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Abstract
Echo state network belongs to a kind of recurrent neural networks that have been extensively employed to model time-

series datasets. The function of reservoir in echo state network is expected to extract the feature context from time-series

datasets. However, generalization of echo state networks is limited in real-world application because the architectures of

the network are fixed and the hyper-parameters are hard to be automatically determined. In the present study, the ensemble

Bayesian deep echo network (EBDEN) model with deep and flexible architecture is proposed. Such networks with deep

architecture progressively extract more dynamic echo states through multiple reservoirs than those with the shallow

reservoir. To enhance the flexibility of the configuration for the network, this study investigates the Bayesian optimization

procedure of hyper-parameters and ensures the suitable hyper-parameters to activate the network. In addition, when dealing

with more complex time-series datasets, ensemble mechanism of EBDEN can measure the redundancy for the channels of

the time series without sacrificing the algorithm’s performance. In this paper, the deep, optimization and ensemble

architectures of EBDEN are verified by experiments benchmarked on multivariate time-series repositories and realistic

tasks such as chaotic series representation and Dansgaard–Oeschger estimation tasks. According to the results, EBDEN

achieves high level of the goodness-of-fit and classification performance in comparison with state-of-the-art models.
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1 Introduction

On the basis of the units in human brain, which are intercon-

nected by synapses to generate decision making and coordi-

nation, the researchers developed artificial neural network

models in machine learning to solve real-world tasks. At

present, a lot of deep-learning methods [1–4] have been suc-

cessfully applied into time-series tasks (TSKs). Convolution

neural networks with their variants such as temporal convo-

lutional neural network (TCNN) [5], time-series encoder

(TSE) [6], multi-channel deep convolutional neural network

(MCDCNN) [7] and time-CNN [8] were proposed to model

the timedomainwith one-dimensional convolution templates.

As a natural extension of convolutional networks, recurrent

neural network (RNN) models, such as long short-term

memory (LSTM) [9], have been designed for linking and

memorizing the past and current information using recurrent

connection. These classic ANN models such as LSTMs and

CNNs [5–9] employed multiple layers computation frame-

work to adapt the large-scale inputs, while the
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backpropagation mechanism between these layers consumed

too much time for convergence [10, 11]. Echo state networks

(ESNs) [12, 13] used the gradient-free method to model the

time-series datasets. Echo states in ESNs achieved the feed-

forward transition in the reservoirs and did not need to prop-

agate the gradients through time step. The echo state networks

[12, 13] can effectively suppress the local minima and gra-

dient vanishing in backpropagation procedure [14], in which

general ANNs cannot avoid the above problems.

Besides these advantages, the architecture of the reser-

voir for ESNs is kept fixed and only governed by hyper-

parameters such as the number of echo units, leaky rate and

spectral radius. Therefore, the learning performance of the

ESNs critically depends on the configuration of hyper-pa-

rameters. However, the ESNs [12, 13] cannot effectively

represent the TSKs in a lot of actual applications because

the shallow reservoir architecture of network is hard to

portray the complicated feature of TSKs. According to the

previous work [15–19], the spatial scale of the stacked

reservoirs organization of the ESNs has shown the pow-

erful hierarchical temporal feature representation with

respect to the shallow ESNs. Due to the improvement of

the fitting capacity with multiple reservoirs stacked, the

ESNs have been extensively applied into the complex tasks

such as solar irradiance prediction [15–18] application.

When meeting with the multivariate time-series (MTS)

datasets, the single ESN may achieve accurate performance

on univariate channel and poorly on another. Inspired by the

advantages of ensemble learning [20], the mechanisms can

provide the trade-off diagram for the accuracy and diversity

of the base learners. It can be considered that combining

multiple ESNs to form an ensemble ESN can yield better

results beyond the multivariate series than single ESN. The

ensemble selection mechanisms for the general ensemble

models [21, 22] tend to select the diverse base learners from a

number of trained learners to enhance the learning perfor-

mance. For example, each echo state network [21, 22] is

applied to model the 3D motion and steady-state visual

evoked potentials (SSVEPs) datasets to build the ensemble

echo state network. In these works, the tuning of hyper-pa-

rameters for ensemble ESN is always solved by manual or

grid search modulation based on trial-and-error method.

Previous works [21, 22] demonstrate that such solution suf-

fers from the problems of search space complexity, growing

exponentially with the number of tuned hyper-parameters.

To introduce the multiple architecture and ensemble

selection mechanisms to the echo state networks, in this

paper, ensemble Bayesian deep echo network (EBDEN) is

proposed to model the time-series datasets. Admittedly, it

is the first attempt to fuse the Bayesian into the optimiza-

tion of hyper-parameters tuning for deep echo state net-

work. The above merits are attributed to the following two

contributions of the proposed method:

• To extend the shallow layer to the deep architecture, the

multiple-scale reservoirs with bidirectional connection

are fused across the time steps to build the deep

architecture of EBDEN. In order to ensure the perfor-

mance of the multiple-scale reservoirs, the hyper-

parameters in multiple-scale reservoirs can improve

the learning performance which are explored by

employing Bayesian optimization (BO) in EBDEN.

• To solve the ensemble selection for the echo state

networks, due to the redundancy for modeling multiple

time domain channels of multivariate time series

(MTS), EBDEN can determine the optimal ensemble

weights and avoid overfitting problem.

The reminder of this study is organized as follows: In

Sect. 2, the methodology of EBDEN is described. The

benchmarks and characteristics of EBDEN are discussed in

Sect. 3. The experimental results by leveraging EBDEN to

solve various TSKs, such as multivariate time series

(MTS), chaotic time-series representation and Dansgaard–

Oeschger estimation, are shown in Sect. 4. The conclusion

and future work are presented in Sect. 5.

2 Architecture of EBDEN

Particularly, the boldface letter and the italic letter denote the

matrix and the vector in this paper, respectively. In Fig. 1, the

EBDEN containing three modules, namely input, reservoir

and readout layers, is shown. In terms of general multivariate

time-series (MTS) sequences x, they incorporateM samples

(x ¼ ðx1; x2; . . .; xMÞ) and K channels. According to Fig. 1,

the input sequences x are progressively fed into the multiple-

scale bidirectional reservoirs to extract the echo state

sequences. Compared with the shallow architecture of the

reservoir, the deep one provides richer and more differenti-

ated echo state sequences to discriminate the past and current

information. Apart from the global hyper-parameters of

EBDEN like the number of scales L, each reservoir is acti-

vated by local hyper-parameters, such as unit numbers in the

reservoirN, the leaky rate k, the spectral radius q, the scaling
coefficientx and the sparsity connection degree g. However,
due to the fixed form of the hyper-parameters without any

optimization, the performance of the multiple-scale echo

state network fails to achieve the competitive fitting ability

[15–19]. To achieve this target, the suitable hyper-parame-

ters of EBDEN are optimized by the BO method.

