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Abstract
In the current paper, the uniaxial compressive strength (UCS) and Young modulus (E) of rocks were predicted using a

hybridized intelligence method. The model was developed using an optimum multi-objective generalized feedforward

neural network (GFFN) incorporated with an imperialist competitive metaheuristic algorithm (ICA) and managed using

208 datasets of different physical and mechanical quarries from almost all over of Iran. Rock class, density, porosity, P-

wave velocity, point load index and water absorption were datacenter components. The predictability and accuracy

performance of the hybrid ICA-GFFN model were discussed using different error criteria and confusion matrixes. The

observed 5.4% and at least 32% improvement in hybrid ICA-GFFN than GFFN and multivariate regression (MVR)

demonstrated feasible and accurate enough tools that can effectively be applied for multi-objective prediction purposes.

The influence of inputs on predicted outputs was also identified using two different sensitivity analyses.
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1 Introduction

The real-world complicated problems due to nonlinear

constraints, interdependencies among variables and large

solution spaces need to be optimized using capable tech-

niques. Optimization, as a core component in problem

solving, refers to find the best value of a set of variables for

an objective function subject to a given set of constraints.

The performances, benefits and great successes of such

processes have widely been notified in the literature

[10, 22, 48].

A design problem in rock engineering using uniaxial

compressive strength (UCS) and elasticity modulus

(E) usually involves many parameters of which some are

highly sensitive. These two strength index properties of

rocks have significantly been quoted in design approaches

of civil, mining and construction engineering-oriented

applications (e.g., tunneling, dam design, rock blasting,

slope stability, rock mass classification, rock failure crite-

ria, foundation engineering, underground excavation).

Concerning approved and recognized difficulties in direct

measurements of these parameters in both economical

aspects and significant technical challenges in weak or

highly weathered rocks [2, 4, 14, 16, 31, 37], producing

optimized models that can provide more accurate results is

demanded. From a practical perspective, a variety of pre-

dictive models for UCS and E have widely been high-

lighted using simpler indirect test methods through

different statistical and multivariate techniques

[4, 27, 37, 38, 40, 51, 55]. However, the accuracy of such

empirical relations due to the large variability of rock

properties cannot be generalized. Furthermore, the draw-

backs of statistical techniques in the effectiveness of aux-

iliary factors (e.g., porosity, mineralogy and mineral

composition, density and weathering degree), uncertainty

of experimental tests as well as inaccurate prediction in a

wide expanded range of data should be considered

[1, 39, 41]. In recent years, such limitations in producing

predictive models tremendously have been recuperated

using different artificial intelligence techniques

[2, 14, 20, 46]. Table 1 shows a brief summary of immense
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successes in producing more efficient predictive models for

both UCS and E in rock engineering.

Further, it was approved that incorporated ANN-based

models with metaheuristic algorithms can lead to remark-

able progress in predictability level [2, 14, 29]. The

metaheuristic algorithms as a subcategory of optimization

processes have extensively been grown through the last two

decades and outlined considerable popularity in a wide

range of practical engineering applications, finance, plan-

ning, scheduling and designing [6, 18, 26, 28, 50]. These

state-of-the-art algorithms have been drawn from various

nature-inspired sources and aim to improve fitness func-

tion. Imperialistic competitive algorithm [12], firefly [53],

gray wolf optimizer [36], ant colony [21], honey beam

[42], particle swarm optimization [33], artificial bee colony

[32] and simulated annealing [34] are some of these

metaheuristics that have actively been incorporated with

artificial intelligence models for a variety of engineering

tasks. Efficiency, flexibility and model independent are

some of the main substantial features of these algorithms

[6, 14, 17, 54]. The performance of such algorithms not

only takes relatively much less time than traditional opti-

mization techniques but also provides appropriate accom-

plishments when the learning rule is not efficient or fails to

deliver satisfactory results [17]. However, they cannot

guarantee that the best solution found after termination

criteria is satisfied or indeed its global optimal solution to

the problem [2, 14, 26, 54].

Among these optimization methods, the imperialist

competitive algorithm (ICA) is one of the recently devel-

oped metaheuristics inspired by socio-political behaviors

[12]. This global search population-based algorithm is a

component of swarm intelligence technique which can

provide an evolutionary computation without the

requirement to the gradient of the function in its opti-

mization process.

