test the effectiveness of the given algorithm. Sphere

function is:

FSphere ¼
Xn
i¼1

x2i ;

where �10� xi � 10. The minimum of this function was

zero. In optimization, the goal was to get a minimum or

maximum of a function. Applying the PSO algorithm with

1000 repetitions reached the number 10�270, which was

very close to zero. The result for sphere cost function is

shown in Fig. 3. As can be seen, cost function approached

the minimum value of the sphere function as the iteration

increased. In the next subsections, this study attempted to

get a better number in the same repetitions. Since the

minimum of the sphere function was zero, the better the

optimization result, the closer it was to this minimum. PSO

works with the production of the initial population to make

the S-box perform better. In other words, it improves the

S-box.

3.2 PSO initial population determination
with chaotic map

All of the families of chaotic maps in Sect. 2 were used

separately for the initialization value of PSO. These values

for each map were selected based on their chaotic domain

(positive Lyapunov exponent). Due to the similarity in

quasi-code, this study included only one of them in this

section, while the recorded results were compared for all

maps.

In this subsection, the values of X in Eqs. 1, 2, 3, 4 and 5

are normalized in the range [0,1] to each decision variable

in the n-dimensional space of optimization problem. By

considering Lyapunov exponent curves, the parameters

used here were a ¼ 0:75 for Eqs. 1, 2, 3, N1 ¼ 6;N2 ¼
10; a1 ¼ 1:5; a2 ¼ 2:4; e ¼ 0:4 for Eq. 4, and a1 ¼
2:61; a2 ¼ 3:168 for Eq. 5. The function optimization

problem with the continuous variable was defined as

follows.

This study minimized f(x) (cost function) by finding

X ¼ ½x1; x2; . . .; xn�. X represents the decision solution

vector consisting of n variables, xi, bounded by lower ðLiÞ
and upper limits ðUiÞ. PSO initial population determination

procedure with chaotic map can be illustrated:

Step 1 Entering the initial conditions chaotic map. Set

nPop ¼ 100; xð1Þ, for Eq. 1.
Step 2 Initializing the particle swarm position X by map

function by Eq. 1:

Fig. 3 The variation of the cost function (sphere) for PSO. This curve

is plotted with number of decision variables(nVar ¼ 10), lower bound

of variables(VarMin ¼ �10), upper bound of vari-

ables(VarMax ¼ 10), maximum number of iterations(MaxIt ¼ 1000),

population size (for example:nPop ¼ 100), inertia weight (for exam-

ple:w ¼ 1), inertia weight damping ratio(wdamp ¼ 0:99), personal
learning coefficient(c1 ¼ 1:5), and global learning

coefficient(c2 ¼ 2:0)
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The results for all the maps are shown in Fig. 4. As can be

seen in all figures, the use of a chaotic map instead of

unifrnd function had no significant effect on the cost

function.

3.3 Updating velocity with chaotic maps in PSO

As mentioned in the initialization value, all of the proposed

maps in Sect. 2 were used to update velocity of PSO.

Update velocity with chaotic maps in PSO is as follows:

Step 1 Entering the initial conditions chaotic map. Set

nPop ¼ 100;MaxIt ¼ 1000; xð1Þ, for Eq. 1.

Step 2 Performing chaotic search by updating of the speed

and position of each particle by using a subfunction

derived from Eqs. 1–5 instead of r1 and r2:

The results for all the maps are shown in Fig. 5. All curves

tended to a minimum with increasing repetition. Their

difference speed toward zero corresponded to the maps.

Graph 5.5 reached the number 10�300 in the same repeti-

tions of 1000. Hierarchy of rational-order chaotic maps

reached the minimum with the least number of steps. As

mentioned, Fig. 3 represents the variation in the cost

function (sphere) for PSO. Compared to Fig. 5, the created
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number for the cost function in the same repetitions of

1000 (graph 5) was better 1030 times.

4 The S-box design

Using chaos in the design of efficient S-boxes has been

recently considered. This section describes the design of

the S-box using the proposed chaotic maps. Then, these

S-boxes are optimized by using improved PSO.

Fig. 4 The variation of the cost function (sphere) for (1) Uð1Þ
2 ðx; aÞ,

(2) Uð2Þ
2 ðx; aÞ, (3) Uð1;2Þ

3 ðx; aÞ, (4) the chaotic coupled map lattices, (5)

hierarchy of rational-order chaotic maps. These curves are plotted

with number of decision variables(nVar ¼ 10), lower bound of

variables(VarMin ¼ �10), upper bound of variables(VarMax ¼ 10),

Maximum number of iterations(MaxIt ¼ 1000), population size (for

example:nPop ¼ 100), inertia weight (for example:w ¼ 1), inertia

weight damping ratio(wdamp ¼ 0:99), personal learning coeffi-

cient(c1 ¼ 1:5) and global learning coefficient(c2 ¼ 2:0)
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4.1 The chaotic S-box

Key is one of the fundamental pillars of any cryptography.

