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Abstract
Although a large number of solutions have been proposed to handle imbalanced classification problems over past decades,

many researches pointed out that imbalanced problem does not degrade learning performance by its own but together with

other factors. One of these factors is the overlapping problem which plays an even larger role in the classification

performance deterioration but is always ignored in previous study. In this paper, we propose a density-based adaptive

k nearest neighbor method, namely DBANN, which can handle imbalanced and overlapping problems simultaneously. To

do so, a simple but effective distance adjustment strategy is developed to adaptively find the most reliable query neighbors.

Concretely, we first partition training data into six parts by density-based method. Next, for each part, we modify distance

metric by considering both local and global distribution. Finally, output is made by the query neighbors selected in the new

distance metric. Noticeably, the query neighbors of DBANN are adaptively changed according to the degree of imbalance

and overlap. To show the validity of our proposed method, experiments are carried out on 16 synthetic datasets and 41 real-

world datasets. The results supported by the proper statistical tests show that our proposed method significantly outper-

forms the state-of-the-art methods.
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1 Introduction

Imbalance classification, which has been widely applied in

different scenarios including industrial manufacturing

[1, 2], financial management [3, 4], biomedical engineering

[5], information technology [6] and etc., is one of the

critical issues in machine learning and data mining.

Imbalanced datasets indicate a skewed distribution, namely

the instances of one class outnumber the instances of other

classes. Most of the standard classifiers tend to bias toward

the majority class thus leading to high misclassification rate

of minority instances. Imbalanced problem is commonly

viewed as a main challenge to classification and has

attracted great attention [7].

Existing solutions for imbalanced problem can be

roughly grouped into four categories: resampling tech-

niques, algorithm modification methods, cost-sensitive

learning approaches and ensemble learning methods.

• Resampling techniques aim to rebalance the training

dataset by means of some mechanisms to generate a

more or less balanced class distribution which is

suitable for standard classifiers [8, 9].

• Algorithm modification methods try to adjust the

structure of standard classifiers to diminish the effect

caused by class imbalance [10].

• Cost-sensitive learning approaches generally consider

higher cost for minority class to compensate for the

scarcity of minority data [11].

• Ensemble learning methods are originally developed to

enhance the classification ability by combining differ-

ent single classifiers. Moreover, researchers modify
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ensemble algorithms to adapt to imbalanced problem

and show promising results [12–14].

In addition to imbalanced problem, overlapping between

classes is convinced as another factor which degrades the

learning performance [15, 16]. Overlap appears when a

region contains almost equal numbers of instances from

different classes. This situation results in a roughly same

prior probability for each class and thus brings a strong

handicap for classification. Overlapping problem is per-

vasive in many real-world applications such as fault diag-

nosis [17], character recognition [18], speech classification

[19] and drug design [20]. In these scenarios, instances

from different classes usually have similar characteristics

in the feature space. For example, in character recognition,

letters ‘O’, ‘o’ and numeral ‘0’ have almost identical shape

which results in an overlapping region in the feature space

therefore hard to separate. Previous investigations have

shown that overlap degrades classification performance

even more severely than imbalance [21]. To clearly present

the relationship between two factors, a series of experi-

ments are conducted by varying the degree of imbalance

and overlap in the dataset. The conclusions state that

learning algorithms can yield competitive performance

when dataset has low overlapping degree combined with

high imbalance ratio, but they are hard to achieve desirable

results in high overlapping degree even imbalance ratio is

low. This demonstrates that overlap is the main factor of

classification degeneration [21–23]. Furthermore, Denil

and Trappenberg [15] took size of dataset into considera-

tion, and the study revealed that in small datasets the

learning process is hindered by imbalance and overlap,

respectively. However, when training data are sufficient,

two factors jeopardize the learning performance interact.

Currently, most of the researches deal with overlapping

and imbalanced problems separately. However, in practical

application level, overlapping problem frequently occurs in

imbalanced data which poses a greater challenge to clas-

sification. Although a few papers attempt to consider both

factors as a whole [24, 25], the structures of related algo-

rithms are too complex to implement. To fill this gap, we

propose a density-based adaptive nearest neighbor method

(DBANN) which can deal with these two problems

simultaneously with a simple structure. The main idea of

DBANN is to develop an adaptive distance adjustment

strategy which devotes to defining and making use of

reliable query neighbors. To the best of our knowledge, our

approach is the first kNN-based method which aims to

combat both imbalanced and overlapping problems. The

main contributions of our study can be summarized as

follows:

• We propose a density-based kNN method named

DBANN which can handle imbalanced and overlapping

problems simultaneously.

• To enhance classification ability, we develop a distance

adjustment strategy using density-based methods to

adaptively find out the most reliable query neighbors.

• To validate the effectiveness of DBANN, we compare

with other state-of-the-art methods on 16 synthetic

datasets and 41 real-world datasets, respectively.

The outline of this paper is organized as follows: The

related works are described in Sect. 2. In Sect. 3, we

introduce our proposed method DBANN. Section 4 pre-

sents extensive experiments on both synthetic and real-

world datasets. Results and discussion are shown in

Sect. 5. Finally, Conclusions are presented in Sect. 6.

2 Related works

2.1 Overlapping problem in imbalanced datasets

In binary classification, imbalanced data refer to the dis-

tribution when instances of one class outnumber the other

one, as shown in Fig. 1a. In this situation, minority class is

hard to be recognized by standard classifiers which prefer

to take a good coverage of majority class for achieving

desirable global performance. However, in real applica-

tions, minority class always contains critical information

we need, such as scrap part data within all products, patient

information among all people. Therefore, it is imperative to

take a deep insight into the data intrinsic characteristic in

imbalanced data. With this in mind, we realize that

imbalanced data dose not hinder learning ability by its own

but together with some other factors, such as size of a

dataset [21, 26], noise [27, 28], small disjunct [29, 30] and

data shift [31, 32].

Overlap occurs in the region where both classes co-exist

and is viewed as one of the main obstacles to classification

[15], as depicted in Fig. 1b. In such region, the probability

of each class is approximately equal which gives rise to

high misclassification rate. In order to quantify overlapping

degree for individual feature dimension, Ho and Basu [33]

proposed a metric called maximum Fisher’s discriminant

ratio (F1), as shown in Eq. (1) where l1; l2;r1; r2 indicate
the means and variances of the two classes, respectively.

For a multidimensional dataset, the maximal f among all

the features is defined as F1. Datasets with a low value of

F1 will have a high degree of overlap and vice versa. To

overcome overlapping problem, some researchers tended to

change data distribution before modeling. Tang [16] firstly

transformed original data into a more separated data dis-

tribution throughout overlapping pattern extraction and
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rough set theory, and then a proposed DR-SVM is imple-

mented on the transformed data. Batista et al. [34] used

data cleaning techniques to cope with highly overlapping

data and achieved desirable results. Similarly, in order to

better prepare the data for classification, other pre-pro-

cessing methods such as data selection and feature selec-

tion are proposed in [35, 36]. However, the pre-processing

methods may involve the risk of noise introduction or

information loss. Xiong et al. [37] found that modeling the

overlapping and non-overlapping regions, respectively, is a

promising scheme for solving class overlapping problem.

Follow this line of thinking, Vorraboot et al. [38] first

partitioned training data into non-overlapping region, bor-

derline region and overlapping region. Afterward, different

techniques were employed for different regions. Finally,

the outputs of all techniques were combined. Nevertheless,

the study is only suitable for two Gaussian classes with

independent and identical distributions.

f ¼ l1 � l2ð Þ2

r21 þ r22
ð1Þ

In the real-world application cases, overlapping problem

and imbalanced problem co-exist frequently in the dataset

but are always ignored in previous studies. Figure 1c marks

such two overlapping regions with circles. Comparing with

Fig. 1b, we can find that overlapping regions here exhibit

comparative high density in the perspective of global dis-

tribution. That is partly attributed to the sparsity of

minority class which inversely accentuates the compact-

ness of two overlapping regions. Additionally, the imbal-

ance ratio is different in overlapping region and other

regions. It is worth noting that for some learning algorithms

which are based on a divide and conquer strategy [39], the

variation of class distribution in different regions may pose

a threat to the classification performance. Besides, over-

lapping and imbalanced problems also influence those

algorithms which are sensitive to data density such as

k nearest neighbors.