2.1 Deep multiple-scale reservoir of EBDEN

There are several curious hyper-parameters in EBDEN, such

as internal weights Win, reservoir weights Wr, the spectral

radiusq, the scaling coefficientx and the sparsity connection
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degree g. With the initialization of Win following the uni-

form distribution in ½�1; 1�, the internal weights Win range

from ½�x;x� after being scaled by the scaling coefficientx.
Besides, q denotes the spectral radius of the reservoir

weightsWr that can be calculated as follows:

Wr ¼ q
W

EigenmaxðWÞ
ð1Þ

where W follows the uniform distribution in ½�0:5; 0:5� in
this paper. According to the echo memory mechanism [19],

ranges of q and the sparsity connection degree b in reser-

voirs are both ½0; 1�. Time-series inputs x are fed into N

units of L scales of the reservoir through the internal

synapse W0
in. All units in reservoirs are kept the same size

of the reservoir weight matrix Wr, which is N � N. In this

paper, the echo state SðtÞ is extracted by the reservoir.

When L equals 1, the echo state SðtÞ is activated by

external input x, the size of which is M � N for each time

step. The SðtÞ can be written as follows:

SðtÞ ¼ ð1� kÞSðt � 1Þ þ kHðtÞ ð2Þ
HðtÞ ¼ tanhðWrSðt � 1Þ þWinxðtÞÞ ð3Þ

where k is the leaky rate of the echo units that controls the

speed of state dynamics. Besides, larger k denotes faster

dynamics for EBDEN. HðtÞ represents the intermediate

variable at time step t, which incorporates the feedforward

xðtÞ and the echo state from last time step Sðt � 1Þ. Mean-

while, it is bounded by the tanh function, which can influence

eigenvalues of the incoming weight matrix and ensure the

echo state property [23] of EBDEN. Considering the deep

architecture of EBDEN,whenL is greater than 1, theLth scale

of variables SLðtÞ and HLðtÞ can be rewritten as follows:

SLðtÞ ¼ ð1� kÞSLðt � 1Þ þ kHLðtÞ ð4Þ

HLðtÞ ¼ tanhðWL�1
in SL�1ðtÞ þWL

rS
Lðt � 1ÞÞ ð5Þ

The WL�1
in in (5) denotes the internal weight matrix

between the L� 1th and Lth scale reservoir. In the con-

ventional mechanism of the echo state network, the echo

state S for whole timescale (S ¼ ½Sð1Þ; Sð2Þ; . . .; SðTÞ�) is
weighted by readout weights Wout, which is listed as

follows:

y ¼WoutS ð6Þ

Expected to track any forms of target dynamics ŷ like

complex time-series patterns, the output y can be optimized

by learningWout in Eq. (6) and computing the mean square

error with ridge regressor (RC) [24, 25] as shown below:

Eðy; ŷÞ ¼ y� ŷk k22 ð7Þ

When dealing with the classification problems, the sup-

port vector machines (SVMs) are always used in previous

works [26]. Inspired by bidirectional LSTM [27], we adopt

echo units with bidirectional connection in the EBDEN for

the purpose of extracting more abundant context features

from input x. In reservoir space of the EBDEN, except for the

forward computation along the time step for the echo state

SðtÞ, reverse computation along the reverse time step for the

echo state is computed as well. Different from the repre-

sentation of unidirectional computation, the echo state SðtÞ
(described in (4)) and the intermediate variable HðtÞ (de-
scribed in (5)) are represented as S

!L
ðtÞ, H!

L
ðtÞ and S

 L
ðt0Þ,

H
 L
ðt0Þ, respectively:

Fig. 1 The illustration of basic architecture of EBDEN. The EBDEN

is based on the echo state network, and time-series inputs are

incorporated into the T scale of the reservoirs to compute the feature.

Each reservoir contains several hyper-parameters, such as the number

of units in each reservoir N, leaky rate k, scaling coefficient x,
spectral radius q, connection degree g and scale number L
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H
!L
ðtÞ ¼ tanhðWL�1

in S
!L�1

ðtÞ þWL
r S
!L
ðt � 1ÞÞ ð8Þ

H
 L
ðt0Þ ¼ tanhðWL�1

in S
 L�1

ðt0Þ þWL
r S
 L
ðt0 � 1ÞÞ ð9Þ

where S~
LðtÞ and H

!L
ðtÞ denote the Lth scale of forward

states; S
 L
ðt0Þ and H

 L
ðt0Þ represent the reverse states.

Accordingly, the start and the end of the simulation t0 for

H
 L
ðt0Þ in (9) are the end and the start of the simulation t for

intermediate states H
!L
ðtÞ, respectively. Substitute (8), (9)

into (4), and the following results of forward and reverse

echo states are obtained:

S
!L
ðtÞ ¼ ð1� kÞ S!

L
ðt � 1Þ þ kH

!L
ðtÞ ð10Þ

S
 L
ðt0Þ ¼ ð1� kÞ S 

L
ðt0 � 1Þ þ kH

 L
ðt0Þ ð11Þ

At the final time step, the forward and reverse echo

states are concatenated as the new type of

SLðtÞ ¼ ½S~LðtÞ; S
 L

ðt0Þ�. It can be seen that the Lth scale of

the echo state SL through T time steps in EBDEN has the

size of M � T � 2NL.

2.2 Bayesian optimization of EBDEN

Unlike traditional reservoir computing frameworks, several

hyper-parameters in EBDEN are unfixed during the

learning procedure for the sake of efficaciously modeling

time-series datasets. As mentioned before, these hyper-

parameters are fitted by Gaussian regressor (GR), in which

the Matern kernel is utilized and updated following BO.