Every algorithm is as secure as its key. For high levels of

security, the key space size should not be less than 2100

[57, 58]. The keyspace provided by the introduced maps to

produce the S-box was vast. The order of complexity for

decoding in our proposed maps was calculated as follows:

1- for the Chebyshev polynomial

Tða; x0Þ ¼ hða� x0Þ;

2- for the maps of Eq. 4

TðN1;N2; a1; a2; e; x0; y0Þ ¼ hðN1 � N2 � a1

�a2 � e� x0 � y0Þ;

3- for the maps of Eq. 5

Tða1; a2; x0Þ ¼ hða1 � a2 � x0Þ:

As an example in the Chebyshev polynomial of type one to

determine the keyspace, the keyspace will be over than

1032 if the accuracy is 10�16 by considering the map

interval (0, 1) and chaotic region of the control parameter

(0,2).

This keyspace was affected by the chaotic range of

control parameters and their number. This space is more

than 10112 in the chaotic coupled map (Eq. 4) due to the

increase in the number of control parameters

(x0; y0 2 ð0; 1Þ; e 2 ð0; 1Þ; a1; a2 2 ð0:5; 2Þ;N1 and N2).

Hierarchy of rational-order chaotic maps was examined in

the same way.

These spaces could resist all types of brute-force attacks.

The best keyspace was for the chaotic coupled map lattices

(Eq. 4).

From the mathematical perspective, an n � m S-box was

a nonlinear mapping S : Vn ! Vm, where Vn and Vm rep-

resent the vector spaces of n, m elements from GF(2). The

steps for creating S-box are shown as follows:

Step 1 Entering the initial conditions and control

parameters by considering Lyapunov exponent

curves (Fig. 2).

Step 2 Repeating the map to 1000000 to pass the

transition state.

Step 3 Repeating the map to 700000 times and selecting

the last number x(f).

Step 4 Getting the first S-box from the following

equation.

Sð1Þ ¼ xðf Þ � 105mod256

Step 5 Repeating the map and selecting the last number

x(f).

Step 6 The next S-box numbers were obtained from the

following equation.

SðiÞ ¼ xðf Þ � 105mod256

Step 7 If S(i) is in the S-box, the process continues from

step 5.

Step 8 Putting the obtained S(i) in the S-box table.

Step 9 Repeating steps 5 through 8 until all 256 number

S-boxes are filled.

The flowchart for creating S-box is shown in Fig. 6.

Table 1 shows the best S-boxes generated from the maps of

Eqs. 1, 2, 3, 4 and 5 presented in the model. This S-box is

produced by the map of Eq. 3.

4.2 The chaotic S-box design with improved PSO

By considering the result of Sect. 3, this study improved

PSO with the hierarchy of rational-order chaotic maps to

optimize S-box. Various objective (fitness or cost) func-

tions can be introduced in S-box optimization, including

nonlinearity of the box and greater randomness of the box

numbers. In this section, both cases are discussed in sep-

arate subsections.

4.2.1 The chaotic S-box design with improved PSO
and nonlinearity fitness function

Many studies have considered nonlinearity as an objective

function of optimization [37]. By considering this, the steps

of the algorithm are as follows:

Step 1 Entering initial conditions and control parameters

related to the chaotic map of the objective

function.

Step 2 Entering improved PSO parameters.

Step 3 Having initial population production using

unifrnd function.

Step 4 Creating of S-box with chaotic map (Sect. 4.1)

and calculation of nonlinearity for all primary

particles and calculation of personal and global

best for this population.

Step 5 Updating the speed and position of each particle

using the hierarchy of rational-order chaotic maps

and local and global search to achieve the best

solution (subsection 3.3).

Step 6 Saving the best nonlinearity and related S-box.

The flowchart for the optimized S-box design with

improved PSO and nonlinearity fitness function is shown in

Fig. 7. The results of all improved PSO algorithms for all
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the formed S-boxes in Sect. 4.1 are given in Fig. 8. The

best-created S-boxes are shown in Table 2. This S-box is

produced by the map of Eq. 4.