The UCS and E almost are predicted using localized

data in terms of single objective models. This implies that

developing a multi-objective model that can provide

acceptable accuracy is greatly of interest. Furthermore, the

approved performance of metaheuristics in different sizes

of the search spaces motives for optimizing such multi-

objective models in rock engineering problems. Comparing

with the previous studies, this paper presents a robust

automated hybrid multi-objective model, where the

strength index properties were predicted through an opti-

mum generalized feedforward network (GFFN) incorpo-

rated with ICA. Replacing the GFFN instead of the usual

multilayer perceptron to increase the computability of the

model and machine-driven tuned optimal internal param-

eters which yield the best performance are the main fea-

tures of this study. The models were managed using 208

datasets corresponding to different physical and mechani-

cal parameters (porosity, n; density, c; water absorption, w;
rock class, point load index, Is; and P-wave velocity, Vp)

from almost all over quarry locations of Iran. It was

observed that the classification error in GFFN for UCS and

E from 19.1% and 23.8% was significantly decreased to

14.3% and 16.7% in ICA-GFFN. The assessed perfor-

mance showed that the developed hybrid ICA-GFFN as a

feasible tool can effectively be applied to provide more

precise results than GFFN. Two different sensitivity anal-

yses were applied to identify the most and least effective

parameters on predicted UCS and E.

The remainder of this paper is organized as follows. A

summary of ICA is presented in Sect. 2. The study is turned

toward the modeling procedure, applied datasets and

hybridizing layout in Sect. 3. Discussion, validation and

Table 1 Summary of some

recently used techniques to

predict UCS and E

References Used method Rock type Input variables

[7] ANN, MVR Sedimentary rocks n, w, Vp, cd
[9] MVR, ANN, SVR Carbonate rocks q, Vp, Vs

[14] Different hybrid ANN models, MVR Quarried rocks rock class, Vp, c, Is, n, w

[16] Genetic programming Carbonate rocks n, q, Vp

[23] ANN, regression Travertine Vp, Is, Rn, n

[31] ANN, regression analysis Breccias rock samples Vbp, q, Vs, r, Abdf

[35] MVR, ANN Carbonate rocks n, q, Vp t, Is
[44] ANN Coal rocks Vp, Is, Id, q

[47] ANFIS Sedimentary rocks q, n, Vp

[52] ANN, MVR Carbonate rocks Rn, n, cd, Vp, Id

[56] ANN, hybrid neuro-fuzzy, MVR Gypsum n, Is, Rn, Id

ANN: artificial neural network, MVR: multivariate regression; SVR: support vector regression, Vp: p-wave

velocity, Id: slake durability; n: porosity; Is: point load index; Vs: s-wave velocity; cd: dry unit weight; q:
density; t: poison ratio; Rn: Schmidt hammer; Abdf: average block diameter factor; r: roundness of blocks;
Vbp: volumetric block proportion; w: water absorption
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analysis of the obtained results then were placed in Sect. 4.

The summary of remarkable findings then was outlined in

conclusions.

2 The process of ICA

ICA is a recently developed evolutionary and robust opti-

mization algorithm inspired by imperialist competitiveness

based on the extending policy for the power and rule of a

government beyond its own borders [12]. This algorithm

mathematically is configured using a series of parameters

including number of country (Ncou), number of imperialist

(Nimp), number of decades (Ndec), number of colonies

(Ncol), direction of moved colony toward the imperialist

(b), deviation parameter (h), arbitrary parameter describing

the search condition (u) and effective factor on the total

power of empire (f). As presented in Table 2, the initial

guess of these parameters can be set using previous studies

[5, 8, 12–14, 29].

More insights about the organized formula can be found

in [12–14, 29]. Here, only a brief description about the

theoretical concept is presented. This algorithm can be

divided into eight essential steps including generating the

initial empires, moving the colonies of an empire toward

the imperialist, revolution, exchanging positions of the

imperialist and colony, total power of an empire, imperi-

alistic competition, elimination of empires and conver-

gence. To start the ICA, the country and cost function

should be defined. Among the initial generated population

(Ncou), those with minimum cost are selected to be impe-

rialists and the rest play the role of colonies (Ncol). Then,

the imperialistic empires begin to compete with each other

to attract more colonies. Therefore, the colonies are moved

toward an imperialist peak or new minimum area (assim-

ilation process) to improve their situations and find better

solutions. The movement process of colonies due to par-

tially absorbed colonies can have a direct or deviated path

toward the imperialist. The position of trapped colonies is

then excited by sudden random changes using the

revolution process to escape from possible local optimum

in the search space. The performance of revolution can be

compared with a mutation in the genetic algorithm in

preventing the early convergence to local optima [29].