According to Fig. 1, several hyper-parameters, namely q,
x, g, k, L and N, are sampled by BO, and the readout

weight matrix Wout can be learnt to obtain the output y

(according to Eq. 6). In EBDEN, such hyper-parameters

and readout weights are optimized alternatively. When

hyper-parameters are kept fixed, the readout weights of

EBDEN are learnt by ridge regressor; when the latter is

kept fixed, the suitable hyper-parameters capable of

enhancing the performance are optimized by BO. For the

optimization procedure of the hyper-parameters, the initial

candidates for hyper-parameters are of equal size and pre-

defined searching space. Furthermore, the average perfor-

mance of the output y activated by these candidates is

inferred by BO. In this paper, the lower confidence bound

(LCB) mechanism, which is controlled by the predictive

mean and variance functions, is used as the acquisition type

of BO expected to query the suitable solutions to ensure the

loss function with lower expectation under the candidates.

Hence, suppose the acquisition function is denoted as F and

assemble of the parameters as h for EBDEN containing the

spectral radius q, the scaling coefficient x, the sparsity

connection degree g, the leaky rate k, the number of scales

of the reservoir L and unit numbers in the reservoir N.
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2.3 Ensemble architecture of EBDEN

When meeting with the complex time-series types, such as

multivariate time-series (MTS), each time step stems from

the multiple time domain channels. Hence, is it essential

for each time domain channel to be modeled by EBDEN?

In reality, the computation of such condition is very costly

when time-series inputs x with multiple channels are

incorporated into the deep echo network. Since the MTS

datasets [28, 29] in the previous works are known to be

sourced from the small subset of the total channels, it is

eminent that not all time domain channels are deterministic

for the computation of the network. In order to avert

redundancy computation, ensemble echo network archi-

tecture is applied in EBDEN to determine which channels

in MTS are with semblable temporal behavior.

According to Fig. 2, the number of echo networks is

assigned to ensembles, and each sub-ensemble is inde-

pendently evaluated by the deep echo network. As men-

tioned in Sect. 2, there are K time domain channels and C

ensembles, with hyper-parameters (q, x, g, k, L and N)

optimized by BO briefly presented as h. Furthermore, f ðhÞ
denotes the loss function in line with Eq. (7) and the

ensemble weight matrix is denoted as the optimal ensemble

weight WK;C, which measures the importance of each

channel individually as follows:

Wk;c ¼
e�fkðhcÞ

PC
c¼1 e

�fkðhcÞ
ð12Þ

where fkðhcÞ denotes the real loss for the cth sub-ensemble

when dealing with the kth time domain channel. The total

loss of EBDEN is calculated with ensemble weights and

the loss function f ðhÞ:

Losstotal ¼
1

C

XK

k¼1

XC

c¼1
Wk;cfkðhcÞ ð13Þ

According to (13), the learning stopping procedure of

EBDEN for total loss is dominated by two factors: the

ensemble weight Wk;c and the function loss fkðhcÞ opti-
mized by BO. The overfit learning phenomenon can be

relieved by EBDEN when the loss is not merely deter-

mined by the loss of sub-ensembles.

3 Datasets and characteristics for EBDEN

In this section, descriptions of some benchmarks, such as

Baydogan MTS task, SantaFe Competition A, the NARMA

system and chaotic attractors, are discussed. Subsequently,

the metric memory capacity is used to explore the advan-

tage of deep reservoirs of EBDEN. The time-consuming

performance between EBDEN using BO and grid search

mechanisms is calculated to demonstrate the superiority of

BO. Finally, the test error performances of EBDEN,

EBDEN without the ensemble and EBDEN with global

ensemble are compared.

3.1 Datasets

• The public database Baydogan archive [30] containing

13 multivariate time-series datasets is adopted to eval-

uate the performance of EBDEN and other comparison

algorithms.

Fig. 2 The ensemble

architecture of EBDEN
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• Far-infrared-laser SantaFe time-series competition A

[31] contains 9000 training and 1000 testing samples,

respectively.

• The nonlinear autoregressive moving average

(NARMA) [32] system of 10 orders activated by

uniform distribution is used.

• The three chaotic attractors [33] are activated among

total 2500 time steps. These trajectories for attractors

are 1-channel, 2-channel (each channel denotes the X-

and Y-axis) and 3-channel (each channel denotes the X-,

Y- and Z-axis) time-series datasets, respectively. The

dynamic formulation of the Lorenz attractor system is:

_x ¼ 10ðy� xÞ
_y ¼ xð28� zÞ � y

_z ¼ xy� 8

3
z

ð14Þ

The dynamic formulation of the Rossler attractor system is:

_x ¼ �ðyþ zÞ
_y ¼ xþ 0:2y

_z ¼ 0:2þ xz� 8z

ð15Þ

The dynamic formulation of the Mackey–Glass attractor

system is:

_x ¼ 0:2xðt � 17Þ
1þ xðt � 17Þn � 0:1xðtÞ ð16Þ

where x, y and z denote the corresponding channels to

activate the dynamic systems.

3.2 Contraction mapping analyzation for EBDEN

As described in Sect. 2, the bidirectional deep architecture

of the reservoirs contained in EBDEN is composed of the

multiple scales of the echo states. To the best of our

knowledge, contractivity is used widely in previous works

[34] in the aspect of measuring the echo space of reservoir

computing. In this section, the exploration for the superi-

ority of the bidirectional multiple-scale reservoir mecha-

nism in the theoretical level is analyzed by contraction

mapping.

There are two inputs postulated to have the same time

series, with one decayed by Gaussian noise and the other

undisturbed, both of which are learnt by EBDEN. Eucli-

dean distance is perceived as the metric to measure the

corresponding echo states. The total L scale reservoirs of

two echo states, namely S ¼ S1; . . .; SL
� �

and

Ŝ ¼ Ŝ
1
; . . .; Ŝ

L
� �

, are calculated, while EBDEN deals with

the undisturbed and the disturbed inputs, respectively. As

described in Eqs. (4) and (5), the Lth scale of the echo state

SL is dominated by that of the last scale echo state SL�1.

Suppose there is a constant CðLÞ, and the Lth scale network

satisfies the contraction condition in the light of Lipschitz

continuity, which can be listed as follows:

FðLÞ x; Sð1Þ; . . .; SðLÞ
� �

� FðLÞ x; Ŝ
ð1Þ
; . . .; Ŝ

ðLÞ� ��
�
�

�
�
�

�CðLÞ Sð1Þ; . . .; SðLÞ
� �

� Ŝ
ð1Þ
; . . .; Ŝ

ðLÞ� ��
�
�

�
�
�

ð17Þ

where FðLÞ denotes the Lth scale state transition function.