To address overlapping and imbalanced problems, Alejo

et al. [25] developed a hybrid method which combines a

modified back propagation (MBP) with a gabriel graph

editing technique (GGE). MBP copes with imbalanced

issue and GGE is responsible for overlapping problem.

Vuttipittayamongkol et al. [40] proposed an overlap-based

under-sampling method (OBU). Based on elimination of

majority instances from overlapping region, OBU

improves the visibility of minority instances. So far, the

related studies are far from enough.

2.2 kNN-based methods for dealing
with overlapping or imbalanced datasets

kNN is one of the typical non-parametric approaches which

is widely applied in diverse domains due to its simple but

powerful decision rule [41, 42]. However, when encoun-

tering imbalanced class distribution, kNN tends to lose

power on yielding competitive results [43, 44]. To cope

with it, kNN is modified to incorporate immunity against

the influence of imbalance. Concretely, Kriminger et al.

[43] proposed a class conditional nearest neighbor distri-

bution algorithm (CCNND). To mitigate the effect of

imbalanced distribution, for each class, CCNND calculates

the number of training instances which satisfies a specified

distance condition within the k nearest neighbors of a query

instance. Afterward, an empirical cumulative distribution

function (CDF) is built and the probability for each class is

computed. Dubey and Pudi [45] provided a weighting

scheme (here after called W-kNN) to address imbalanced

issue. W-kNN assigns weight to each class based on the

misclassification rate obtained by traditional kNN. Patel

[46] developed a hybrid weighted strategy (here after

called H-kNN). The main advantage is the use of dynamic

k value, i.e., small k for minority class and large k for

(a) Imbalance distribution     (b) Overlapping distribution    (c) Overlapping and imbalanced distribution

Fig. 1 Examples of imbalanced and overlapping distribution
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majority class. Therefore, H-kNN improves the ability to

fully mine the information from imbalanced distribution.

On this basis, the same author took fuzzy rule-based clas-

sification into consideration and proposed an improved

fuzzy k-nearest neighbor (here after called F-kNN) [47].

Based on fuzzy membership, the query instance is allowed

to know prior that how much its neighbors belong to a

class. Zhang and Li [48] presented a minority-biased

nearest neighbor algorithm called PNN. In order to handle

the inappropriate probability estimation for minority class,

PNN fixes the number of minority query neighbors. For

example, m-PNN means that there must be m minority

instances in query neighbors. Therefore, the number of

query neighbors changes dynamically to ensure enough

instances for probability estimation for both classes. k rare-

class nearest neighbor classification (kRNN) [49] boosts

PNN by updating the dynamic query neighbors strategy.

The new strategy reinforces the analysis of distributions

around query instances. kRNN can handle not only inter-

class imbalance but also within class imbalance. Mullick

et al. [50] proposed an adaptive learning kNN method

called Ada-kNN. It uses a class-based global imbalance

handling scheme (GIHS) to compensate for the disadvan-

tage of minority data scarcity. To assign global weight for

each class, GIHS considers both ideal class probability

(balanced distribution) and reality class probability (im-

balanced data distribution).

Overlapping problem is another obstacle for learning

algorithms with no exception to kNN, as stated in Sect. 2.1.

Garcia et al. [44] investigated the behavior of kNN when

overlap exists in imbalanced data. The results reveal that

when imbalance ratio in overlapping region equals to

global imbalance ratio, i.e., majority class dominates the

overlapping region, true positive rate (TPR) drops with the

increase in overlapping degree. Conversely, when minority

class turns to be the most represented class in overlapping

region, the TPR increases on the opposite. Additionally,

they pointed out that imbalance ratio in overlapping region

accounts more than the size of overlapping region and

global imbalance ratio. Wang et al. [51] proposed an

extremely simple but well performed algorithm called

A-kNN. It aims to form reliable query neighbors for final

decision. To do so, A-kNN modifies the distance metric to

move the reliable instances closer to the query instance.

Hence, even the query instance locates in the overlapping

region which is viewed as ambiguous and untrusted area,

the query neighbors selected after distance adjustment are

reliable. Although A-kNN is an effective solution for

overlapping problem, it cannot handle imbalanced issue.

Even though some efforts are made for kNN to enhance

the classification performance, there are still some drawbacks

remaining to be improved in further research. Firstly, previous

kNN-based methods treat imbalanced and overlapping

problems separately though the two factors always co-exist in

the real-world applications. Secondly, some modified kNN

methods choose pivot instances as query neighbors for deci-

sion making, nevertheless, the choice criterion they use con-

siders either global or local information. When data density

varies a lot in different regions, especially when imbalance

ratio is significantly different among these regions, the choice

criterion cannot work effectively anymore. Finally, previous

works ignore the influence of noisy instances which can

jeopardize the classification performance significantly. In the

following sections, we will solve above concerns with a novel

method.

3 Combating overlapping and imbalanced
problems using density-based adaptive
k nearest neighbor method (DBANN)

In this section, we expect to conquer overlapping and

imbalanced problems by a density-based strategy. For ease

of discussion, in this paper, we focus on binary class

problem even though it can be generalized to multi-class

problem. Considering a given training dataset D with N

instances, D ¼ x1; y1ð Þ; x2; y2ð Þ. . . xn; ynð Þf g, where xi 2 X

is a training instance in m dimensions, x is a query instance.

Traditional kNN first determines the k nearest neighbors of

query instance based on euclidean distance in Eq. (2).

Then, majority vote in Eq. (3) is used to classify x. Besides,

IR in Eq. (4) indicates the imbalance ratio of a dataset,

where Nminority refers to the number of minority instances

and Nmajority refers to the number of majority instances. It is

worth noting that we use IRglobal as the imbalance ratio of

the whole dataset and IRlocal as the imbalance ratio in a

specified region in the sequent sections.

d x; xið Þ ¼
Xm

j¼1

x j � x j
i

�� ��2
 !1=2

ð2Þ

f xð Þ ¼ sgn
Xk

i

yið Þ
 !

ð3Þ

IR ¼ Nmajority

Nminority

ð4Þ

3.1 Description of reliable query neighbors

Previous studies have shown the significance of query

neighbors in classification for kNN [48, 52]. Inspired by

this, the main idea of DBANN is to seek for reliable query

neighbors which are used for majority vote. Different from

traditional kNN, DBANN selects query neighbors
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depending not only on distance but also data characteristic,

i.e., imbalanced and overlapping distribution in local and

global region. Besides, we expect the query neighbors can

adaptively change to adapt different imbalanced and

overlapping degrees. Therefore, first of all, we describe the

characteristics of reliable query neighbors as follows:

• There is no doubt that the query neighbors should be the

instances locating near around the query instance so as

to include more representative information.

• Due to the scarcity of minority data, the query

neighbors should be biased toward the minority class.

• Since instances in overlapping region are hard to

separate, it is suggested to view these instances

unreliable and lower the probability of the selection

for query neighbors.

• In most cases, noisy instance is an obstacle for

classification [28, 53, 54]. Hence, it should be avoided

to be selected as query neighbors.

• Since kNN is proved to be sensitive to data complexity

and class density [44], it is desirable to involve density

and class distribution factors into consideration.