Hence, if the new position of the colony possesses a lower

cost function than the imperialist, the position of imperi-

alist and colony will be exchanged. The more empire

power, the more attracted colonies; thus, the weakest

empire because of losing colonies is gradually collapsed

and eliminated. This implies that all the countries then

should be converged to only one robust empire in the

domain of the problem as the desired solution.

Accordingly, the competition process among the

empires represents the possession probability of each

empire (pn) based on its total power and is calculated using

normalized total cost of empire as follows:

pn ¼
NTCn

PNimp

i¼1 NTCi

�
�
�
�
�

�
�
�
�
�
;
XNimp

i¼1

pi ¼ 1 ð1Þ

where TCn and NTCn denote the total and normalized cost

of the nth empire.

The distribution mechanism of ICA is the probability

density function (PDF) which compared to a genetic

algorithm requires less computation effort.

3 Overview of applied model

3.1 Summary on GFFN

The multilayer perceptrons (MLPs) as the main core of

feedforward networks have widely been updated during the

last decades. These structures are trained slowly but easy to

use and can approximate any input/output map subjected to

different internal characteristics. The GFFN is configured

by replacing the perceptrons of the hidden layer in MLPs

with the generalized shunting inhibitory neurons (GSN)

(Fig. 1). This organization provides a subcategory of MLPs

that is an extended form of the shunting inhibitory artificial

neural networks (SIANNs) [19, 30]. The output of the jth

neuron in the hidden layer (Oj) using a set of adaptive

weights (wi,j and wjk) subjected to nonlinear activation

functions (f and g) are expressed as follows:

Oj ¼
bj þ f ð

P
i wijxi þ wjkÞ

aj þ gð
P

i cijxi þ cjkÞ
ð2Þ

where xi is the ith input; cji is the ‘‘shunting inhibitory’’

connection weight from input i to neuron j and wij denotes

the connection weight from input i to neuron j. wj0 and cj0
are bias constants, and aj is a positive constant that repre-

sents the passive decay rate of the neuron where bj is the

output bias. f and g are activation functions, respectively.

Table 2 The range of used ICA parameters in previous studies

Parameter Range in previous studies

Ncou 25–500

Nimp 5–65

Ndec [0–1000]

b [1–2]

h p/4; [0, 1]

f [0.1-0.02]

Ncou, Nimp and Ndec also can be managed using parametric

investigations
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This reveals that the GSNs perform the nonlinear

transformation on input datasets to speed up the training

procedure and enhance the computability level to save the

required memory. It also facilitates more freedom to select

optimum topology and provides higher resolution in com-

plex nonlinear decision classifiers [3, 11, 14, 24, 30].

Jumping over one or more layers is another characteristic

of the GSN which allows neurons to operate as adaptive

nonlinear filters [1, 11, 14, 24, 30]. Such ability in this

classifier provides greater flexibility and more efficient

performance than MLP in the same number of neurons

[1, 11, 14]. The number of neurons in hidden layers and

corresponding arrangements, activation function, learning

rate and training algorithm are the main internal charac-

teristics components which should be set to produce an

optimum structure [1, 14, 15, 24]. The network error (E) of

the kth output neuron and corresponding root mean square

error (RMSE) is defined using the actual and predicted

values (xk and yk) as follows:

E ¼ 1

2

Xn

i¼1

xk � ykð Þ2! RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 xk � ykð Þ2

n

s

ð3Þ

To reduce the error between the desired and actual

outputs, the weights are optimized using an updating pro-

cedure for the (n ? 1)th pattern subjected to

Dwik ¼ �g
oE Wð Þ
owik

ð4Þ

wik nþ 1ð Þ ¼ wik nð Þ þ rwik nð Þ ð5Þ

where g is the learning rate.