According to Eqs. (4) and (5), the state transition function

is measured by the adaptive process of the echo states,

which can be simplified as sð1ÞðtÞ ¼ Fð1ÞðxðtÞ; sð1Þðt � 1ÞÞ
when the number of scales L is equal to 1. When the

number of scales L is larger than 1, the adaptive process of

echo states can be simplified as

sðLÞðtÞ ¼ FðLÞðxðtÞ; sð1Þðt � 1Þ; . . .; sðLÞðt � 1ÞÞ. With the

range of CðLÞ in ½0; 1�, the higher value of CðLÞ denotes less
contractive dynamics. There is evidence that the range of

CðLÞ is indeed in ½0; 1� and the contractivity of EBDEN in

L scale reservoirs satisfies the Lipschitz continuity lemma.

According to (4), (5) and (17), the difference between

FðLÞðxðtÞ; sð1Þðt � 1Þ; . . .; sðLÞðt � 1ÞÞ and FðLÞðxðtÞ; ŝð1Þðt �
1Þ; . . .; ŝðLÞðt � 1ÞÞ can be calculated as follows:

FðLÞ x; Sð1Þ; . . .; SðLÞ
� �

� FðLÞ x; Ŝ
ð1Þ
; . . .; Ŝ

ðLÞ� ��
�
�

�
�
�

¼ ð1� kÞSðLÞ þ k tanh WðLÞ
r SðLÞ þW

ðLÞ
in FðL�1Þ x; Sð1Þ; . . .; SðL�1Þ

� �� ��
�
�

�ð1� kÞŜðLÞ � k tanh WðLÞ
r Ŝ

ðLÞ þW
ðLÞ
in FðL�1Þ x; Ŝ

ð1Þ
; . . .; Ŝ

ðL�1Þ� �� ��
�
�

ð18Þ

Since the maximum for activation tanh is 1, (18) can be

transformed to:

Eq: ð18Þ

� ð1� kÞSðLÞ þ k WðLÞ
r SðLÞ þW

ðLÞ
in FðL�1Þ x; Sð1Þ; . . .; SðL�1Þ

� �� ��
�
�

�ð1� kÞŜðLÞ � k WðLÞ
r Ŝ

ðLÞ þW
ðLÞ
in FðL�1Þ x; Ŝ

ð1Þ
; . . .; Ŝ

ðL�1Þ� �� ��
�
�

ð19Þ

When the range of k is in ½0; 1� and the condition of

SðLÞ � Ŝ
ðLÞ � jjSðLÞ � Ŝ

ðLÞjj is met, FðL�1Þðx; Sð1Þ; . . .;
SðL�1ÞÞ � FðL�1Þðx; Ŝð1Þ; . . .; ŜðL�1ÞÞ � jjFðL�1Þðx;Sð1Þ; . . .;
SðL�1ÞÞ � FðL�1Þðx; Ŝð1Þ; . . .; ŜðL�1ÞÞjj. Equation (19) can be

further derived as follows:

Eq: ð19Þ

� ð1� kÞ SðLÞ � Ŝ
ðLÞ�

�
�

�
�
�þ k WðLÞ

r

�
�

�
� SðLÞ � Ŝ

ðLÞ�
�
�

�
�
�

�

þ W
ðLÞ
in

�
�
�

�
�
� FðL�1Þ x; Sð1Þ; . . .; SðL�1Þ

� �
� FðL�1Þ x; Ŝ

ð1Þ
; . . .; Ŝ

ðL�1Þ� ��
�
�

�
�
�
�

ð20Þ

Considering j jFðL�1Þðx; Sð1Þ; . . .; SðL�1ÞÞ � FðL�1Þ

ðx; Ŝð1Þ; . . .; ŜðL�1ÞÞjj � Cði�1ÞjjðSð1Þ; . . .; SðL�1ÞÞ � ðŜð1Þ;
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. . .; Ŝ
ðL�1ÞÞjj and jjSðLÞ � Ŝ

ðLÞjj � jjðSð1Þ; . . .; SðLÞÞ � ðŜð1Þ;
. . .; Ŝ

ðLÞÞjj , (20) is further enlarged as follows:

Eq: ð20Þ

� ð1� kÞ Sð1Þ; . . .;SðLÞ
� �

� Ŝ
ð1Þ
; . . .; Ŝ

ðLÞ� ��
�
�

�
�
�

þ k WðLÞ
r

�
�

�
� Sð1Þ; . . .; SðLÞ

� �
� Ŝ

ð1Þ
; . . .; Ŝ

ðLÞ� ��
�
�

�
�
�

�

þ W
ðLÞ
in

�
�
�

�
�
�CðL�1Þ x; Sð1Þ; . . .; SðL�1Þ

� �
� x; Ŝ

ð1Þ
; . . .; Ŝ

ðL�1Þ� ��
�
�

�
�
�
�

ð21Þ

From the above, the recurrence formulation for L scale

CðLÞ can be acquired as follows:

CðLÞ ¼ ð1� kÞ þ k CðL�1Þ W
ðLÞ
in

�
�
�

�
�
�þ WðLÞ

r

�
�

�
�

� �
ð22Þ

Hence, the Lth scale of the state transition function FðLÞ

for EBDEN fulfills the requirement of contractivity when

the following equation is satisfied:

0\CðLÞ ¼ ð1� kÞ þ kðCðL�1ÞjjWðLÞ
in jj þ jjWðLÞ

r jÞ\1

. From this recurrence formulation, one can see that when

CðLÞ satisfies 0�CðLÞ � 1, each reservoir layer and EBDEN

can hold contractivity. According to the recurrence for-

mulation for L scale Lipschitz constant CðLÞ in contraction

analyzation in Eq. (22) and the transition function sðLÞðtÞ ¼
FðLÞðxðtÞ; sð1Þðt � 1Þ; . . .; sðLÞðt � 1ÞÞ of the adaptive pro-

cess of echo states, for the definition of echo state property,

the distinction between two transition functions of EBDEN

is close to a constant without any activation. For this rea-

son, the external activation 0 is used in transition functions:

FðLÞ 0; SðLÞ
� �

� FðLÞ 0; Ŝ
ðLÞ� ��

�
�

�
�
�

� ð1� kÞ SðLÞ � Ŝ
ðLÞ�

�
�

�
�
�þ k WðLÞ

r

�
�

�
� SðLÞ � Ŝ

ðLÞ�
�
�

�
�
�

�

þCðL�1Þ W
ðLÞ
in

�
�
�

�
�
� 0; SðL�1Þ

� �
� 0; Ŝ

ðL�1Þ� ��
�
�

�
�
�
�

ð23Þ

After simplification, Eq. (23) can be obtained as

follows:

Eq: ð23Þ / k2CðL�2Þ SðLÞ � Ŝ
ðLÞ�

�
�

�
�
� / k

L�1
Cð1Þ SðLÞ � Ŝ

ðLÞ�
�
�

�
�
�

ð24Þ

Because the range of the leaky rate k is ½0; 1�, Lipschitz
constant CðLÞ is thus the same. As the bound of

jjFðLÞð0; SðLÞÞ � FðLÞð0; ŜðLÞÞjj is found to be a constant, the

EBDEN satisfies the echo state property.