3.2 A density-based adaptive k nearest neighbor
method (DBANN)

Most of previous researches of kNN method concentrate on

addressing imbalanced problem but overlook the influence

of overlap. Literature [51] proposes an adaptive kNN

method (A-kNN) to deal with overlapping problem. Dif-

ferent from traditional kNN, A-kNN modifies distance

metric according to overlapping degree. First of all, for

each training instance xi, A-kNN creates a reliable coeffi-

cient ri. It is the distance from a training instance xi to

another training instance xj which is the nearest neighbor

belonging to different class from xi, as listed in Eq. (5).

Based on observation, we can easily find that a lower ri
value means xi; xj

� �
locate closer to each other which

implies that high overlapping degree exists in this region;

therefore, xi is viewed as an unreliable instance and vice

versa. With this in mind, we know that ri value can mea-

sure reliable degree of xi. A high ri value implies that xi has

high reliable degree and helpful in classification, on the

contrary, a low ri value indicates that xi is useless and

unreliable. After obtaining ri for each training instance, A-

kNN adjusts and forms a new distance metric by Eq. (6).

Finally, the output is obtained by Eq. (3). Technically

speaking, A-kNN is a local method to handle overlapping

problem. However, the imbalance issue is not considered.

ri ¼ min
l:yi 6¼yj

d xi; xj
� �

ð5Þ

dnew x; xið Þ ¼ d x; xið Þ
ri

ð6Þ

In this study, we extend the concept of ri to handle both

imbalanced and overlapping problems.

Concretely, in the first step, we cluster training data into

several clusters and noisy instances by a density-based

method (we will introduce it in Sect. 3.3). To further char-

acterize the clusters, we consider overlapping issue and divide

clusters into two types with definitions listed as follows.

Definition 1 Overlapping cluster indicates that the cluster

contains both majority and minority instances.

Definition 2 Non-overlapping cluster indicates that the

cluster contains only majority or minority instances.

Therefore, after clustering, training data can be divided

into six parts: (a) minority noisy instances, (b) majority

noisy instances, (c) majority instances in overlapping

cluster, (d) minority instances in overlapping cluster,

(e) majority instances in non-overlapping cluster and

(f) minority instances in non-overlapping cluster. Figure 2

depicts the six parts in detail.

Afterward, in the second step, we assign reliable coef-

ficient ri to each training instance xi. Different from A-

kNN, we capture the distribution variation and take noise

factor into consideration. Specially, we assign ri for

training instances in each part as follows:

(a) For minority noisy instances, ri is assigned as the

distance from xi to the nearest majority neighbor.

(b) For majority noisy instances, ri is assigned as a

randomly little positive value.

(c) For minority instances in overlapping cluster, ri is

assigned as the distance from xi to the IRlocalth

nearest majority neighbor. IRlocal equals to the

imbalance ratio in the corresponding cluster which

represents the local distribution. Obviously, high

imbalance ratio expands the detection radius of xi
and obtains larger ri accordingly. Noticeably, ri also

relates to the density of a cluster. A cluster with a

high density means a large amount of instances

locating in a small region together, and even

detection radius of ri expands to the IRlocalth nearest

majority neighbor it may probably increase by only a

small value compared with low-density clusters.

(d) For majority instances in overlapping cluster, ri is

assigned as the distance from xi to the nearest

minority neighbor.

(e) For minority instances in non-overlapping cluster, ri
is assigned as the distance from xi to the IRglobal th

nearest majority neighbor. Different from IRlocal in

overlapping situation, IRglobal here is calculated by

global imbalance ratio.
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(f) For majority instances in non-overlapping cluster, ri
is also assigned as the distance from xi to the nearest

minority neighbor.

In the next step, we adjust the distance metric by

Eq. (6). We can find that the new distance metric depends

on two conditions, ri and the euclidean distance d x; xið Þ. A
training instance xi is reliable when it locates near to the

query instance x as well as possessing higher ri value. It is

obvious that, after distance adjustment the reliable instan-

ces are pulled closer to query instance and the unreliable

ones are pushed away.

Finally, majority vote is implemented in new distance

metric by Eq. (3). From the procedure introduced above,

we can find that in ri assigning procedure, our method

considers not only local but also global distribution of the

dataset.

Figure 2 illustrates the process of DBANN. The star and

circle represent the majority and minority class, respec-

tively, and the shape of hollow and solid represent the

original and current distribution (after distance adjust-

ment). Here, we only focus on the change of the instances

marked with letters. Firstly, we concentrate on points a and

b which distribute in the overlapping cluster. From the

graph, we can see two instances distributing closer to each

other which indicates that high overlapping degree exists.

Therefore, they are viewed as unreliable points and ought

to be pushed far away from the query instance by Eqs. (5)

and (6). Nevertheless, except for overlapping degree,

imbalanced issue is also considered. As a result, only

majority point b is pushed to B whereas point a is pulled to

A which is closer to query instance due to local imbalanced

ratio (IRlocal2 ¼ 2). Similar distance adjustment method is

also suitable for points c and d, and the only difference is

that point c is put closer to query instance due to higher

local imbalance ratio (IRlocal1 ¼ 7). Additionally, majority

noisy point e is pushed far away due to the little number

setting and minority noisy point f is pushed to F. As for

minority point g in non-overlapping cluster, global imbal-

ance ratio (IRglobal ¼ 3) is used to pull it to G, and majority

point h is moved to H. Consequently, after distance

adjustment, the query neighbors are point A, C, G and

query instance is predicted as minority. Details of DBANN

are listed in Algorithm 1.

Fig. 2 Description of DBANN

method
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3.3 Density-based clustering algorithm

In Sect. 3.2, we take advantage of density-based clustering

method to divide training data into different parts. Tech-

nically speaking, it is a framework of our method which

implies that many existing density-based clustering algo-

rithms are optional in DBANN. In this paper, we choose

DBSCAN as our method.

DBSCAN is a typical density-based clustering algorithm

which defines cluster as a region of high dense points

separated by regions of lower dense points. It has attracted

much attention by its desirable properties including arbi-

trary shaped clusters, automatic cluster number

identification and noise detection [55, 56]. Additionally, as

a useful method to capture data distribution, DBSCAN is

always implemented by combing with other algorithms to

enhance classification ability, especially when facing

severely complex data distribution [38, 57]. Generally,

DBSCAN characterizes density variation by resorting to

two input parameters, a positive value eps and a positive

constant integer Minpts. On this basis, some definitions of

DBSCAN are listed as follows:

Definition 1 eps-neighborhood of a point p indicates the

points within the radius eps around p.
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Definition 2 A point p is a core point if the number of its

eps-neighborhood is more than Minpts.

Definition 3 A point p is directly density-reachable from a

point q if q is a core point and p is its eps-neighborhood.

Definition 4 A point p is density-reachable from a point q

if there is a chain of points p1; . . .pn, p1 ¼ q, pn ¼ p which

satisfies that piþ1 is directly density-reachable from pi.

Definition 5 A border point p is the eps-neighborhood of a

core point q which has fewer neighbors than Minpts within

the same eps radius.

Definition 6 A noisy point p is the point neither a core

point nor a border point.

Initially, DBSCAN arbitrarily selects a point p and

retrieves all eps-neighborhood, this process is defined as

QueryNeighbour. If the number of eps-neighborhood is

larger than Minpts, point p is assigned as core point and

thus forming a new cluster, otherwise, p is assigned as a

noisy point. Subsequently, the cluster expands by adding

unvisited density-reachable points iteratively. The process

is repeated until every unvisited point is marked either in a

cluster or a noisy point. Noticeably, even a point is marked

as a noisy point initially, it may be transformed to a border

point of other cluster during cluster expanding process.

Finally, DBSCAN forms several clusters and noisy points.

Figure 3 demonstrates the process of DBSCAN

(Minpts = 4, eps is indicated by the circles). As can be seen

from the graph, point A is marked as core point at the

beginning and thus creates a new cluster. Afterward, the

cluster expands based on density measurement. It involves

all blue points in the cluster until it reaches the yellow

border points (F, G) which are the edge of the cluster. Due

to low density, points (H, I) are marked as noisy points.