Fig. 5 The variation of the cost function (sphere) for (1) Uð1Þ
2 ðx; aÞ,

(2) Uð2Þ
2 ðx; aÞ, (3) Uð1;2Þ

3 ðx; aÞ, (4) the chaotic coupled map lattices, (5)

hierarchy of rational-order chaotic maps. These curves are plotted

with number of decision variables(nVar ¼ 10), lower bound of

variables(VarMin ¼ �10), upper bound of variables(VarMax ¼ 10),

maximum number of iterations(MaxIt ¼ 1000), population size (for

example:nPop ¼ 100), inertia weight (for example:w ¼ 1), inertia

weight damping ratio (wdamp ¼ 0:99), personal learning coeffi-

cient(c1 ¼ 1:5), and global learning coefficient(c2 ¼ 2:0)
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Fig. 6 S-box creation algorithm

Table 1 Proposed S-box (16*16

matrix) from Uð1;2Þ
3 ðx; aÞ in

Eq. 3 for a ¼ 0:75;

50 18 92 216 167 118 57 64 103 235 27 86 72 197 213 232

46 204 153 14 199 246 194 130 47 44 79 24 211 196 220 20

171 137 143 222 203 248 239 243 138 125 156 17 255 174 185 132

73 100 116 84 215 12 173 210 37 177 91 74 60 198 52 139

5 66 161 96 122 111 81 136 172 170 49 42 113 146 99 48

183 95 1 151 140 227 160 195 226 157 85 71 206 148 128 182

256 230 11 39 207 9 225 158 212 97 15 168 217 114 119 62

93 205 36 34 51 188 35 228 250 251 26 56 190 134 112 75

218 124 149 117 135 223 141 200 166 101 238 90 89 120 147 76

159 55 192 25 187 245 229 63 176 202 88 152 67 6 247 244

19 186 241 32 53 221 165 191 214 13 123 3 10 115 110 129

163 133 87 219 175 107 83 208 145 164 82 7 94 142 69 68

45 240 109 254 249 155 121 16 40 54 169 2 233 224 65 231

8 150 189 80 236 98 162 179 105 58 178 181 4 180 21 30

77 234 127 43 59 22 78 29 144 104 33 41 23 70 201 193

184 108 106 31 131 126 252 154 237 38 209 242 253 61 102 28
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4.2.2 The chaotic S-box design with improved PSO
and mono-bit frequency test fitness function

Converting the outputs of the chaotic system to zero-one

strings is one of the chaotic-based randomness production

methods (entropy source) [59]. Here, six introduced maps

are used to generate random numbers. The simplest and

most effective ideals for statistical random measurement

are the Chi-square test. The following formula was used to

calculate:

v2 ¼ n0 � n1ð Þ2

n
;

where n0, n1 represent the number of 0’s and 1’s in bit

sequences, respectively [60]. This test is mono-bit fre-

quency test. P-value was computed from the bit sequence

for this test. If the P-value is greater than a predefined

threshold 0.01, then sequence will pass the test success-

fully. Here, like Reference [61], the mono-bit test was

selected as the optimization objective function. The steps

of the algorithm are as follows:

Step 1 Entering initial conditions and control parameters

related to the chaotic map of the objective

(fitness) function.

Step 2 Entering improved PSO parameters.

Step 3 Having initial population production using

unifrnd function.

Step 4 Creating S-box with chaotic map (Sect. 4.1).

Step 5 Having the generated S-box as a 16 � 16 matrix.

The rows were put together, and a 1 � 256 matrix

was obtained.

Fig. 7 Optimized S-box

creation algorithm with

nonlinearity fitness function
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Step 6 Putting the numbers in pairs and converting the

sums into binaries and then strings.

Step 7 Calculating mono-bit frequency test for all

primary particles and calculation of personal and

global best for this population.

Step 8 Updating the speed and position of each particle

using the hierarchy of rational-order chaotic maps

and local and global search to achieve the best

solution (subsection 3.3).

Step 9 Saving the best P-value of mono-bit frequency

test and related S-box.

The flowchart for the optimized S-box design with

improved PSO and P-value of mono-bit frequency test

(fitness function) is shown in Fig. 9. The results of all

improved PSO optimizations for all the formed S-boxes in

Sect. 4.1 are given in Fig. 10. The best-created S-box is

shown in Table 3. This S-box is produced by the map of

Eq. 2.

5 The S-box analysis

Subsequently, the following important tests were applied to

the generated S-box in Tables 1, 2, 3:

nonlinearity (NL), strict avalanche criterion (SAC), bit

independence criterion (BIC), linear approximation prob-

ability (LP), and differential approximation probability

(DP).

Fig. 8 Optimized S-box

creation algorithm with P-value
of mono-test fitness function
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5.1 Nonlinearity

The degree of linearity of the S-box was given by non-

linearity test. Since the affine functions were weak in terms

of cryptography, the similarity of the Boolean function

variable of S-box was measured with the affine variable.

