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Abstract
Marine object detection is an appealing but challengeable task in computer vision. Even though recent popular object

detection algorithms perform well on common classes, they cannot acquire satisfied detection performance on marine

objects because underwater images are affected by color cast and blur, and scales of the target in underwater images are

usually small. These phenomena aggravate the difficulty of detection. Thus, it is urgent to design a proper structure to settle

marine object detection issues. To this end, this paper proposes a novel scale-aware feature pyramid architecture named

SA-FPN to extract abundant robust features on underwater images and improve the performance on marine object

detection. Specifically, we design a special backbone subnetwork to improve the ability of feature extraction, which could

provide richer fine-grained features for small object detection. What is more, this paper proposes a multi-scale feature

pyramid to enrich the semantic features for prediction. Each feature map is enhanced by the higher level layer with context

information through a top-down upsampling pathway. Through obtaining ample feature maps on underwater images, our

algorithm could generate multiple bounding boxes for each target. To mitigate the reduplicative boxes and avoid miss

suppression, we replace the non-maximum suppression method with soft non-maximum suppression. In this paper, we

evaluate our algorithm on underwater image datasets and achieve 76.27% mAP. Meanwhile, we conduct experiments on

PASCAL VOC datasets and smart unmanned vending machines datasets and get 79.13% mAP and 91.81% mAP,

respectively. The experimental results reveal that our approach achieves best performance not only on marine object

detection, but also on common classes.
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1 Introduction

Marine object detection is a tricky but crucial task in

computer vision. It is the foundation of ocean exploration

and marine object intelligent detection. Because of the

urgent demand in underwater robot developments, marine

object detection task has drawn an appealing attention in

recent years. It is the precondition for underwater robot to

realize automatic capture. Although object detection has

achieved success in common class datasets, marine object

detection task still faces great challenges.

In recent years, the popular object detection approaches

[3–7], based on convolutional neural networks (CNNs),

have obtained good performance on common classes.

However, these methods are not effective when applied

directly to marine object detection task because underwater

images captured by underwater cameras have poor visi-

bility as shown in Fig. 1; this results from the scattering

and absorption of light transferred under the water [8–11].

Specifically, underwater images are much blur than the

ones captured out of water within the same distance and are

deeper green, called color cast [12]. That leads to disap-

pearance of fine-grained information on marine target in

underwater images. What is worse, marine objects have

protective coloration and aggregation effect. Thus, targets
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in underwater images are usually crowded and have small

scales that aggravate the challenge of marine object

detection task. So, it is necessary to explore and propose a

special framework to solve marine object detection issue.

For CNNs, different level of convolutional layer extracts

different scale features [13]. While the lower level layer

could extract abundant fine-grained features, the higher

level layer mainly focuses on semantic features [14]. For

larger object, which is divided according to the relative size

to whole image, the semantic features have effective con-

tributions on detection task. However, the fine-grained

characteristics provide crucial distinction for small object

detection [15]. For marine object detection, it is important

to build a multi-scale features, which include not only

abundant fine-grained features but also strong semantic

features.

Popular detectors in [3–6] just take the final feature

maps to detect target. Liu et al. [7] uses multi-scale con-

volutional bounding box outputs attached to multiple fea-

ture maps at the top of the network. Fu et al. [16]

introduces additional large-scale context with a deconvo-

lution module. Recently, feature pyramid network (FPN)

[17] is exquisite model architecture to generate pyramidal

feature representations for object detection, which is pop-

ularly adopted by current object detection frameworks

[18–23]. It adopts ResNets [24] to extract different scale

features and design the bottom-up pathway, the top-down

pathway and lateral connections to fuse the features. The

top-down pathway upsamples spatially coarser, but

semantically stronger, feature maps from higher pyramid

levels. Meanwhile, these features are enhanced with fea-

tures from the bottom-up pathway via lateral connections.

Feature pyramid network provides potential feature maps

that could be adopted as the fundamental feature structure

to build the special feature architecture.

In this paper, we propose a novel scale-aware feature

pyramid architecture based on FPN to detect marine

objects. Firstly, we propose a special backbone subnetwork

combined with a stacked convolutional layers. Each layer

convolutes on input images with a small-scale filters and

reserves abundant fine-grained information. This informa-

tion is crucial to feature maps extraction. Secondly, we

build a multi-scale feature pyramids. Different feature

maps in our pyramids are generated by different convolu-

tional blocks. What is more, the lower level feature maps,

that have accurate location but weak semantics, are

enhanced with strong semantic features from higher level

by upsampling pathway. The enhanced feature pyramids

are adopted to predict targets. To suppress reduplicative

bounding boxes of each object, this paper takes soft non-

maximum suppression (Soft-NMS) method to eliminate

duplicates and solve miss suppression issue result by non-

maximum suppression (NMS). Above all, the proposed

algorithm improves performance on marine object detec-

tion task, especially on marine object detection.