The detail of DBSCAN is shown in Algorithm 2.

Fig. 3 Process of DBSCAN

Table 1 Introduction of 16 synthetic datasets

Datasets Size of positive instance Size of negative instance Imbalance ratio Two centers Overlapping degree

A1 333 667 1:2 (0.00, 0.05)

A2 200 800 1:4 (0.00, 0.05) Severe overlap

A3 100 900 1:9 (0.00, 0.05)

A4 50 950 1:19 (0.00, 0.05)

B1 333 667 1:2 (0.00, 0.50)

B2 200 800 1:4 (0.00, 0.50) Moderate overlap

B3 100 900 1:9 (0.00, 0.50)

B4 50 950 1:19 (0.00, 0.50)

C1 333 667 1:2 (0.00, 1.30)

C2 200 800 1:4 (0.00, 1.30)

C3 100 900 1:9 (0.00, 1.30) Slight overlap

C4 50 950 1:19 (0.00, 1.30)

D1 333 667 1:2 (0.00, 2.70)

D2 200 800 1:4 (0.00, 2.70) Rare overlap

D3 100 900 1:9 (0.00, 2.70)

D4 50 950 1:19 (0.00, 2.70)
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4 Experiments

In this section, experiments are carried out on 16 synthetic

datasets and 41 real-world datasets to validate the effec-

tiveness of DBANN method. The details of datasets are

described in Sect. 4.1. In Sect. 4.2, we list the comparative

algorithms and the corresponding parameters setting.

Besides, the evaluation metrics and statistical tests are

introduced in Sect. 4.3. All experiments are carried out by

using python (Version 2.7.14).
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4.1 Datasets used in the experiments

In this section, experiments are conducted on both syn-

thetic and real-world datasets. Specially, synthetic data are

generated for both classes from bivariate normal distribu-

tions. On the one hand, to explore the classification per-

formance in different overlapping degrees, the mean vector

of minority class is fixed at [0.00, 0.00], and the mean

vector of majority class is set at [0.05, 0.05], [0.50, 0.50],

[1.30, 1.30], [2.70, 2.70], respectively which represents

four overlapping degrees. In detail, mean vector of [0.05,

0.05] means the data centers of two classes are closed; thus,

severe overlapping region exists. Mean vector of [2.7, 2.7]

indicates that the two centers locate far away so that the

overlapping degree is rare. On the other hand, synthetic

data are also generated into four different imbalance ratios

by changing numbers of both classes. The description of

synthetic datasets is shown in Table 1. As for real-world

applications, we select 41 datasets from KEEL repository

[58] refers to previous research [35], as shown in Table 2.

KEEL is an open source which provides benchmark data-

sets for assessing the behaviors of the algorithms in dif-

ferent scenarios [58]. Datasets are ordered by overlapping

degree according to Fisher’s discriminant ratio (F1), in

which we can divide them into two parts, low overlapping

datasets with F1[ 1.6 and high overlapping datasets with

F1\ 1.6. Imbalance ratio (IR) of datasets ranges from 1.8

to 68.1, as shown in Table 1.

4.2 Algorithms and parameter settings

In our experiments, DBANN is compared with other

algorithms and strategies. The comparative algorithms can

be divided into three directions: (a) kNN-based methods:

The algorithms derived from k nearest neighbor are mod-

ified to address imbalanced or overlapping problems,

including W-kNN [45], kRNN [49], F-kNN [47], H-kNN

[46] and standard classifier kNN. (b) Generality-oriented

learning algorithms and strategies: CART decision tree,

support vector machine (SVM) together with data balanc-

ing methods SMOTE [59] and overlap-based under sam-

pling (OBU) [40] which are popular in handling

imbalanced and overlapping problems. (c) Ensemble

algorithms: Kd-tree-based efficient ensemble (KDE) [60],

hybrid sampling with bagging (HSB) [61] and RUSBoost

(RUS) [62] represent three effective ensemble methods of

Table 2 Introduction of 41 real-world datasets

Datasets Size Attributes IR F1

poker8vs6 1476 10 85.82 0.0153

yeast1458vs7 693 8 22.10 0.1757

glass1 213 9 1.80 0.1935

yeast1 1484 8 2.46 0.2422

yeast0359vs78 506 8 9.12 0.3113

yeast1vs7 458 7 14.26 0.3522

yeast1289vs7 946 8 30.53 0.3654

abalone918 730 7 16.38 0.6311

glass0 214 9 2.06 0.6492

yeast0256vs3789 1004 8 9.14 0.6939

winequalityred3vs5 4173 7 68.10 0.7509

yeast05679vs4 527 8 9.33 1.0515

ecoli01vs235 244 7 9.17 1.1028

vehicle0 845 18 3.27 1.1220

yeast2vs8 482 8 23.10 1.1424

yeast4 1484 8 28.09 1.2516

ecoli0146vs5 279 6 12.95 1.3345

ecoli01vs5 240 6 11.00 1.3897

ecoli3 335 7 8.57 1.3513

yeast2vs4 514 9 9.08 1.5793

ecoli046vs5 203 6 9.15 1.6030

ecoli0234vs5 202 7 9.10 1.6179

ecoli034vs5 200 7 9.00 1.6323

yeast02579vs368 1003 8 9.13 1.6361

ecoli067vs5 220 6 10.00 1.6921

ecoli2 333 7 5.44 1.8199

glass016vs5 184 9 19.44 1.8505

yeast6 1484 8 41.40 1.9674

ecoli0137vs26 281 7 39.14 2.3018

glass6 214 9 6.38 2.3913

abalone21vs8 581 10 40.50 2.4359

ecoli1 335 7 3.35 2.6396

yeast3 1484 8 8.10 2.7512

ecoli4 335 7 15.75 3.2504

glass0123vs456 213 9 3.18 3.3137

Wisconsin 683 9 1.85 3.5676

newthyroid2 215 5 5.14 3.5793

new-thyroid1 215 5 5.14 3.5793

ecoli0vs1 219 7 1.84 9.7145

shuttlec0vsc4 1829 9 13.86 12.9722

iris0 149 4 2.04 16.7971

Table 3 Confusion matrix for

binary classification
Predicted positive class Predicted negative class

Actual positive class True positive (TP) False negative (FN)

Actual negative class False positive (FP) True negative (TN)
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bagging and boosting, respectively, for imbalanced

problem.

• For kNN-based method W-kNN, kNN, F-kNN, H-kNN,

DBANN, kRNN, parameter k is chosen from original

literature which is set to 3, 3, 3, 3,3, 3,1, respectively.

The other parameter is set according to the original

literature. For DBANN, Minpts is set to 4, and eps is

chosen as the optimal value from the range [0.01, 200]

by 10-fold cross-validation.

• For generality-oriented algorithms, support vector

machine is implemented with linear kernel which

shows desirable performance in selected datasets.

SMOTE and OBU are conducted to generate an equal

number between minority class and majority class

before classification.

• For ensemble algorithms, the base classifier is decision

tree, and the number of base classifier is {10,10,40} for

KDE, HSB and RUS, respectively, according to original

literature. In KDE, k = 3, e ¼ 0:1, and in HSB, k = 3,

I = {0, 0.2, 0.4, 0.6, 0.8, 1}.

4.3 Performance measures and significance
statistical test

All experiments are carried out by employing 10-fold

cross-validation. The confusion matrix in Table 3 shows

four types of classification results. On this basis, two

indicators geometric means metric (GM) and F-measure

metric (F1) are used to evaluate the classification perfor-

mance, and detailed definitions are shown in Eqs. (7)–(11).

It can be seen from Eqs. (10) and (11) that GM considers

the proportion of correctly classified instances in both

minority and majority classes, while F1 focuses more on

the average performance of precision and recall.