3.3 Quantitative analyzation for the BO
and multiple-scale mechanisms

As described in Sect. 3.2, the theoretical level analyzation

has proved that the architecture of the multiple-scale

reservoir can be contractive. Considering that the echo

state network with multiple-scale architecture will bring

much more hyper-parameters than that with single-scale

architecture, the Bayesian optimization (BO) in this paper

is used to tune the hyper-parameters. The identical input

time-series datasets are learnt by the EBDEN and EBDEN,

which does not contain BO (EBDEN without BO). Except

for the number of scales between EBDEN and EBDEN

without BO, all configurations for these two models are

kept consistent, with each result repeated 10 times.

The necessity of the BO for EBDEN is demonstrated in

Fig. 3, and the testing error is used as the metric. It can be

seen that the EBDEN and EBDEN without BO achieve the

comparable performances when the number of scale equals

1. As for the performance of EBDEN without BO, it is not

converged with the number of scales in accordance with

the blue line in Fig. 3a. When there is an increase in the

number of scales, more hyper-parameters are needed to be

tuned, giving rise to the instability of the performance of

the network if large amounts of the hyper-parameters are

inadequately chosen. As comparison, the testing errors of

EBDEN shrink with the number of scales, mainly owing to

the BO mechanism of searching the appropriate hyper-

parameters.

Furthermore, for the sake of quantitatively analyzing the

necessity of the multiple-scale mechanism, we apply the

memory capacity [35, 36] to measuring the effectiveness of

ESNs. In this section, the performance of the short-term

memory capacity between EBDEN and shallow EBDEN is

compared by evaluating the models’ compactness of

recalling delayed time series. The calculation procedure of

the memory capacity is:

C ¼
X1

k¼0
Corrðŷðt � sÞ; yðtÞÞ2 ð25Þ

where C and Corrð:Þ denote the memory capacity and the

correlation operator, respectively. From the above, it is

observed that memory capacity is the computation of the

squared correlation coefficient between the prediction yðtÞ
and target ŷ with delay s. Noticeably, the delay s varies

from 0 to the number of the input samples.

From Fig. 3b, c, the performance of EBDEN is seen to

be superior to that of shallow EBDEN in the same con-

figuration (such as leaky rates k and spectral radius q).
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3.4 Quantitative analyzation for BO versus grid
search

In this section, the efficiency of using BO to optimize the

EBDEN is measured by the comparison with that of using

the grid search mechanism. It is worth noting that the range

of the parameter configures is invariable when two opti-

mization mechanisms are used. The space of the hyper-

parameters for EBDEN is: the number of the units in each

reservoir N N 2 ð100; 1000Þf g, the scaling coefficient

x x 2 ð0; 1Þf g, the sparsity connection degree

g g 2 ð0:001; 1Þf g, the spectral radius q q 2 ð0; 1:25Þf g, the
leaky rate k k 2 ð0; 1Þf g and the number of scales

L L 2 ð1; 10Þf g. Moreover, there are 100 points initialized

by BO in EBDEN, with the maximum number of iteration

and the convergence criterion for BO pre-defined as 1000

and 0.001, respectively. With respect to the model EBDEN

with grid search optimization, each hyper-parameter is

taken 6 values as: the number of the units in each reservoir

N N 2 ð100; 325; 550; 775; 1000Þf g, the scaling coefficient

x x 2 ð0; 0:25; 0:5; 0:75; 1Þf g, the sparsity connection

degree g g 2 ð0:001; 0:0056; 0:031; 0:17; 1Þf g, the spectral

radius q q 2 ð0; 0:312; 0:625; 0:937; 1:250Þf g, the leaky

rate k k 2 ð0; 0:25; 0:5; 0:75; 1Þf g and the number of scales

L L 2 ð1; 3; 5; 8; 10Þf g.
The experiments are performed on the three datasets that

are described in Sect. 3.1. Besides, two metrics, such as

time-consuming and test error, are used to measure the

performance of EBDEN and EBDEN with grid search

optimization. The experimental results are shown in

Table 1.

As can be seen from Table 1, EBDEN can not only

speed up the search of suited hyper-parameters in com-

parison with EBDEN with grid search optimization, but

also achieve smaller test errors.

3.5 Quantitative analyzation for ensemble
architecture

As mentioned in Sect. 2.3, several echo state networks are

ensembled in EBDEN to restrict the redundant computa-

tion for each time domain channel. In this section, the edge

of the ensemble architecture for EBDEN is explored by

measuring whether it can contribute to the performance

improvement of modeling the MTS dataset or not. The

experiment is benchmarked on time-series dataset with 30

channels by comparing the performance between the

EBDEN, EBDEN without ensemble and EBDEN with

global ensemble. Note that the EBDEN without ensemble

model means that all of the time-series’ datasets are

incorporated into the same echo state network architecture

and the mean value performance is computed. EBDEN

with global ensemble model signifies that every channel’s

Fig. 3 The characteristics of EBDEN and shallow EBDEN. a The

performances of EBDEN and EBDEN without BO with the number of

scales. b The performances of EBDEN and shallow EBDEN with

different leaky rates k. c The performances of EBDEN and shallow

EBDEN with dissimilar spectral radii q

Table 1 The performance of

EBDEN versus EBDEN with

grid search

Dataset EBDEN EBDEN with grid search

Time-consuming (s) Test error Time-consuming (s) Test error

Mackey–Glass 3792.605 0.0316 59,807.70194 0.0345

NARMA 4881.858 0.045 36,845.121 0.045

SantaFe Laser 305.535 0.005 1041.878 0.006
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datasets are modeled by one echo state network (30

ensembles), with the performance shown in Fig. 4.