3.2 Organized datacenter

In the current study, a number of 208 datasets comprising

the rock class, point load index (Is), P-wave velocity (VP),

porosity (n), water absorption (w) and density (c) from 47

quarry locations in Iran were acquired and compiled

(Table 3). These datasets are the updated version of [14]

with a greater number of instances containing both UCS

and E. A sample of gathered datasets and executed simple

descriptive statistical analyses are presented in Tables 4

and 5. The rock classes including sedimentary, igneous,

digenetic and metamorphic were assigned and coded from

1 to 4, respectively.

Different strategies for randomization are used in opti-

mization to alleviate the computational burden associated

with robust control techniques. In this paper, the random-

ized data split into three sets for training, testing and val-

idation was used. Comparing the K-fold cross-validation,

elimination of the selection bias, balancing the groups with

respect to uncertainties, and the statistical tests are the

basic benefits of randomized data. The K-fold cross-vali-

dation always requires to be checked for stable perfor-

mance over all the folds. Furthermore, insufficiently

distributed data in the folds or significant differences from

others provide instability in model performance. Such

discrepancies then should be removed using some other

different cross-validation methods. Trusting just to final

aggregated score for the R2 will miss a lot of information

about models’ performance. The compiled components

were then randomized by 55%, 25% and 20% to provide

training, testing and validation sets. Further, the datasets

due to different units were normalized within the range of

[0, 1] using:

Norm scaled value ¼ x� xmin

xmax � xmin

ð6Þ

This procedure provides dimensionless input data which

are necessary to improve the learning speed and model

stability.

3.3 Assessment of optimum hybrid model

Combining a developed optimum GFFN with ICA is the

overview of the hybridized layout in this study. An opti-

mum network structure needs to be managed through

internal characteristics, where there is no unified accepted

method for such critical arrangements [1, 24]. Therefore, to

decrease the complexities, it is advised to make the internal

characteristics as few as possible [57]. However, there is no

guarantee that can capture all possible alternatives for

optimal solutions. In the current study, this drawback was

covered using an automated iterative trial–error integrated

with the constructive technique. Referring to Fig. 2a, the

optimum GFFN model was captured by examining dif-

ferent training algorithms and activation functions. This

strategy in addition to monitored error improvements was

applied to escape from local minima, early convergence

and prevent the overfitting problem. Quick propagation

(QP), conjugate gradient descent (CGD), momentum

(MO), quasi-Newton (QN) and Levenberg–Marquardt (L–

M) were implemented as training algorithms. Logistic

(Log), hyperbolic tangent (HyT), linear (Lin) and squash

Fig. 1 The mathematical model of GSN in data processing
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(Sq) were also used as activation transfer functions for

hidden and output layers. The value of 0.7 for the learning

rate was set for all implemented algorithms and the step

sizes of hidden layers were changed in the domain of

[1.0–0.001]. Furthermore, the sum of squares and cross-

entropy were also employed as output error function,

respectively. Following the embedded loops (1 and 2) in

Fig. 2a, the number of neurons is a user-defined parameter

that can frequently be increased to evaluate a wide range of

topologies subjected to different training algorithms and

Table 3 The specification of acquired datasets

Rock class Rock type Location (quarry name) Number

of

samples

Igneous Andesite, Granite, Dacite, Terakite,

Vitric tuff, Ignemberite, Gabbro,

Syenite

NW of Iran, Sefid Afshar, Nehbandan, Ghermez Zafreh, Borujerd,

Iranshahr, Hamedan, Natanz, Piranshahr, Birjand, Yazd, Farahzad-

Tehran, Mashhad, Naeen, Naybandan, Sabzevar

42

Sedimentary Limestone, Travertine, Onyx travertine Badjgah, Sarvestan, Kharame, Sadra, Firoozabad, Sarvie Neyriz, North

and SW of Iran, Hamedan, Sanandaj, Anarak, Azarshahr, Dastjerd,

Atashkuh, Mahallat, Abbaszabad, Abyar, Dare bokhari, Firuzkuh,

Makou, Hajiabad

141

Metamorphic-

diagenetic

Dolomitic limestone, Marble Ghorveh, Kerman, Sirjan, Dehbid, Bavanat, Neyriz, Salsali, Haftoman,

Anarak, Harsin

25

Table 4 A brief presentation of compiled datasets

Rock type Rock class Location c (gr/cm3) n (%) Vp (km/s) Is (Mpa) w (%) UCS (Mpa) E (Gpa)