To evaluate if significant difference exists among

experimental algorithms, it is necessary to use statistical

tests. Here we adopt non-parametric statistical Friedman

test and Bonferroni–Dunn post hoc test [63]. Friedman test

is first employed to detect differences among all the algo-

rithms in two indicators. After that, Bonferroni–Dunn is

applied to check out if DBANN performs significantly

better than comparative algorithms.

Recall ¼ Sensitivity ¼ TP

TPþ FN
ð7Þ

Precision ¼ TP

TPþ FP
ð8Þ

Fig. 4 Performance of DBANN with different eps in F1 and GM

Table 4 Relationship among eps, clustering situation and classifica-

tion performance on glass016vs5

No Eps C1 C2 C3 C4 C5 Noise F1 GM

1 0.01 167 9.23 0.00

3 0.10 167 9.23 0.00

4 0.20 5 4 158 31.00 68.00

5 0.30 24 20 18 4 4 96 35.59 53.00

7 1.00 116 20 6 24 37.06 42.00

8 1.50 132 18 16 34.03 52.00

9 2.00 152 4 10 53.53 72.96

10 2.50 158 4 4 45.80 64.00

11 3.00 163 3 49.40 61.00

12 5.00 167 47.63 61.00

13 200.00 167 46.56 60.00

In boldface the best result is stressed
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Specificity ¼ TN

TNþ FP
ð9Þ

F1 ¼ 2 � Recall � Precision
Recallþ Precision

ð10Þ

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity � Specificity

p
ð11Þ

To implement Friedman test, we first rank the perfor-

mance of K algorithms on each dataset, the best perfor-

mance ranks 1, the worst ranks K. When tie appears,

average rank is assigned to each algorithm. Subsequently,

we compute the Friedman statistic v2F by Eqs. (12) and

(13). Specifically, rij denotes the rank of the jth of K

algorithms on the ith of N datasets. As a result, Rj repre-

sents the average rank of the jth algorithm. Moreover, Iman

and Davenport [64] found that Friedman’s v2F was unde-

sirably conservative and created a better statistic value FF

according to F-distribution with K � 1ð Þ and

K � 1ð Þ N � 1ð Þ degrees of freedom as shown in Eq. (14).

Critical value qb is calculated by

qb ¼ F a;K� 1; K� 1ð Þ N � 1ð Þð Þ. When FF [ qb, null-

hypothesis is rejected, i.e., significant difference exists

among the comparative algorithms and vice versa. Fur-

thermore, once the null-hypothesis is rejected, the post hoc

tests Bonferroni–Dunn test is proceeded to conduct pair-

wise comparisons between DBANN and other algorithms.

Here, critical value qc is based on the studentized range

statistic divided by
ffiffiffi
2

p
[63]. The significant differences

exist when average ranks of two algorithms differ by at

least the critical difference (CD) [63]

Rj ¼
1

N

X

i

r ji ð12Þ

v2F ¼ 12N

KðK þ 1Þ
X

j

R2
j �

KðK þ 1Þ2

4

 !
ð13Þ

FF ¼ ðN � 1Þ � v2F
NðK � 1Þ � v2F

ð14Þ

CD ¼ qc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðK þ 1Þ

6 � N

r
ð15Þ

5 Results and discussion

5.1 Analyzing the critical parameters
and property of DBANN

In this section, we provide an insight into detailed prop-

erties of DBANN. We first discuss the influence of

parameter eps and parameter k on classification perfor-

mance. Afterward, we investigate the distribution of query

neighbors in DBANN. Finally, we analyze the advantage of

DBANN over other kNN-based methods.

5.1.1 eps value

eps and Minpts are two input parameters in DBSCAN.

Previous researches [55, 65] reported that Minpts has little

impact on the clustering results. Therefore, in this section

Minpts is set to 4 and eps is varied from 0.01 to 200 to

analyze its influences on classification performance. Here

we choose five real-world datasets for experiments and the

Fig. 5 Performance of DBANN with different k in F1 and GM
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results are shown in Fig. 4. It is easy to realize that eps is a

sensitive parameter which dominates the performance of

DBANN. In general, with the increase of eps, F1 and GM

experience an increasing trend with fluctuation (here we

call it phase I), and then the performance tends to be

stable at a fixed range in the end (here we call it phase II).

Noticeably, for some datasets (yeast1, glass016vs5, ablo-

ne21vs8) the optimal eps value exists in phase I, as for

others (Newthyroid2, winequalityred3vs5) the optimal eps

value exists in phase II. In this study, grid search is used to

determine the optimal eps value.

In order to reveal the root cause behind the sensitivity of

eps value, a further analysis is provided on relationship

among eps, clustering situation and classification perfor-

mance. We demonstrate this issue based on dataset

glass016vs5 and the results are shown in Table 4. We find

Fig. 6 Distribution of query neighbors in DBANN

Table 5 Imbalanced ratio (IR)

and Fisher’s discriminant (F1)
ratio in different regions

Datasets Whole region Overlapping region Non-overlapping region

IR F1 IR F1 IR F1

glass1 1.80 0.1935 0.97 0.1766 3.00 0.2088

yeast2vs4 9.08 1.5793 1.07 1.0714 12.10 1.9242
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that eps directly affects the clustering situation. When

eps\0:1, all instances are defined as noisy instances and

no clusters are formed. With the increase of eps, more

noisy instances are transferred to form clusters. When

eps ¼ 0:3 DBANN forms at most five clusters. Subse-

quently, clusters expand and merge until forming one big

cluster with no noisy instance exists at last. As a result, F1

and GM also vary according to eps as shown in the last two

columns in Table 4. Particularly, when eps ¼ 2, DBANN

achieves the optimal performance (F1 = 53.53%, GM =

72.96%) with two clusters and ten noisy instances.

As stated in Sect. 3.2, clustering results directly decide

the choice of query neighbors. Therefore, eps which

dominates the clustering situation is sensitive to classifi-

cation performance of DBANN.

5.1.2 k value

To analyze the influence of k value, we fix the setting of

eps at the optimal value and vary k, k ¼ 1:2:3; . . .; 60 on

five real-world datasets. The classification results in Fig. 5

show that in most datasets, the classification performance

Table 6 Performance of kNN-
based methods in different

regions

Datasets Method Whole region Overlapping region Non-overlapping region

F1 GM F1 GM F1 GM

DBANN 76.23 79.72 72.50 45.20 78.44 82.93

W-kNN 79.89 84.63 61.57 31.12 81.23 86.57

glass1 kRNN 77.12 84.74 58.35 14.08 84.24 90.56

kNN 72.96 75.98 33.16 14.08 86.92 89.63

F-kNN 61.52 80.94 33.55 12.50 64.40 87.96

H-kNN 82.48 90.65 71.22 20.00 86.92 89.63

DBANN 75.36 86.28 71.00 82.79 79.62 83.62

W-kNN 71.48 83.09 55.95 53.44 80.16 81.70

yeast2vs4 kRNN 78.87 82.84 64.16 65.03 80.16 81.70

kNN 74.31 78.86 62.16 60.81 80.16 81.70

F-kNN 42.05 80.25 60.47 63.19 40.18 84.68

H-kNN 73.71 81.84 51.40 46.89 80.16 81.70

In boldface the best result in overlapping region is stressed

Table 7 Comparative results

between DBANN and kNN-
based methods in F1 on

synthetic datasets

Datasets DBANN W-kNN kRNN kNN F-kNN H-kNN

A1 42.84 35.23 39.30 33.69 41.37 43.68

A2 26.39 19.97 15.75 12.42 18.64 17.57

A3 7.75 4.91 6.78 6.15 8.48 5.73

A4 4.83 2.03 3.73 0.00 1.08 0.60

B1 47.23 41.02 44.57 38.89 44.36 46.69

B2 34.66 29.24 29.29 24.73 27.57 26.05

B3 16.87 12.45 8.25 6.23 12.89 14.60

B4 12.80 2.71 11.40 1.72 4.03 8.25

C1 75.66 69.53 74.54 73.70 67.11 72.67

C2 67.40 59.33 65.23 60.37 55.80 57.37

C3 56.28 43.53 56.36 53.97 45.39 46.24

C4 32.85 22.83 28.46 26.50 27.18 23.32

D1 94.13 92.63 94.44 94.35 86.86 92.26

D2 95.88 96.50 94.88 94.93 89.56 95.18

D3 89.37 88.33 89.34 86.80 83.94 87.54

D4 85.53 85.13 88.99 88.64 82.56 83.90

Average rank 1.5000 4.1250 2.6250 4.5000 4.3750 3.8750

Final rank 1 4 2 6 5 3

In boldface the best result in F1 is stressed
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drops with the increasing k value. Especially, when k

reaches up to 60, the performances reduce to 0. This can be

partly explained by the imbalanced solution of DBANN.