As is seen from Fig. 4, the number of ensembles for

EBDEN ranges is within [1, 6]. As the number of the

ensemble grows, the test error of EBDEN decreases into

[0.057, 0.032]. When the ensemble number equals 6, the

performance of EBDEN gets close to EBDEN with global

ensemble.

Except for the comparison between the EBDEN with

global ensemble and EBDEN in Fig. 4, in order to measure

the necessary for the ensemble learning module in EBDEN,

the prediction performance between the EBDEN and

SESNE [22] which uses the simple least square regression

is also compared. As described in Sect. 1, the optimal

procedure is not contained in SESNE, but EBDEN uses the

loss function with optimal weights in Eq. (13) to account

the importance of MTS’s channel individually. From

Fig. 5, it can be clearly seen that the performance of

EBDEN can be converged at 7 ensemble numbers, but the

performance of SESNE cannot be converged with the

number of ensembles. Figure 5 shows the optimal loss

function of EBDEN can effectively improve the perfor-

mance of the ensemble organization of the echo state

network.

4 Results

All the computation models in this paper are implemented

on a TITIAN X Nvidia graphic card with the dual-core

Intel CPU processor in Windows environment. Moreover,

EBDEN is applied to the classification and fitting problems

by using SVM and RC to settle the issue of the readout

weight according to Eq. (7). In order to ensure the strict-

ness, all the experiments in Sects. 4.1, 4.2 and 4.3 are

repeated 10 times. The critical difference diagram is

depicted in Figs. 5, 6 and 7 to describe the statistically

significant scores according to the corresponding proba-

bility between two comparisons [37]. The critical distance

is controlled by the critical difference and number of

comparisons.

4.1 Results for multivariate time-series datasets

When dealing with the MTS sets, the datasets comprise

multiple time domain channels for each time step. In this

study, three representative models for the MTS dataset are

Fig. 4 The characteristic of EBDEN with the number of the

ensembles

Fig. 5 The performance

comparison between EBDEN

and SESNE

Fig. 6 The critical difference diagram for the comparison of EBDEN

with five feature-based models

Fig. 7 The critical difference diagram for the comparison of EBDEN

with six deep-learning-based models
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used: (1) feature-based models, (2) ensemble-based models

and (3) deep-learning-based models.

With regard to the feature-based models, the hidden

Markov model (HMM) [38] is used as the baseline model.

The autoregressive kernel (AR) [39] utilizes the matrix

normal-inverse Wishart prior to the measurement of the

similarity between two MTS. The distances between the

time series as the features are measured by DTW [40] and

incorporated into machine learning. In terms of learned

pattern similarity (LPS) [41], it models the dependency

between the time stamps by local autopatterns. Time-series

feature selection (TSFE) [40] computes thousands of time-

series features before selecting some discriminative fea-

tures by greedy forward selection technique with the linear

classifier.

As for the deep-learning-based models, six contrasts,

such as the temporal convolutional neural network [5], the

time-series encoder (TSE) [6], the multi-channel deep

convolutional neural network (MCDCNN) [7] and time-

CNN [8], are mentioned in Sect. 1. The multi-scale con-

volutional neural network (MSCNN) [42] introduces the

Window Slicing (WS) operator as the feature augmentation

method and uses transformation, local convolution and full

convolution stages to learn these features. Besides, multi-

ple layer perceptron (MLP) [5] consists of 4 layers con-

nected by full connection to model the time-series datasets.

To model the time-series, autoregressive forest [43]

(AF) applies the autoregressive learning mechanism to the

tree-based architecture regarding the ensemble-based

models. The shapelet ensemble (SE) [44] captures the

shapelet subsequence ensembles for time-series sets to

measure the similarity between the series. Symbolic rep-

resentation for multivariate time series (SMTS) [45]

regards the code book as the word to label the leaf node

trained by random forest.

The comparison of experiment results for EBDEN with

feature-based models on 12 MTS sets is shown in Table 2.

The contrasts contain HMM, AR, feature DTW, LPS and

TSFE. From Fig. 6, it can be seen that EBDEN achieves 7

wins, while the HMM, AR, feature DTW, LPS and TSFE

achieve 1, 3, 2, 3, 6 wins, respectively. TSFE holds the first

rank of these models, with which EBDEN achieves a

comparable performance. In our view, this is mainly due to

the performance on UWave, in which TSFE visibly out-

performs the EBDEN model.

Table 3 shows the comparison between EBDEN and

deep-learning-based models. Thus, it can be seen that

EBDEN wins 8 datasets out of the whole 12 datasets, while

the other contrasts win 0, 9, 3, 0, 0, and 0 datasets,

respectively. Hence, it can be said that EBDEN achieves

the comparable performance with TCNN and is superior to

other contrasts on MTS datasets, which is supported by the

results of the critical difference diagram in Fig. 7. More-

over, the performance of EBDEN is comparable with

TCNN.

Table 4 shows the comparison between the EBDEN and

three ensemble-based models. The former achieves the 8

wins, while AF, SE and SMTS achieve 2, 5 and 3 wins,

respectively. This data indicates the good performance of

models SE and EBDEN on MTS sets. According to Fig. 8,

EBDEN achieves the first rank among these contrasts and

dramatically outperforms other models.

4.2 Results for chaotic series representation

To our best knowledge, chaotic series analyzation has been

used in wide range fields, such as radar detection [46],

chemical reaction [47] and EEG signal reaction [48].

Owing to the intricate mathematical formulations, Chaotic

series are, however, always hard to be learnt. In this

Table 2 Performance of five

feature-based time-series

models and EBDEN on 12

datasets

Datasets HMM AR Feature DTW LPS TSFE EBDEN

AUSLAN 0.56 0.91 0.72 0.75 0.95 0.98

ArabicDigits 0.97 0.98 0.90 0.97 0.99 0.97

CMUsubject16 0.99 1.00 0.93 1.00 1.00 1.00

CharacterTrajectories 0.91 0.90 0.94 0.96 0.97 0.99

ECG 0.84 0.82 0.79 0.82 0.88 0.84

JapaneseVowels 0.95 0.98 0.96 0.95 0.97 0.99

KickvsPunch 0.64 0.92 0.60 0.90 1.00 0.93

Libras 0.91 0.95 0.88 0.90 0.89 0.90

NetFlow 0.91 0.89 0.97 0.96 0.96 0.97

UWave 0.50 0.90 0.91 0.98 0.97 0.90

Wafer 0.93 0.96 0.97 0.96 0.99 0.99

WalkvsRun 1.00 1.00 1.00 1.00 1.00 1.00

Total wins 1 3 2 3 6 7
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section, the performance of EBDEN is evaluated on three

chaotic attractor datasets.