The nonlinearity value was calculated using the following

equation:

N ¼ 2n�1 � 1

2
max
a2Bn

X
x2Bn

ð�1Þf ðxÞþa:x

�����
�����;

where B ¼ f0; 1g, f : Bn ! B, a 2 Bn and a.x represents

the dot product between a and x (see [62], for example).

The highest theoretical limit of nonlinearity is 120 [7]. The

best received value is 112 for the AES S-box [4]. For

example, the nonlinearity of eight Boolean functions of

offered optimized S-box for the map of Eq. 4 with non-

linearity fitness was 108, 104, 108, 106, 104, 108, 106,

and 108. Therefore, the maximum and minimum and

average values were 108, 104, and 106.5, respectively. This

average was better than all the averages obtained with the

chaotic S-box and their optimized S-box. The maximum

and minimum and average values and comparing it with

the results of previous work are given in Table 4.

5.2 Strict avalanche criterion (SAC)

Webster and Tavares introduced another important mea-

sure (as strict avalanche criterion) that describing when

one bit in the input of Boolean function changed, half of

the output bits should be changed [1]. The dependence

matrix for all the proposed S-boxes was calculated based

on the reference [1] method. Table 5 shows that the

minimum, maximum, and average values of dependence

matrices. Further, comparing its results with the results

of previous work is presented in this table. The best-

obtained average value for SAC was 0.5. All obtained

values for the proposed S-boxes were appropriate and

very close to 0.500. The received value for the offered

optimized S-box generated by the map of Eq. 5 with the

P-value fitness( 0.499512) was the best-obtained value.

The dependence matrix of this S-box is given in Table 6.

The results were confirmed and improved compared to

previous method.

5.3 Bit independence criterion (BIC)

Webster and Tavares defined a desirable feature for any

encryption transformation for S-box analysis, called the

output bits independence criterion (BIC)[1]. The indepen-

dence of the avalanche vectors sets was measured by the

BIC. If one changed the inverse of input single bits, these

sets would be created [63]. BIC-nonlinearity and BIC-SAC

for all the proposed S-boxes were calculated based on the

reference [1] method. Table 7 indicates the average values

of BIC-nonlinearity and BIC-SAC. The numerical results

of this test and comparing it with the results of previous

work are depicted in Table 7. The amounts of BIC-non-

linearity and BIC-SAC were 112 and 0.5 for the AES

S-box [4], which were the best-achieved values. The

Table 2 Offered optimized S-box (16*16 matrix) from the chaotic coupled map lattices (Eq. 4) with nonlinearity fitness for

N1 ¼ 6;N2 ¼ 10; a1 ¼ 1:5; a2 ¼ 2:4; e ¼ 0:4

162 179 253 51 43 256 236 93 230 221 227 56 67 63 4 60

176 155 90 52 42 97 50 166 27 147 152 29 45 233 83 31

18 13 40 111 239 199 214 119 238 153 118 91 224 55 150 177

114 151 106 66 127 87 128 196 8 164 172 124 209 6 149 48

250 144 30 20 223 16 235 245 163 255 69 3 158 184 92 193

173 178 213 34 129 187 9 215 12 17 80 38 204 243 191 241

248 108 154 32 64 109 217 156 19 142 170 136 226 62 251 82

123 203 88 202 195 103 102 110 2 14 161 37 249 26 240 130

33 116 89 229 115 59 122 21 107 200 120 133 145 49 72 212

141 7 254 185 125 5 207 206 197 171 53 79 126 134 190 1

218 225 183 39 15 68 169 70 85 10 11 105 231 139 232 188

222 100 132 186 112 138 47 84 180 71 131 46 194 73 65 101

77 148 205 44 41 137 198 244 104 146 220 135 247 94 86 181

242 23 113 182 117 210 24 157 35 121 61 57 143 192 96 54

160 78 98 167 175 234 189 174 252 74 22 246 95 165 208 168

58 36 159 211 216 25 99 81 201 76 75 237 140 28 228 219
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obtained average values of BIC-nonlinearity for the pro-

posed S-boxes were between 102.071 and 104.429. The

best was for the chaotic coupled map lattices (Eq. 4), being

more than all of the obtained values in Table 7 references

except for reference [39]. The best-obtained average value

of BIC-SAC is 0.49986 for optimized S-box Chebyshev

Fig. 9 Best nonlinearity of optimized S-box with nonlinearity fitness

function for (1) Uð1Þ
2 ðx; aÞ where a ¼ 0:75;, (2) Uð2Þ

2 ðx; aÞ for

a ¼ 0:75;, (3) Uð1;2Þ
3 ðx; aÞ for a ¼ 0:75;, (4) the chaotic coupled

map lattices for N1 ¼ 6;N2 ¼ 10; a1 ¼ 1:5; a2 ¼ 2:4; e ¼ 0:4, (5)