Essentially, DBANN does not generate additional synthetic

instances to compensate for minority class but increase the

probability of minority class in query neighbors selection

process. However, when k is too large, the proportion of

minority instances in query neighbors cannot increase more

even if the selection probability is 100% due to the

imbalanced distribution, which results in performance loss.

Based on our experience, when k ¼ 3, the performance is

desirable.

5.1.3 Distribution of reliable query neighbors

In this section, we investigate the distribution of query

neighbors by a series of experiments. We set k ¼ 3, eps at

the optimal value in the whole experiments. We define the

ranking for each training instance by sorting the distance

from training instances to a query instance in ascending

order, i.e., the nearest instance ranks 1.

We take glass0 dataset as an example to demonstrate

this issue. We first implement DBANN on glass0 dataset

by 10-fold cross-validation. For each run in the fold, we

record the rankings of query neighbors for all query

instances. After 10-fold cross-validation, we get the whole

rankings. For example, we have 90 training instances and

10 query instances in onefold. In each run, we record the

rankings of the three query neighbors for each query

instance thus there are 30 rankings. After 10-fold cross-

validation, there are totally 300 rankings which are used

here for analysis. To facilitate the observation, we calculate

the proportion of rankings in different intervals (1st, 2nd–

3rd, 4th–5th, 6th–7th, 8th–9th, 10%th–20%th, 20%th–

100%th), and the result is shown in Fig. 6a. Obviously,

different from traditional kNN, the distribution of query

neighbors of DBANN is not 100% k nearest neighbors

anymore. Actually, the proportion of first three rankings

(traditional kNN) only accounts for 13.83%, and the largest

proportion of query neighbors distributes in the rankings in

10%th–20%th among all the training instances. Noticeably,

the instance locates far away from the query instance

Table 8 Comparative results

between DBANN and kNN-
based methods in GM on

synthetic datasets

Datasets DBANN W-kNN kRNN kNN F-kNN H-kNN

A1 54.38 48.66 54.66 45.14 57.94 63.28

A2 36.98 40.25 32.08 24.81 37.30 36.16

A3 21.19 15.81 14.05 11.40 20.17 15.66

A4 13.12 6.99 5.16 0.00 2.37 1.31

B1 62.44 56.31 59.39 49.96 62.23 67.08

B2 56.37 50.44 48.80 40.09 48.23 45.91

B3 39.68 31.80 18.08 11.65 30.45 32.10

B4 33.60 8.49 17.93 2.81 9.37 17.12

C1 85.31 79.84 84.07 79.36 87.55 87.61

C2 83.86 74.97 78.65 70.10 75.23 70.23

C3 79.83 64.86 71.65 65.46 69.28 65.02

C4 66.04 43.03 42.38 36.54 46.72 40.71

D1 96.61 95.71 96.81 95.99 98.24 96.97

D2 98.05 98.36 97.39 96.66 97.46 96.82

D3 97.65 95.04 95.03 91.11 95.28 93.28

D4 96.37 92.41 92.70 92.14 91.64 91.23

Average rank 1.7500 3.5625 3.4375 5.6875 2.875 3.6875

Final rank 1 4 3 6 2 5

In boldface the best result in GM is stressed

Table 9 Results of the Friedmen test and the Bonferroni–Dunn test among kNN-based methods on synthetic datasets

(CD ¼ 1:7038; qb ¼ 2:9013)

Table v2F FF W-kNN kRNN kNN F-kNN H-kNN FR

Table 7 32.2857 10.1497 2.6250 1.1250 3.0000 2.8500 2.3750 [ qb

Table 8 37.8571 13.4746 1.8125 1.6875 3.9375 1.1250 1.9375 [ qb

In boldface the algorithm which has significant difference from DBANN is stressed
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(rankings in 20%th–100%th) also can be selected as query

neighbors even though the proportion is only 2.19%. This

partly shows that DBANN considers not only the local but

also the global distribution in the selection of query

neighbors.