Two contrasts of TSE and MCDCNN are employed as

the contrasts in this section. Furthermore, testing error is

used as the metric for chaotic series representation. Fig-

ures 9 and 10 show the testing outputs and errors,

respectively. Since the activation time length is too long,

simply the X-axis of these attractors and 100 out of 2500

samples are captured in the figures.

From Figs. 9 and 10, it can be seen that the TSE model

outputs the curves with highest testing errors on Lorenz

and Mackey–Glass attractors. And MCDCNN model out-

puts the curve with highest testing errors on Rossler

attractor. But for the EBDEN model, it outputs the curves

with small testing errors and achieves high goodness-of-fit

performance on all three chaotic attractors, which promi-

nently surpasses TSE and MCDCNN. (The testing errors of

EBDEN approach 0 in Fig. 10.)

4.3 Results for Dansgaard–Oeschger component
estimation

The Dansgaard–Oeschger is the gradual cooling current

when there are abrupt increases in the North Atlantic

region’s surface temperature of up to 15 over a few decades

[49]. The Dansgaard–Oeschger effect is exploited by the

recording of the time series of the Greenland ice cores

collected by the INTIMATE project. Accordingly, the

Ca2? and d18O are two essential elements to influence the

Dansgaard–Oeschger events, the tendency of which is thus

predicted by EBDEN when 2000 time-series sets are used

as the training dataset and 2500 and 2000 time-series sets

as the corresponding testing datasets. Moreover, the Dee-

pESN [19] which uses the recursive least square is deemed

as the contrast model in this experiment.

As shown in Fig. 11, EBDEN achieves the comparable

and even relatively better performance than DeepESN.

From Fig. 11a, b, when meeting with the irregular points

like extremum points, the performance of EBDEN is better

than that of DeepESN.

Table 3 Performance of six

deep-learning-based time-series

models and EBDEN on 12

datasets

Datasets MLP TCNN TSE MSCNN MCDCNN Time-CNN EBDEN

AUSLAN 0.93 0.98 0.94 0.01 0.85 0.72 0.98

ArabicDigits 0.97 0.99 0.98 0.10 0.96 0.96 0.97

CMUsubject16 0.63 1.00 0.98 0.53 0.52 0.98 1.00

CharacterTrajectories 0.97 0.99 0.97 0.05 0.93 0.96 0.99

ECG 0.75 0.87 0.87 0.67 0.53 0.84 0.84

JapaneseVowels 0.98 0.99 0.97 0.10 0.94 0.96 0.99

KickvsPunch 0.61 0.56 0.63 0.54 0.54 0.62 0.93

Libras 0.78 0.97 0.80 0.07 0.65 0.64 0.90

NetFlow 0.52 0.89 0.78 0.78 0.63 0.89 0.97

UWave 0.90 0.93 0.90 0.13 0.84 0.86 0.90

Wafer 0.89 0.98 0.99 0.89 0.66 0.94 0.99

WalkvsRun 0.70 1.00 1.00 0.75 0.5 1.00 1.00

Total wins 0 9 3 0 0 0 8

Table 4 Performance of three ensemble-based time-series models

and EBDEN on 12 datasets

Datasets AF SE SMTS EBDEN

AUSLAN 0.93 0.95 0.94 0.98

ArabicDigits 0.95 0.95 0.96 0.97

CMUsubject16 1.00 1.00 0.99 1.00

CharacterTrajectories 0.92 0.97 0.99 0.99

ECG 0.78 0.88 0.81 0.84

JapaneseVowels 0.95 0.80 0.96 0.99

KickvsPunch 0.97 1.00 0.82 0.93

Libras 0.94 0.91 0.90 0.90

NetFlow 0.82 0.92 0.97 0.97

UWave 0.95 0.92 0.94 0.90

Wafer 0.93 0.95 0.96 0.99

WalkvsRun 1.00 1.00 1.00 1.00

Total wins 2 5 3 8

Fig. 8 The critical difference diagram for the comparison of EBDEN

with three ensemble-based models
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5 Conclusions

The brain can give inspiration for echo state models to code

various time-series datasets, such as multivariate and

chaotic time series. In this paper, a novel echo state com-

putation framework, called ensemble Bayesian deep echo

network, is proposed and applied to model the time-series

datasets in this paper.

There are three key contributions for this paper. First,

the bidirectional multiple-scale reservoirs across the time

step are fused to construct the deep architecture of the

ensemble Bayesian deep echo network, which is demon-

strated by the contraction mapping analyzation in this

paper to own the higher memory capacity than that for the

shallow reservoirs. The second contribution is Bayesian

optimization used in the network to select the suitable hy-

per-parameters, which can activate the network to achieve

great performance. Different from traditional echo state

networks, the hyper-parameters are not kept fixed in the

ensemble Bayesian deep echo network. Third, the ensem-

ble Bayesian deep echo network can avoid redundant

computing when encountering with multiple channels of

multivariate time series by the ensemble mechanism.

Due to these contributions, the ensemble Bayesian deep

echo network can be used as a high-performance brain-like

computational framework for solving realistic problems,

such as multivariate time-series classification, chaotic

attractors-based time-series representation and Dansgaard–

Fig. 9 Three representation performances of chaotic attractor models.

a The performance of three models on Lorenz attractors. b The

performance of three models on Mackey–Glass attractors. c The

performance of three models on Rossler attractors

Fig. 10 Three testing error performances of chaotic attractor models.

a The performance of three models on Lorenz attractors. b The

performance of three models on Mackey–Glass attractors. c The

performance of three models on Rossler attractors
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Oeschger component estimation tasks. Besides, it can

bridge the gap between bio-inspired networks and con-

ventional neural network models.

Acknowledgements This work was supported by the National Sci-

ence Foundation for Young Scientists of China (61801338), the

National Natural Science Foundation of China (61874079 and

61574102), the Wuhan Research Program of Application Foundation

(2018010401011289) and the Luojia Young Scholars Program.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict of

interest.