Travertine 1 Azarshahr 2.48 7.41 3.95 3.59 1.43 33.6 4.5

Travertine 1 Azarshahr 2.55 3.1 4.9 4.72 0.67 60.7 8.05

Onyx travertine 1 Dastjerd 2.66 1.77 5.26 5.3 1.7 65.7 8.72

Travertine 1 Atashkooh 2.47 4.2 4.6 4.2 1.47 49.3 6.61

Travertine 1 Abbasabad 2.43 4.86 4.15 3.64 2.69 41.3 5.56

Travertine 1 Abyar 2.41 3.58 4.69 4.66 1.27 51.4 6.86

Travertine 1 Mahallat 2.38 6.4 4.14 3.3 1.7 37.4 5.03

Travertine 1 Hajiabad 2.53 3.35 5.66 3 1.76 63.68 11.45

Andesite 2 Sanandaj-Sirjan 2.94 1.37 5.26 6.49 0.46 87.19 20.25

Andesite 2 Yazd 2.72 0.87 5.79 8.82 0.32 126 46.4

Granite 2 Nehbandan 2.8 0.32 6.1 10.67 0.23 145 36.5

Granite 2 Borujerd 2.71 0.81 5.82 10.22 0.29 128 65.9

Syenite 2 Iranshahr 2.54 1.88 5.3 6.27 0.59 91 20

Gabbro 2 Natanz 2.82 0.26 6.11 14.98 0.23 147 81.4

Vitric tuff 2 Farahzad-Tehran 2.18 1.15 3.72 7.2 5.61 101 32.4

Dolomitic limestone 3 Ghorveh 2.68 1.11 6.12 5.7 0.29 110 17.38

Marble 4 Sirjan 2.69 1.1 5.21 3.3 0.16 64 12.46

Dolomitic limestone 3 Dehbid 2.71 0.35 5.89 5.64 0.2 103.5 17.44

Dolomitic limestone 3 Bavanat 2.71 0.61 5.32 4.09 0.15 77 12.89

Marble 4 Neyriz 2.7 0.37 5.83 5.53 0.18 101.8 13.58

Limestone 1 Sarvestan 2.69 0.87 4.85 2.66 4.36 47 7.33

Limestone 1 Kharame 2.7 0.27 5.87 4.03 1.94 77 12.27

Limestone 1 Firoozabad 2.56 9.76 3.42 2.01 6.38 32.9 8.01

Limestone 1 Sarvie Neyriz 2.71 0.44 4.59 3.09 3.34 56.9 8.53

Limestone 1 Anarak 2.68 1.11 6.12 5.3 1.29 83 15.78
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Table 5 Descriptive statistics of

acquired datasets
Variable Mean Mean SE SD Min Median Max Skewness MSSD

Rock class 1.51 0.058 0.846 1 1 4 1.65 0.019

c (gr/cm3) 2.59 0.012 0.175 2.18 2.58 3.06 0.42 0.0097

n % 6.63 0.431 6.207 0.15 4.53 31.4 1.05 8.34

Vp (m/s) 4.82 0.066 0.946 2.4 5.04 6.82 - 0.64 0.235

W (%) 4.29 0.22 3.082 0.3 3.32 15.12 1.49 1.754

Is (MPa) 2.96 0.282 4.062 0.07 1.38 16.16 1.86 1.569

UCS (Mpa) 58.78 2.61 37.98 4.75 45.9 193 0.79 274.08

E (Gpa) 14.3 1.18 17.21 0.5 6.81 89.4 2.09 58.62

Mean SE mean standard error, SD standard deviation, MSSD mean of the squared successive differences

Fig. 2 Simplified diagram of

optimizing process for a GFFN
and b hybrid ICA-GFFN in this

study
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activation functions. The root mean square error (RMSE)

and iteration number were organized as termination crite-

ria. If the RMSE is not achieved, then the number of iter-

ation (in this study set for 1000) as the second stopping

metric is implemented.