hierarchy of rational-order chaotic maps for a1 ¼ 2:61; a2 ¼ 3:168.
Improved PSO based on hierarchy of rational-order chaotic maps for

a1 ¼ 2:61; a2 ¼ 3:168 is used. Other optimization conditions are:

number of decision variables (nVar ¼ 9), lower bound of variables

(VarMin ¼ 90), upper bound of variables (VarMax ¼ 120), maxi-

mum number of iterations (MaxIt ¼ 10), population size (nPop ¼ 9),

inertia weight (w ¼ 1), inertia weight damping ratio (wdamp ¼ 0:99),
personal learning coefficient (c1 ¼ 1:5), and global learning coeffi-

cient (c2 ¼ 2:0)
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polynomial of type odd (Eq. 3) with nonlinearity fitness.

This value was more than all of the obtained values in

Table 7 references. BIC-nonlinearity and BIC-SAC of best

proposed S-boxes are given in Tables 8 and 9.

Fig. 10 Best P-value of optimized S-box with P-value of mono-test

fitness function for (1) Uð1Þ
2 ðx; aÞ where a ¼ 0:75;, (2) Uð2Þ

2 ðx; aÞ for

a ¼ 0:75;, (3) Uð1;2Þ
3 ðx; aÞ for a ¼ 0:75;, (4) the chaotic coupled map

lattices for N1 ¼ 6;N2 ¼ 10; a1 ¼ 1:5; a2 ¼ 2:4; e ¼ 0:4, (5) hierar-

chy of rational-order chaotic maps for a1 ¼ 2:61; a2 ¼ 3:168.
Improved PSO based on hierarchy of rational-order chaotic maps

for a1 ¼ 2:61; a2 ¼ 3:168 is used. Other optimization conditions are:

number of decision variables (nVar ¼ 9), lower bound of variables

(VarMin ¼ 0:01), upper bound of variables (VarMax ¼ 1), maximum

number of iterations (MaxIt ¼ 10), population size (nPop ¼ 9),

inertia weight (w ¼ 1), inertia weight damping ratio

(wdamp ¼ 0:99), personal learning coefficient(c1 ¼ 1:5), and global

learning coefficient (c2 ¼ 2:0)
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Table 3 Offered optimized

S-box (16*16 matrix) from

Uð2Þ
2 ðx; aÞ in Eq. 2 with P-value

of mono-test fitness function for

a ¼ 0:75;