References

1. Lin P, Chang S, Wang H, Huang Q, He J (2018) SpikeCD: a

parameter-insensitive spiking neural network with clustering

degeneracy strategy. Neural Comput Appl 5786:1–13. https://doi.

org/10.1007/s00521-017-3336-6

2. Hu R, Chang S, Wang H, He J, Huang Q (2018) Efficient multi-

spike learning for spiking neural networks using probability-

modulated timing method. IEEE Trans Neural Netw Learn Syst

99:1–14. https://doi.org/10.1109/TNNLS.2018.2875471

3. Sheng P, Han J, Hua W, Hathal A, Yu Z, Mazrouei SM (2018)

Modulation classification based on signal constellation diagrams

and deep learning. IEEE Trans Neural Netw Learn Syst

30:718–727. https://doi.org/10.1109/TNNLS.2018.2850703

4. Tang ZR, Chang S, Ma QM, Zhu RH, He J, Wang H, Huang QJ

(2018) A hardware friendly unsupervised memristive neural

network with weight sharing mechanism. Neurocomputing

332:193–202. https://doi.org/10.1016/j.neucom.2018.12.049

5. Wang Z, Yan W, Oates T (2017) Time-series classification from

scratch with deep neural networks: a strong baseline. In: Pro-

ceedings IJCNN, pp 2161–2161-8

6. Serra J, Pascual S, Karatzoglou A (2018) Towards a universal

neural network encoder for time series. In: International confer-

ence of the Catalan Association for Artificial Intelligence,

pp 120–129

7. Zheng Y, Liu Q, Chen E, Ge Y, Zhao JL (2016) Exploiting multi-

channels deep convolutional neural networks for multivariate

time series classification. Front Comput Sci 10:96–112. https://

doi.org/10.1007/s11704-015-4478-2

8. Zhao B, Lu H, Chen S, Liu J, Wu D (2017) Convolutional neural

networks for time series classification. Syst Eng Electron

28:162–169. https://doi.org/10.1007/978-3-319-59060-8_57

9. Karim F, Majumdar S, Darabi H, Chen S (2018) LSTM fully

convolutional networks for time series classification. IEEE

Access 6:1662–1669. https://doi.org/10.1109/ACCESS.2017.

2779939

10. Ibrahim AO, Shamsuddin SM, Abraham A (2012) Adaptive

memetic method of multi-objective genetic evolutionary algo-

rithm for backpropagation neural network. Neural Comput Appl

31:4945–4962. https://doi.org/10.1007/s00521-018-03990-0

11. He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep

residual networks. In: Proceedings ECCV, pp 630–645

12. Yang C, Qiao J, Wang L (2018) Dynamical regularized echo state

network for time series prediction. Neural Comput Appl

31:6781–6794. https://doi.org/10.1007/s00521-018-3488-z

13. Hu R, Huang Q, Wang H, Chang S (2019) Monitor-based spiking

recurrent network for the representation of complex dynamic

patterns. Int J Neural Syst 29:1950006–1950023. https://doi.org/

10.1142/s0129065719500060

14. Jaeger H, Haas H (2004) Harnessing nonlinearity: predicting

chaotic systems and saving energy in wireless communication.

Science 304:78–80. https://doi.org/10.1126/science.1091277

15. Li Q, Wu Z, Zhang H (2020) Spatio-temporal modeling with

enhanced flexibility and robustness of solar irradiance prediction:

a chain-structure echo state network approach. J Clean Prod

261:1–10. https://doi.org/10.1016/j.jclepro.2020.121151

16. Wu Z, Li Q, Xia X (2020) Multi-timescale forecast of solar

irradiance based on multi-task learning and echo state network

approaches. IEEE Trans Ind Inf. https://doi.org/10.1109/TII.2020.

2987096

17. Gallicchio C, Micheli A (2017) Echo state property of deep

reservoir computing networks. Cognit Comput 9:337–350.

https://doi.org/10.1007/s12559-017-9461-9

18. Chen S, Chen M (2013) Addressing the advantages of using

ensemble probabilistic models in estimation of distribution

algorithms for scheduling problems. Int J Prod Econ 141:24–33.

https://doi.org/10.1016/j.ijpe.2012.05.010

19. Qiao J, Li F, Han H, Li W (2017) Growing echo-state network

with multiple subreservoirs. IEEE Trans Neural Netw Learn Syst

28:391–404. https://doi.org/10.1109/TNNLS.2016.2514275

20. Li Z, Zheng Z, Outbib R (2019) Adaptive prognostic of fuel cells

by implementing ensemble echo state networks in time-varying

model space. IEEE Trans Ind Electron 67:379–389. https://doi.

org/10.1109/TIE.2019.2893827

21. Bacic B (2016) Echo state network ensemble for human motion

data temporal phasing: a case study on tennis phasing: a case

Fig. 11 Part of testing results for Ca2? and d18O from EBDEN and

DeepESN

Neural Computing and Applications (2021) 33:4997–5010 5009

123

https://doi.org/10.1007/s00521-017-3336-6
https://doi.org/10.1007/s00521-017-3336-6
https://doi.org/10.1109/TNNLS.2018.2875471
https://doi.org/10.1109/TNNLS.2018.2850703
https://doi.org/10.1016/j.neucom.2018.12.049
https://doi.org/10.1007/s11704-015-4478-2
https://doi.org/10.1007/s11704-015-4478-2
https://doi.org/10.1007/978-3-319-59060-8_57
https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/10.1007/s00521-018-03990-0
https://doi.org/10.1007/s00521-018-3488-z
https://doi.org/10.1142/s0129065719500060
https://doi.org/10.1142/s0129065719500060
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.jclepro.2020.121151
https://doi.org/10.1109/TII.2020.2987096
https://doi.org/10.1109/TII.2020.2987096
https://doi.org/10.1007/s12559-017-9461-9
https://doi.org/10.1016/j.ijpe.2012.05.010
https://doi.org/10.1109/TNNLS.2016.2514275
https://doi.org/10.1109/TIE.2019.2893827
https://doi.org/10.1109/TIE.2019.2893827


study on tennis forehands. Int Conf Neural Inf Process. https://

doi.org/10.1007/978-3-319-46681-1_2

22. IbanezSoria D, SoriaFrisch A, GarciaOjalvo J, Ruffini G (2018)

Echo state networks ensemble for SSVEP dynamical online

detection. https://doi.org/10.1101/268581
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