This implies on wide ranges of monitored topologies

([860) even with similar architecture but various internal

characteristics (e.g., number of neurons, layer arrange-

ments, training algorithm, activation functions) that was

run three times to control whether the stopping criteria are

satisfied (Table 6). Accordingly, the RMSE and the net-

work correlation (R2) of each tested structure were calcu-

lated. As an example of executed effort, the variation of

calculated RMSE based on the number of neurons as well

as some of the tested topologies with different layer

arrangements subjected to HyT activation transfer function

is presented in Fig. 3a, b. The minimum RMSE for opti-

mum GFNN architecture was observed in number of neu-

rons 12 correspond to 6-7-5-2 topology (Fig. 3b). The

performance of the optimum model then is assessed using

different accuracy criteria and statistical error indices.

To improve the predictability level of the developed

optimum GFFN model, the procedure of Fig. 2a was

incorporated into ICA. This metaheuristic algorithm by

adjusting the weights and biases can minimize the error of

optimum GFFN. However, for an appropriate optimizing

process, the effective ICA parameters (Table 2) should

properly be selected. These parameters can be determined

using previous studies [5, 8, 12–14, 29]. Here, for b, h and

f, the values 2, p/4 and 0.02 were considered. The proper

Ncou was specified through the analyzed R2 and minimum

RMSE of 12 trained hybrid models using the introduced

GFFN structure (Table 7). By applying a similar process,

the monitored approximate boundary for low variation of

RMSE against the Ncou was characterized as the optimum

Ndec (Fig. 4). The Nimp similarly was determined through

the calculated R2 and RMSE of ICA-GFFN models

(Table 8). To provide the output, the hybrid ICA-GFFN

model then was trained using the optimized GFFN struc-

ture (6-7-5-2) but subjected to ascertained ICA parameters

(Table 9). To assess the capacity of the network perfor-

mance and evaluate the predictability level, the results of

randomized training and testing datasets are reflected in

Fig. 5a–d. The monitoring of error improvement for

models was also carried out to control the overfitting and

trapping in local minima (Fig. 5e). This criterion refers to

network performance predictability during the last and/or

each iteration and, consequently, can detect the situation

when the network is not improving, and further training is

unavailing.

4 Validation and discussion

Model evaluation as an important part of a data science

project is utilized to quantify the improved facilities

regarding previous versions. The confusion matrix as a

compact representation of the model performance is the

source of many scoring metrics for classification tasks [45].

Moreover, it is a benefit to identify the system confusing

for different classes. The confusion matrixes of GFFN,

ICA-GFFN and conducted multivariate regression (MVR)

models (Eqs. 7–10) for randomized datasets were calcu-

lated. A sample of carried out efforts for hybrid ICA-GFFN

using validation datasets is presented in Table 10.

UCS ¼ �124:97þ 3:54 rockclssð Þ þ 44:4c� 0:49n

þ 0:18wþ 6:75VP þ 7:65IS 50ð ÞR
2

¼ 0:67 ð7Þ

E ¼ �47:5þ 0:79 rock clssð Þ þ 9:93cþ 0:02nþ 0:91w
þ 1:99VP þ 5:06IS 50ð Þ

R2 ¼ 0:60

ð8Þ

Table 6 Implemented training algorithms and characteristics of corresponding optimum GFFN model

GFFN training

algorithm

Min

RMSE
Number of

neuron

Corresponding

structure

Layer activation

transfer function

R2

Hidden

1

Hidden

2

Train Test Validate

UCS E UCS E UCS E

QP 0.276 15 6-9-6-2 Log HyT 0.89 0.86 0.88 0.84 0.89 0.87

CGD 0.265 14 6-5-9-2 HyT Log 0.90 0.88 0.91 0.89 0.90 0.89

QN 0.280 12 6-6-6-2 Log Log 0.88 0.83 0.90 0.85 0.90 0.86

L-M 0.270 15 6-8-7-2 HyT Log 0.90 0.87 0.92 0.86 0.90 0.87

MO 0.222 12 6-7-5-2 HyT HyT 0.93 0.91 0.92 0.90 0.94 0.92
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UCS ¼ 2:004 rockclass0:305c0:268n�0:093w0:062V1:406
P I0:524S 50ð Þ

R2 ¼ 0:54

ð9Þ

E ¼ 0:194 rockclass0:574c1:615n�0:096w0:925V0:53
P I1:003S 50ð Þ

R2 ¼ 0:49
ð10Þ

Accordingly, the calculated correct classification rate

(CCR) and classification error (CE) and then the

improvement progress of all models were compared, and

the results are presented in Tables 11 and 12, respectively.