40 19 218 52 58 85 242 110 82 8 84 192 243 122 211 125

43 244 193 185 215 155 92 17 177 234 164 60 201 181 39 150

250 75 123 120 206 183 158 24 121 69 89 106 74 94 37 21

9 255 180 56 169 111 15 129 99 157 46 212 227 135 223 100

30 182 214 33 167 204 104 73 36 118 90 31 160 55 114 45

29 241 109 134 102 221 10 159 146 79 38 113 48 200 213 101

203 42 124 162 117 209 6 252 62 153 11 78 59 139 238 67

186 253 248 108 116 107 237 32 127 1 98 245 63 147 26 189

208 2 198 138 91 14 54 44 136 47 35 178 83 137 5 53

220 128 131 132 191 199 3 7 88 190 231 142 161 86 65 77

27 148 230 210 188 20 168 251 61 96 176 232 225 173 68 228

25 50 184 239 247 81 175 194 156 229 152 72 70 143 49 216

187 222 240 97 249 166 197 71 144 80 76 105 112 28 140 235

151 41 170 154 18 51 12 64 119 256 174 34 126 224 254 133

57 4 163 202 149 196 16 95 141 171 87 233 13 130 103 236

23 226 217 179 207 22 205 246 66 195 165 219 172 145 93 115

Table 4 Nonlinearity values of

offered S-box. The nonlinearity

of eight Boolean functions of

each offered S-box is

calculated, and minimum,

maximum, and average of them

are shown in the table

Nonlinearity Min Max Avg

Offered S-box with Eq. 1 99 106 103.375

Offered S-box with Eq. 2 98 106 102.5

Offered S-box with Eq. 3 96 108 104.75

Offered S-box with Eq. 4 100 108 103.5

Offered S-box with Eq. 5 94 104 101.25

Offered optimized S-box with Eq. 1 (nonlinearity) 102 108 105.75

Offered optimized S-box with Eq. 2 (nonlinearity) 104 107 105.5

Offered optimized S-box with Eq. 3 (nonlinearity) 102 110 105.75

Offered optimized S-box with Eq. 4 (nonlinearity) 104 108 106.5

Offered optimized S-box with Eq. 5 (nonlinearity) 102 111 106.375

Offered optimized S-box with Eq. 1 (P-value) 96 108 104

Offered optimized S-box with Eq. 2 (P-value) 102 106 104.25

Offered optimized S-box with Eq. 3 (P-value) 92 109 102.625

Offered optimized S-box with Eq. 4 (P-value) 98 106 102.25

Offered optimized S-box with Eq. 5 (P-value) 100 108 103.25

In [9] 98 108 103.2

In [10] 99 106 103.4

In [8] 100 106 103

In [17] 96 106 103

In [39] 104 110 106.5

In [18] 100 109 104.2

In [66] 100 106 103.2

In [73] 102 108 105.2

In [67] 104 110 106

In [69] 104 110 106

In [70] 106 108 106.75

In [61] 106.75

In [71] 106

AES S-box ([4]) 112 112 112
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5.4 Linear approximation probability (LP)

The maximum value of imbalance in the event between

input and output bits is called the linear approximation

probability (LP). Mathematical definition of LP [64] is:

LP ¼ max
a;b 6¼0

#fxjx:a ¼ f ðxÞ:bg
2n

� 0:5

����
����;

where a, b represent the input and output masks, and the

set x contains all the possible inputs, and 2n represents the

number of its elements. If the S-box has low LP, it can

resist linear attacks. The best LP results were from the AES

S-box [4]. The LP obtained values were suitable for all

suggested S-boxes. The most suitable value was for Che-

byshev polynomial of type two (Eq. 2) and the hierarchy of

rational-order chaotic maps (Eq. 5) (in optimized with P-

value fitness). In addition, compared to previous works, it

Table 5 SAC values of offered

S-boxes. Minimum, maximum,

and average values of

dependence matrices are shown

SAC Min Max Avg

Offered S-box with Eq. 1 0.40625 0.625 0.505859

Offered S-box with Eq. 2 0.390625 0.609375 0.49707

Offered S-box with Eq. 3 0.40625 0.609375 0.499023

Offered S-box with Eq. 4 0.40625 0.609375 0.509277

Offered S-box with Eq. 5 0.375 0.625 0.503906

Offered optimized S-box with Eq. 1 (nonlinearity) 0.4375 0.625 0.512451

Offered optimized S-box with Eq. 2 (nonlinearity) 0.414063 0.601563 0.496094

Offered optimized S-box with Eq. 3 (nonlinearity) 0.421875 0.578125 0.497559

Offered optimized S-box with Eq. 4 (nonlinearity) 0.40625 0.640625 0.503662

Offered optimized S-box with Eq. 5 (nonlinearity) 0.40625 0.601563 0.498291

Offered optimized S-box with Eq. 1 (P-value) 0.390625 0.578125 0.504395

Offered optimized S-box with Eq. 2 (P-value) 0.390625 0.578125 0.504639

Offered optimized S-box with Eq. 3 (P-value) 0.375 0.632813 0.49707

Offered optimized S-box with Eq. 4 (P-value) 0.421875 0.59375 0.497559

Offered optimized S-box with Eq. 5 (P-value) 0.390625 0.601563 0.499512

In [9] 0.3761 0.5975 0.5058

In [10] 0.4140 0.6015 0.4987

In [8] 0.4218 0.6093 0.5000

In [17] 0.3906 0.6250 0.5039

In [39] 0.4375 0.6406 0.5120

In [18] 0.3906 0.5703 0.4931

In [66] 0.4218 0.5938 0.5048

In [73] 0.4080 0.5894 0.5050

In [67] 0.4218 0.5937 0.5039

In [69] 0.4062 0.6093 0.5012

In [70] 0.4941

In [61] 0.5015

In [71] 0.52881

AES S-box ([4]) 0.4531 0.5625 0.5048

Table 6 Dependence matrix of

the offered optimized S-box for

hierarchy of rational-order

chaotic maps (Eq. 5) with the P-
value fitness

0.484375 0.468750 0.546875 0.546875 0.578125 0.421875 0.546875 0.468750

0.453125 0.515625 0.437500 0.500000 0.484375 0.468750 0.515625 0.468750

0.453125 0.515625 0.562500 0.500000 0.484375 0.593750 0.390625 0.468750

0.562500 0.515625 0.562500 0.421875 0.500000 0.453125 0.484375 0.500000

0.453125 0.578125 0.500000 0.484375 0.515625 0.484375 0.515625 0.562500

0.500000 0.484375 0.546875 0.546875 0.500000 0.484375 0.531250 0.453125

0.468750 0.453125 0.453125 0.593750 0.515625 0.546875 0.500000 0.562500

0.453125 0.515625 0.500000 0.531250 0.562500 0.437500 0.437500 0.421875
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was less than references [8, 10, 18, 39, 65, 66], and [67]

and similar to reference [17]. Table 10 shows the numer-

ical results and compares the results of previous work.