To make a better understanding of the query neighbor

selection mechanism, we expand the experiments on 16

Table 10 Comparative results

between DBANN and kNN-
based methods in F1 on real-

world datasets

Datasets IR F1 DBANN W-kNN kRNN kNN F-kNN H-kNN

poker8vs6 85.82 0.0153 2.27 19.00 0.00 0.00 0.00 5.00

yeast1458vs7 22.10 0.1757 21.43 10.58 7.33 0.00 0.00 10.71

glass1 1.80 0.1935 76.23 79.89 77.12 72.96 61.52 82.48

yeast1 2.46 0.2422 56.26 50.93 54.80 51.59 49.21 55.36

yeast0359vs78 9.12 0.3113 42.91 32.51 49.30 46.87 33.09 38.65

yeast1vs7 14.26 0.3522 44.19 30.76 27.71 24.71 23.88 35.74

yeast1289vs7 30.53 0.3654 30.44 25.78 13.00 14.00 4.86 19.17

abalone918 16.38 0.6311 49.33 35.53 41.81 28.24 42.64 45.06

glass0 2.06 0.6492 74.60 67.73 72.59 68.34 53.91 72.16

yeast0256vs3789 9.14 0.6939 59.20 56.04 65.93 62.32 41.30 57.15

winequalityred3vs5 68.10 0.7509 7.66 1.33 0.98 0.00 0.00 0.00

yeast05679vs4 9.33 1.0515 55.02 41.05 46.00 43.86 20.83 42.63

ecoli01vs235 9.17 1.1028 74.81 68.90 79.67 79.67 52.83 70.57

vehicle0 3.27 1.1220 85.03 87.17 88.31 89.78 83.16 90.11

yeast2vs8 23.10 1.1424 66.33 52.71 61.67 65.00 65.00 47.33

yeast4 28.09 1.2516 47.66 25.66 33.42 29.76 18.40 41.53

ecoli0146vs5 12.95 1.3345 77.33 83.33 86.67 86.67 55.14 86.67

ecoli01vs5 11.00 1.3897 82.33 81.33 90.00 90.00 56.02 82.67

ecoli3 8.57 1.3513 69.00 60.89 66.10 52.44 47.52 51.57

yeast2vs4 9.08 1.5793 75.36 71.48 78.87 74.31 42.05 73.71

ecoli046vs5 9.15 1.6030 82.05 81.33 88.00 84.67 60.10 81.33

ecoli0234vs5 9.10 1.6179 80.33 82.00 87.33 87.33 58.24 78.00

ecoli034vs5 9.00 1.6323 81.33 84.00 88.33 88.33 58.76 80.67

yeast02579vs368 9.13 1.6361 78.22 74.61 81.11 82.14 38.02 77.81

ecoli067vs5 10.00 1.6921 73.33 66.05 79.67 69.67 57.26 70.33

ecoli2 5.44 1.8199 87.08 84.13 87.94 87.53 75.19 83.07

glass016vs5 19.44 1.8505 41.67 35.00 38.33 28.33 21.67 50.00

yeast6 41.40 1.9674 50.67 54.09 56.15 54.10 43.94 51.69

ecoli0137vs26 39.14 2.3018 46.67 45.00 46.67 46.67 38.33 41.67

glass6 6.38 2.3913 84.05 82.67 79.67 82.33 55.03 88.50

abalone21vs8 40.50 2.4359 40.38 26.67 40.00 36.67 48.33 46.67

ecoli1 3.35 2.6396 77.43 70.97 78.73 76.47 66.28 69.42

yeast3 8.10 2.7512 77.02 67.80 75.53 72.88 74.46 64.74

ecoli4 15.75 3.2504 86.00 74.33 83.33 83.33 56.76 81.67

glass0123vs456 3.18 3.3137 90.27 83.13 87.39 86.40 76.30 90.57

wisconsin 1.85 3.5676 95.91 96.08 95.45 94.96 94.03 96.15

newthyroid2 5.14 3.5793 95.56 93.33 90.22 89.03 69.00 98.57

new-thyroid1 5.14 3.5793 95.14 92.57 94.66 93.24 89.62 100.00

ecoli0vs1 1.84 9.7145 97.98 94.88 97.90 97.23 79.98 95.54

shuttlec0vsc4 13.86 12.9722 97.32 99.57 99.57 99.57 34.15 99.17

iris0 2.04 16.7971 100.00 100.00 100.00 100.00 97.07 100.00

Average rank 2.3902 3.9878 2.5487 3.3292 5.5609 3.1829

Final rank 1 5 2 4 6 3

In boldface the best result in F1 is stressed
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synthetic datasets (introduced in Sect. 4.1) which can be

divided into four overlapping levels as well as four

imbalanced levels. We define k nearest neighbors of a

query instance (traditional kNN query neighbors) as local

neighbors and then analyze the proportion of local neigh-

bors on all the query neighbors in DBANN. Higher

Table 11 Comparative results

between DBANN and kNN
based methods in GM on real-

world datasets

Datasets IR F1 DBANN W-kNN kRNN kNN F-kNN H-kNN

poker8vs6 85.82 0.0153 46.07 31.14 0.00 0.00 0.00 7.05

yeast1458vs7 22.10 0.1757 35.15 21.88 11.37 0.00 0.00 19.47

glass1 1.80 0.1935 79.72 84.63 84.74 75.98 80.94 90.65

yeast1 2.46 0.2422 69.01 65.55 69.61 61.75 60.16 75.89

yeast0359vs78 9.12 0.3113 67.80 54.82 66.60 60.43 50.95 60.68

yeast1vs7 14.26 0.3522 62.39 55.56 36.27 30.64 38.68 49.96

yeast1289vs7 30.53 0.3654 49.08 44.79 17.13 17.13 11.42 28.55

abalone19 129.41 0.5292 40.83 4.98 0.00 0.00 0.00 0.00

glass0 2.06 0.6492 87.75 78.10 91.42 76.18 83.98 90.89

yeast0256vs3789 9.14 0.6939 78.22 74.79 78.36 72.25 74.70 72.40

winequalityred3vs5 68.10 0.7509 40.83 4.98 2.36 0.00 0.00 0.00

yeast05679vs4 9.33 1.0515 73.05 59.21 60.98 55.12 40.21 60.08

ecoli01vs235 9.17 1.1028 83.78 77.58 83.79 73.79 87.47 77.58

vehicle0 3.27 1.1220 97.39 93.29 96.65 95.33 92.59 95.01

yeast2vs8 23.10 1.1424 71.97 71.96 68.96 68.97 68.97 58.96

yeast4 28.09 1.2516 76.39 46.36 49.26 40.27 30.87 61.23

ecoli0146vs5 12.95 1.3345 90.80 84.69 87.76 87.76 90.78 87.76

ecoli01vs5 11.00 1.3897 90.74 84.58 90.75 90.75 90.70 87.66

ecoli3 8.57 1.3513 91.37 79.28 84.76 66.58 63.35 66.89

yeast2vs4 9.08 1.5793 86.28 83.09 82.84 78.86 80.25 81.84

ecoli046vs5 9.15 1.6030 90.65 84.42 90.66 87.54 90.59 84.42

ecoli0234vs5 9.10 1.6179 90.63 87.53 90.64 90.64 90.59 84.40

ecoli034vs5 9.00 1.6323 90.62 87.51 90.64 90.64 90.59 84.39

yeast02579vs368 9.13 1.6361 89.48 88.23 90.02 88.71 90.37 88.14

ecoli067vs5 10.00 1.6921 83.78 77.58 83.79 73.79 87.47 77.58

ecoli2 5.44 1.8199 93.91 93.89 95.13 91.82 94.05 90.60

glass016vs5 19.44 1.8505 60.00 50.00 50.00 40.00 30.00 60.00

yeast6 41.40 1.9674 84.21 74.19 74.87 67.85 66.15 70.65

ecoli0137vs26 39.14 2.3018 50.00 50.00 50.00 50.00 50.00 50.00

glass6 6.38 2.3913 91.36 91.37 85.20 85.22 91.62 91.38

abalone21vs8 40.50 2.4359 64.02 27.01 44.02 37.01 54.02 51.03

ecoli1 3.35 2.6396 90.50 83.11 88.50 84.01 84.55 77.98

yeast3 8.10 2.7512 89.22 81.35 86.21 81.51 87.62 77.64

ecoli4 15.75 3.2504 93.93 80.88 87.85 87.85 90.86 87.84

glass0123vs456 3.18 3.3137 98.66 89.28 93.25 90.58 91.75 93.32

wisconsin 1.85 3.5676 98.39 97.75 97.44 96.16 96.44 98.71

newthyroid2 5.14 3.5793 97.93 94.64 93.39 90.28 92.63 98.43

new-thyroid1 5.14 3.5793 96.38 93.06 94.66 93.08 94.32 100.00

ecoli0vs1 1.84 9.7145 97.98 97.00 97.02 96.06 100.00 97.98

shuttlec0vsc4 13.86 12.9722 100.00 99.55 99.55 99.55 96.77 99.13

iris0 2.04 16.7971 100.00 100.00 100.00 100.00 100.00 100.00

Average rank 1.9268 4.0243 2.8902 4.6097 3.9268 3.6219

Final rank 1 5 2 6 4 3

In boldface the best result in GM is stressed
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proportion indicates decision making depends more on

local distribution. Conversely, lower proportion indicates

decision making is more relied on global distribution.

From the results in Fig. 6b, we can see that when

overlapping degree is rare, DBANN relies more on local

neighbors with the proportion approximate to 0.85. In

contrast, when overlap is severe, the proportion of local

neighbors is significant lower on an average. This can

partly show our advantage in query neighbors selection,

i.e., when data distribution is tough, DBANN adaptively

expands the detection radius to search for more reliable

instances even though they locate far away. Besides,

Fig. 6c shows the comparisons in different imbalanced

degrees, and the graph clearly demonstrates that on rare

and severe imbalanced degrees, the proportion of local

neighbors drops with the increase in overlapping degree.

However, on severe imbalanced datasets, the proportion of

local neighbors on moderate and severe overlapping data-

sets is lower than that on rare imbalanced datasets. Above

discussions imply that DBANN can adaptively select query

neighbors from local to global region in different scenarios.

5.1.4 Advantage of DBANN over other kNN-based methods

To further study the advantage of the query neighbor

selection mechanism in DBANN, we compare DBANN

with other kNN-based algorithms on two typical datasets

glass1 and yeast2vs4, which have different overlapping

degrees and imbalance ratio, as a case study.

To better demonstrate this issue, we divide each dataset

into overlapping region and non-overlapping region so as

to take a closer look at the performance of each algorithm

in different regions (whole region, overlapping region and

non-overlapping region). Inspired by [66], we use kNN

(k = 5) to separate the two regions. First of all, for each

instance, it is considered to be in non-overlapping region if

the instance and all its 5 nearest neighbors belong to the

same class, otherwise, it is considered to be in overlapping

region. Secondly, we calculate imbalance ratio (IR) and

Fisher’s discriminant ratio (F1) in different regions,

respectively (Table 5). Finally, we run 6 kNN-based

algorithms on two datasets and record their performances

in different regions (Table 6). It is worth noting that F1 in

Table 5 indicates overlapping degree while F1 in Table 6

indicates F-measure.