Further, the accuracy performance of all models was pur-

sued and cross-examined using known statistical error

indices, respectively (Table 12). Mean absolute percentage

error (MAPE) is one of the most popular indexes for a

description of the accuracy and size of the forecasting

error. The performance of the model can be evaluated

using variance account for (VAF) as an intrinsically

Fig. 3 a Variation of network

RMSE using different training

algorithms against the number

of neurons subjected to HyT
activation functions and b a

series of examined structures

with 12 neurons

Table 7 Characterizing the Ncou among the trained models

Tested ICA-GFFN Ncou Train Test

R2 RMSE R2 RMSE

1 25 0.71 0.181 0.74 0.167

2 50 0.72 0.172 0.66 0.227

3 75 0.67 0.185 0.50 0.196

4 100 0.70 0.169 0.58 0.202

5 150 0.69 0.175 0.60 0.263

6 200 0.72 0.164 0.75 0.150

7 250 0.68 0.179 0.77 0.148

8 300 0.75 0.173 0.55 0.256

9 350 0.68 0.207 0.70 0.191

10 400 0.72 0.166 0.61 0.171

11 450 0.67 0.201 0.88 0.119

12 500 0.64 0.190 0.68 0.177

Fig. 4 Performance of ICA-GFFN models using different Ncou to find

the optimum Ndec

Table 8 Determination of Nimp using both training and testing

datasets

Tested ICA-GFFN Nimp Train Test

R2 RMSE R2 RMSE

1 5 0.73 0.206 0.81 0.167

2 10 0.69 0.178 0.84 0.140

3 15 0.84 0.125 0.86 0.127

4 20 0.51 0.528 0.63 0.479

5 25 0.94 0.088 0.96 0.070

6 30 0.92 0.093 0.95 0.097

7 35 0.91 0.103 0.94 0.135

8 40 0.93 0.098 0.96 0.072

9 45 0.90 0.128 0.95 0.075

10 50 0.89 0.135 0.96 0.134

11 55 0.87 0.115 0.79 0.176

12 60 0.73 0.206 0.81 0.167

Table 9 Handled parameters for optimization process in this study

Parameter Considered ICA parameters in this paper

Ncou Carried out parametric analyses ? 200

Nimp Carried out parametric analyses ? 25

Ndec Carried out parametric analyses ? 350

b 2

h p/4

f 0.02
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connected index between predicted and actual values. The

generic index of agreement (IA) [49] indicates the com-

patibility of modeled and observations. The formulation of

these indices can widely be found in statistical textbooks.

Higher values of VAF, IA and R2 as well as smaller values

of MAPE and RMSE exhibit better model performance

(Table 12).

The precision-recall curve as a useful tool to measure

the success of prediction can reflect the relevant and cor-

responding number of truly turned results (Precision) as

well as show the tradeoff between them for different

thresholds (recall). Therefore, both high precision and

recall express an ideal performance which returns many

results and all are labeled correctly. The high precision

shows a low false-positive rate while high recall refers to a

low false-negative rate. Thereby, a large area under the

curve is connected to both high recall and precision

returning accurate as well as the majority of all positive

results. High recall but low precision returns many data but

most of predictions comparing to training are labeled

incorrect and vice versa in high precision but low recall. In

Fig. 6, the precision-recall curves for GFFN, ICA-GFFN

and generated multivariate regressions (MVR) using the

same randomized datasets are presented.

The robustness and performance capacity of sensitivity

analyses in the presence of uncertainty for the purpose of

model calibration, determining the importance of inputs

and enhancing the predictability of a system has been

approved [2, 15, 43]. This also implies that removing the

least effective inputs may lead to the development of better

results [25]. Here, the effectiveness of input parameters on

predicted outputs using two sensitivity analyses methods

known as the Cosine amplitude and partial derivative

(PaD) [15, 25] according to Eqs. 11 and 12 is identified and

reflected in Fig. 7.

Fig. 5 Predictability of

optimum GFFN and hybrid

ICA-GFFN models for a and

c E and b, d UCS using

randomized training and testing

datasets as well as e error

improvement of applied models
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Table 10 Confusion matrix of ICA-GFFN model for UCS and E
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Rij ¼
Pm

k¼1 xik � xjk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1 x

2
ik

Pm
k¼1 x

2
jk

q ; xi and xj

: elements of data pairs ð11Þ

contribution of ith variable ¼ SSDiP
i SSDi

; SSDi

¼
X

p

oOp
k

oxpi

� �2

ð12Þ

where Ok
p and xi

p are the output and input values for pattern

P, and SSDi is the sum of the squares of the partial

derivatives.