5.5 Differential approximation probability (DP)

Biham and Shamir introduced a differential cryptanalysis

method [68]. This method calculated XOR distribution

between input and output bits of S-box was called DP. If

this distribution is close between the input and output bits,

S-box will be resistant to differential attacks. DP is defined

as follows:

DP ¼ max
Dx 6¼0;Dy

ð#x 2 X; fx 	 f ðxþ DxÞ ¼ Dy=2
nÞ;

where X shows the set of all possible input values, and 2n

represents the number of its elements. The DP value for a

strong S-box should be close to zero. The best result

(DP ¼ 4) was for AES S-box [4]. All of the obtained

values were suitable for the introduced S-boxes. The best

DP (10) was for the chaotic coupled map lattices (Eq. 4)

(in all recommended S-boxes) and Chebyshev polynomial

of type two and hierarchy of rational-order chaotic maps

(Eq. 5) (in both optimized modes) and Chebyshev

Table 7 BIC values of offered

S-boxes. These values are

average

BIC BIC-SAC BIC-nonlinearity

Offered S-box with Eq. 1 0.503767 103.679

Offered S-box with Eq. 2 0.500767 103.5

Offered S-box with Eq. 3 0.498326 103.286

Offered S-box with Eq. 4 0.508022 104.429

Offered S-box with Eq. 5 0.501186 102.714

Offered optimized S-box with Eq. 1 (nonlinearity) 0.502651 102.857

Offered optimized S-box with Eq. 2 (nonlinearity) 0.504674 103.5

Offered optimized S-box with Eq. 3 (nonlinearity) 0.49986 103.214

Offered optimized S-box with Eq. 4 (nonlinearity) 0.499512 102.857

Offered optimized S-box with Eq. 5 (nonlinearity) 0.499721 103.893

Offered optimized S-box with Eq. 1 (P-value) 0.498954 103.857

Offered optimized S-box with Eq. 2 (P-value) 0.501046 102.071

Offered optimized S-box with Eq. 3 (P-value) 0.495466 102.964

Offered optimized S-box with Eq. 4 (P-value) 0.506766 103.643

Offered optimized S-box with Eq. 5 (P-value) 0.503976 103.786

In [9] 0.5031 104.2

In [10] 0.4995 103.3

In [8] 0.5024 103.1

In [17] 0.5010 100.3

In [39] 0.4983 104.57

In [18] 0.4988 103.3

In [66] 0.5009 103.7

In [73] 0.5053 104.2

In [67] 0.5058 103.4

In [69] 0.5003 103.5

In [70] 0.4957 103.5

In [61] 0.5029 104.07

In [71] 100

AES S-box ([4]) 112

Table 8 BIC-nonlinearity criterion for the offered S-box for the

chaotic coupled map lattices (Eq. 4)

– 106 104 106 108 108 104 104

106 – 96 108 102 102 104 98

104 96 – 108 106 108 106 106

106 108 108 – 102 100 104 104

108 102 106 102 – 102 106 106

108 102 108 100 102 – 106 106

104 104 106 104 106 106 – 104

104 98 106 104 106 106 104 –
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polynomial of type one (Eq. 1) (in optimized with P-value

fitness). Compared to the previous work, this result was

similar to references [10, 39, 61, 66, 67, 69, 70] and [71].