By observing Table 5, we note that the local distribution

differs in different regions, in which the imbalance ratio is

approximate to 1 in overlapping region while it is much

higher in non-overlapping region. The overlapping degree

(F1) is higher in overlapping region than other regions. All

these results support the previous conclusion that the dis-

tribution of overlapping region is complex and hard to

learn. This conclusion is also proved when we compare the

performance of all kNN-based algorithms on two datasets

in different regions in Table 6, in which F1 and GM value

in overlapping region is significant lower than non-over-

lapping regions as well as the whole region. However, it is

worth noting that DBANN performs better than other

algorithms in overlapping region on both datasets. In

glass1, DBANN achieves the best results (F1: 72.50, GM:

45.20) in overlapping region although its final result (F1:

76.23, GM: 79.72) only ranks fourth among all the algo-

rithms. Meanwhile, it is witnessed that the performance of

DBANN in non-overlapping region does not drop signifi-

cantly compared with other algorithms. The same situation

also occurs in yeast2vs4. Above results indicate that

DBANN is able to excel in overlapping region at the cost

of a small loss in non-overlapping region. This property is

convinced as the main advantage of DBANN over

remaining algorithms and we believe this property is ben-

eficial from the adaptive query neighbors selection mech-

anism which is sensitive to the variation of local

distribution.

5.2 Overall performance of DBANN

5.2.1 Performance on synthetic datasets

In this part, we validate the effectiveness of our proposed

method by a bunch of experiments. Tables 7 and 8 show

the comparison results of DBANN with kNN-based meth-

ods in F1 and GM on 16 synthetic datasets. The optimal

result in each dataset is highlighted in bold-face. It can be

found that DBANN performs better than other methods in

Table 12 Results of the Friedmen test and the Bonferroni–Dunn test among kNN-based methods on real-world datasets

(CD ¼ 1:0643 ; qb ¼ 2:45)

Table v2F FF W-kNN kRNN kNN F-kNN H-kNN FR

Table 10 79.0924 25.1272 1.5976 0.1585 0.9390 3.1707 0.7927 [ qb

Table 11 53.3059 14.0562 2.0975 0.9634 2.6829 2.0000 1.6951 [ qb

In boldface the algorithm which has significant difference from DBANN is stressed
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almost all datasets in terms of average rank in F1 and GM.

Particularly, when data distribution is severely overlap-

ping, i.e., in datasets A1–A4, DBANN obtains the best

average rank in both F1 (1.50) and GM (2.25). This implies

the advantage of query neighbors selection mechanism in

the face of extreme tough data distribution. When over-

lapping degree is moderate or slight (B1–B4, C1–C4),

DBANN obtains the optimal results in all datasets except

for GM in B1 and C1. As for imbalance issue, we observe

that DBANN performs better in high imbalance ratio

(1:9,1:19) with average rank 1 in GM while the average

rank in low in imbalance ratio datasets (1:2,1:4) is 2.5. This

demonstrates that DBANN has the ability to handle the

high imbalanced distribution.

Moreover, to analyze statistical significance differences

in comparative methods, Friedmen test (FR) is carried out.

According to F-distribution, the critical value qb is

F 0:05; 5� 15ð Þ ¼ 2:9013. From the results in Table 9, we

can see FF [ qb in both F1 and GM which indicates that

there are significant differences existing among all com-

pared methods. Subsequently, the pairwise comparisons are

conducted by Bonferroni–Dunntest. The critical value qc
for two-tailed Bonferroni–Dunn test (a ¼ 0:05) with 6

algorithms is 2.576 [63]. We highlight the algorithms

which are significantly different from DBANN in bold-

face. Concretely, differences exist in W-kNN, kNN,

F-kNN, H-kNN in F1, and W-kNN, kNN, H-kNN in GM.

Additionally, we notice that DBANN seems similar with

kRNN with regard to F1 and GM in statistical test. How-

ever, we know that the targets and structures of two algo-

rithms are totally different. kRNN tends to bias the

posterior probability estimation toward the minority class

based on local distribution to handle imbalanced problem

whereas DBANN aims to boost performance by searching

for reliable query neighbors in both local and global dis-

tribution by additionally considering overlapping issue.

5.2.2 Performance on real-world datasets

In this section, we compare DBANN with kNN-based

methods as well as generality-oriented methods on 41 real-

world datasets. Tables 10 and 11 show that the average

ranks of GM and F1 of DBANN are 2.3902 (1) and 1.9268

(1), respectively, indicating that DBANN achieves better

performance than other kNN-based methods. In order to

obtain clear insights into the behaviors of DBANN, we

analyze the results in different distributions by means of a

statistical study. In the first place, by observing the over-

lapping issue (high overlapping degree: F1\ 1.6, low

overlapping degree: F1 C 1.6), we note that the average

ranks of DBANN are 2.15 and 2.2 with respect to F1 and

GM in the high overlapping datasets while the average
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ranks in the low overlapping datasets are 2.61 and 2.68,

respectively. These results support the ability of DBANN

in face of high overlapping distribution. Moreover, it is

also witnessed that when high overlap and high imbalance

co-occur, i.e., IR[ 20 and F1\ 1.6, DBANN still out-

performs most of other methods. Especially, in datasets

yeast1458vs7, yeast1289vs7, winequalityred3vs5, yeast2-

vs8 and yeast4, DBANN obtain the optimal results. This

good behavior is due to the query neighbors selection

mechanism of DBANN which helps to provide query

neighbors with more reliable information when minority

class is scarce and distribution is overlapping. Again, we

implement Friedmen test (FR), Bonferroni-Dunntest (BD)

(qb ¼ F 0:05; 5� 40ð Þ ¼ 2:45;qc ¼ 2:576) on real-world

datasets and find that DBANN presents significant differ-

ence from W-kNN, F-kNN in F1 and W-kNN, kNN, F-kNN

and H-kNN in GM among kNN-based methods, as shown

in Table 12. As for generality-oriented methods, DBANN

also achieves superior performance which is listed in

Tables 13 and 14. Especially, in terms of F1, DBANN gets

the smallest average rank 2.2561 which is superior to the

second rank 3.4146 by a large margin. Likewise, the sig-

nificant test is listed in Table 15 which indicates that there

are differences between DBANN and most of the algo-

rithms except for HSB, SVM ? SMOTE in GM, and KEC

in F1.

6 Conclusions

In this study, we propose a novel method DBANN to deal

with both imbalanced and overlapping problems. The main

idea of DBANN is to find the most reliable query neighbors

by using density-based methods. We first divide the train-

ing data into six parts by DBSCAN, and then in each part

we assign reliable degree to instances based on density,

class imbalance as well as overlapping situation. After-

ward, we adjust the distance metric according to reliable

degree to make reliable instances more likely to be selected

as query neighbors. Finally, output is made by reliable

query neighbors.

Different from existing kNN-based methods, DBANN

takes advantage of both local and global information in

query neighbors selection. Additionally, noise factor is also

considered in DBANN to boost the classification perfor-

mance. It is worth noting that the query neighbors in our

method change adapt according to data distribution. To

validate the effectiveness of DBANN, we implement

experiments on both synthetic datasets and real-world

datasets. The results show that our method outperforms

kNN-based methods as well as generality-oriented methods

in terms of F1 and GM.
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Further research is required to extend DBANN to multi-

class classification problems in the future. Moreover, we

also plan to implement other density-based clustering

methods in the framework of DBANN. Besides, it is

interesting to set up a specific public datasets for algo-

rithms comparisons on overlapping problems.
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