5 Conclusion

A new efficient multi-objective GFFN model using an

iterative trial and error procedure integrated with the con-

structive technique was proposed and applied on a

Table 10 continued

Table 11 Compared CCR and

CE of the models for validation

and test datasets

Model CCR (%) CE (%)

Test Validate Test Validate

UCS E UCS E UCS E UCS E

ICA-GFFN 80.3 79.5 85.7 83.3 19.7 20.5 14.3 16.7

GFFN 76.8 75.1 78.6 76.2 21.2 24.9 19.1 23.8

Equations 7, 8 57.7 51.9 59.5 54.7 42.3 48.1 40.5 45.3

Equations 9, 10 48.1 44.2 52.3 45.2 51.93 55.8 47.7 54.8
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comprehensive dataset of building stones of Iran to predict

the UCS and E. Comparison of numerous structures sub-

jected to different internal characteristics that showed a

four-layer GFFN model with 6-7-5-2 topology (12 neurons

in two hidden layers) can be selected as the optimum. The

predictability of the introduced GFFN model then suc-

cessfully with at least 8% improvement progress was

optimized using ICA. According to established confusion

matrixes, the correct classification rate of UCS and E from

52.3% and 45.2% in MVR models increased to 85.7% and

83.3% in hybrid ICA-GFFN. Furthermore, the GFFN and

hybrid ICA-GFFN with at least a 24% improvement in

progress showed the superior capability to MVR models.

The compared areas under precision-recall curves show

that incorporating with ICA provides 80.2% accuracy in the

prediction process. This implies that proposed ICA-GFFN

as a viable tool for optimizing multi-objective problems

decreases the classification errors which can be interpreted

as more precious results. Accordingly, the models were

evaluated using statistical criteria where the ICA-GFFN

Table 12 Improvement of progresses for the applied models

ICA-GFFN GFFN Equation 7 Equation 9 Compared statistical error indices subjected to validation datasets

MAPE VAF RMSE IA R2

Predicted UCS

ICA-GFFN – 8.28% 30.57% 38.97% 6.14 95.80 0.178 0.90 0.96

GFFN - 8.28% – 24.3% 33.46% 8.65 90.36 0.226 0.85 0.94

Equation 7 - 30.57% - 24.3% – 12.14% 11.83 76.12 0.541 0.69 0.73

Equation 9 - 38.97% - 33.46% - 12.14% – 15.62 66.54 0.738 0.57 0.60

ICA-GFFN GFFN Equation 8 Equation 10 Compared statistical error indices subjected to validation datasets

MAPE VAF RMSE IA R2

Predicted E

ICA-GFFN – 8.52% 34.33% 45.73% 7.22 91.55 0.241 0.88 0.95

GFFN - 8.52% – 28.21% 40.68% 8.05 89.77 0.297 0.81 0.92

Equation 8 - 34.33% - 28.21% – 17.36% 12.58 74.62 0.668 0.64 0.69

Equation 10 - 45.73% - 40.68% - 17.36% – 18.94 64.83 0.804 0.49 0.56

Fig. 6 Comparing the area under computed precision-recall curves

for MVR, GFNN and ICA-GFFN

Fig. 7 Influence of input

parameters on predicted UCS
and E using different sensitivity

analyses
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with 6.14, 0.178, 95.80 and 0.96 for UCS and 7.22, 0.241,

91.55 and 0.95 for E corresponding to MAPE, RMSE, VAF

and R2 reflected better performance capacities than GFFN.

The calculated IA index (0.90 for UCS and 0.88 for E) was

another supplementary indicator that showed that the ICA-

GFFN model produces closer predicted values to obser-

vations. The implemented sensitivity analyses showed that

Is, VP and n are the most effective factors on predicted UCS

and E values. The result of sensitivity analyses can also be

interpreted as the appropriate trend with previous empirical

correlations which mostly have been established by these

three factors and thus the obtained MVR correlations in this

paper also can be calibrated with these effective factors.
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