Table 11 represents DP results for proposed S-boxes and

compares the results of previous work.
6 Concluding remarks

S-boxes aim to provide the necessary confusion that

Shannon is declared as the foundations of any cipher sys-

tem. This study proposed a new methodology for designing

S-box by introducing strong chaotic maps. In addition, it

improved PSO with this map. Improved PSO results have

Table 9 BIC-SAC criteria for

the offered optimized S-box for

Uð1;2Þ
3 ðx; aÞ in Eq. 3 with

nonlinearity fitness

– 0.488281 0.511719 0.500000 0.507813 0.500000 0.482422 0.498047

0.488281 – 0.507813 0.519531 0.484375 0.498047 0.488281 0.513672

0.511719 0.507813 – 0.515625 0.521484 0.478516 0.507813 0.482422

0.500000 0.519531 0.515625 – 0.470703 0.521484 0.517578 0.511719

0.507813 0.484375 0.521484 0.470703 – 0.507813 0.490234 0.478516

0.500000 0.498047 0.478516 0.521484 0.507813 – 0.492188 0.498047

0.482422 0.488281 0.507813 0.517578 0.490234 0.492188 – 0.501953

0.498047 0.513672 0.482422 0.511719 0.478516 0.498047 0.501953 –

Table 10 LP values of offered S-boxes

LP Max

Offered S-box with Eq. 1 0.128906

Offered S-box with Eq. 2 0.140625

Offered S-box with Eq. 3 0.15625

Offered S-box with Eq. 4 0.132813

Offered S-box with Eq. 5 0.132813

Offered optimized S-box with Eq. 1 (nonlinearity) 0.15625

Offered optimized S-box with Eq. 2 (nonlinearity) 0.132813

Offered optimized S-box with Eq. 3 (nonlinearity) 0.132813

Offered optimized S-box with Eq. 4 (nonlinearity) 0.140625

Offered optimized S-box with Eq. 5 (nonlinearity) 0.140625

Offered optimized S-box with Eq. 1 (P-value) 0.140625

Offered optimized S-box with Eq. 2 (P-value) 0.125

Offered optimized S-box with Eq. 3 (P-value) 0.140625

Offered optimized S-box with Eq. 4 (P-value) 0.140625

Offered optimized S-box with Eq. 5 (P-value) 0.125

In [65] 0.1328

In [10] 0.1328

In [39] 0.132813

In [66] 0.1289

In [17] 0.1250

In [18] 0.1563

In [8] 0.1289

In [73] 0.1172

In [67] 0.1406

In [70] 0.1172

AES S-box ([4]) 0.062

Table 11 DP values of offered S-boxes

DP

Offered S-box with Eq. 1 12

Offered S-box with Eq. 2 12

Offered S-box with Eq. 3 12

Offered S-box with Eq. 4 10

Offered S-box with Eq. 5 14

Offered optimized S-box with Eq. 1 (nonlinearity) 12

Offered optimized S-box with Eq. 2 (nonlinearity) 10

Offered optimized S-box with Eq. 3 (nonlinearity) 12

Offered optimized S-box with Eq. 4 (nonlinearity) 10

Offered optimized S-box with Eq. 5 (nonlinearity) 10

Offered optimized S-box with Eq. 1 (P-value) 10

Offered optimized S-box with Eq. 2 (P-value) 10

Offered optimized S-box with Eq. 3 (P-value) 12

Offered optimized S-box with Eq. 4 (P-value) 10

Offered optimized S-box with Eq. 5 (P-value) 10

In [9] 12

In [10] 10

In [8] 14

In [17] 12

In [39] 10

In [18] 12

In [66] 10

In [73] 12

In [67] 10

In [69] 10

In [70] 10

In [61] 10

In [71] 10

AES S-box ([4]) 4
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been used to optimize chaotic S-boxes. This optimization

was conducted with two fitness functions (nonlinearity and

P-value of mono-test). This study considered the hierarchy

of trigonometric maps with their composition. This family

of chaotic maps has ergodic properties. Ergodicity is

equivalent to the confusion property. The study incorpo-

rated in this study is enabled to open new ways in the

construction S-boxes based on strong chaotic maps and

improved PSO. The best chaotic S-box (Table 1) was

obtained using Eq. 3 maps. Considering the results of

Tables 4, 5, 6, 7, 8 for the S-boxes of Tables 2 and 3, it is

better to use nonlinearity fitness function optimization.

Testing the P-value was related to the randomness of the

box, perhaps with considering reference [72], it needed to

reexamine the chaotic property of the S-box. As future

work, multi-objective particle swarm optimization

(MOPSO) can be used instead of PSO for improved opti-

mization, so that in addition to nonlinearity, all S-box

analysis criteria can be optimized. Future studies can even

use other optimizations, such as harmony search (HS)

algorithm. Furthermore, the use of a series of Julia sets

based on generalized Chebyshev polynomial of type two or

quantum maps from well-known quantum systems such as

the Dicke model leads to the production of S-boxes with

various performances.

In future, we intend to examine the effect of this

dynamic behavior on the generation of the S-box and will

compare it with classical maps. Failure to meet the S-boxes

ideal criteria indicates the need to create new S-boxes.
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66. Özkaynak F, Özer AB (2010) A method for designing strong

S-Boxes based on chaotic Lorenz system. Phys Lett A

374(36):3733–3738
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