The major contributions of this paper are summarized

as:

(1) We propose a novel scale-aware feature pyramid

architecture to execute marine object detection task.

Fig. 1 The comparison of datasets. The first row and second row are

images from the PASCAL VOC datasets [1] and Microsoft COCO

datasets [2], respectively. The last row shows images from the

underwater image datasets. Comparatively speaking, underwater

images are blur and color cast. And the scales of marine objects are

small. What is worse, marine objects have protective coloration and

tend to live together
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Our structure improves the ability on feature extrac-

tion and performs well on marine object detection.

(2) We propose a backbone subnetwork structure to

extract abundant fine-grained features. The first

convolution layer of original ResNet-50 is replaced

with a three-stacked convolution block. Fine-grained

features are discriminative that benefit for small

object detection.

(3) We propose a novel multi-scale feature pyramid to

enrich semantic feature maps. Our feature pyramid is

combined with several different scale feature maps.

Each feature map is enhanced by the higher level

through a top-down upsampling path. This structure

could reinforce the features with context information

and strengthen the discrimination of feature maps.

The rest of the paper are organized as follows. Section 2

presents related work about the development of technolo-

gies involved in our method. Section 3 specifically

describes the proposed methods. And Sect. 4 gives the

experiments and analysis with proposed methods. More-

over, the last section presents conclusions on this work.

2 Related work

2.1 Object detection

Object detection is a heavily researched topic in computer

vision, such as vehicle detection, pedestrian recognition,

and autonomous driving. There has been a large body of

researches on object detection with deep learning.

According to whether region proposal is needed or not,

popular object detection methods based on CNN mainly

include region proposal-based methods and proposal-free

methods.

Proposal-based methods [3–5, 25, 26] achieve excellent

object detection accuracy. They mainly cover two stages:

(1) they firstly generate region proposal based on feature

maps, and (2) then they classify the proposal as specific

category and produce accurate location for each object.

Computational cost is the bottleneck of these approaches.

Furthermore, Dai et al. [27] propose position-sensitive

score maps to address a dilemma between translation-in-

variance in image classification and translation-variance in

object detection. He et al. [28] extend faster R-CNN by

adding a branch for predicting an object mask in parallel

with the existing branch for bounding box recognition.

Proposal-free paradigms [6, 7, 16, 29–31] principally

focus on realizing real-time detection. These methods

frame object detection as a regression problem using a

single neural network to detect object and category from

full images in one evaluation. So, it can be optimized end-

to-end directly on detection performance. In addition, Shen

et al. [32, 33] explore training object detectors from scratch

without pretraining and contribute a set of design

principles.

2.2 Multi-scale features

Recently, extracting features from different layers is pop-

ular in image recognition and these features are used

together to detect objects. Girshick et al. [3], Girshick [4],

Ren et al. [5] and Redmon et al. [6] just take the final

feature maps to detect target. Long et al. [34] and Hari-

haran et al. [35] sum partial scores for each category over

multiple scales to compute semantic segmentations. Liu

et al. [36] and Kong et al. [37] concatenate features of

multiple layers before computing predictions. Liu et al. [7]

adds convolutional feature layers to the end of the trun-

cated base network and produces multi-scale feature maps

for detection. Fu et al. [16] propose a deconvolution

module to introduce additional large-scale context in object

detection. Lin et al. [17] designs a pyramid architecture to

extract multiple feature maps from different layers. Lin

et al. [19] and Tian et al. [20] adjust the feature maps on

FPN and take higher level feature maps to predict object. In

this paper, We take FPN as a baseline and build our multi-

scale feature pyramid.

2.3 Non-maximum suppression

Non-maximum suppression is a necessary component

employed in state-of-the-art object detection method. As it

could distinguish the detections as positive or negative

examples by computing overlap between each pair of

detection boxes and merge all detections that belong to the

same object. The method widely adopted in object detec-

tions [3–7, 16, 32] is described as greedy NMS, as it selects

a bounding box with the maximum detection score for the

object and suppress its neighboring boxes using a prede-

fined overlap threshold.

Greedy NMS method has shortcoming on miss elimi-

nation, so series of improved approaches are proposed

recently. Rothe et al. [38] present a clustering-based NMS

algorithm based on affinity propagation. Hosang et al. [39]

propose a convent designed to perform NMS of a given set

of detections, which could overcome the intrinsic limita-

tions of greedy NMS and obtain better recall and precision.

Hosang et al. [40] propose a new network architecture

designed to perform NMS, using only boxes and their

score. Bodla et al. [41] propose Soft-NMS that decays the

detection scores of all other objects as a continuous func-

tion of their overlap. Thus, the eliminated boxes in greedy

NMS have the chance to be selected for other objects.

Based on the discovery that the probabilities for class
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labels naturally reflect classification confidence, and

localization confidence is absent, Jiang et al. [42] propose

IoU-guided NMS procedure to take the localization confi-

dence into account. He et al. [43] propose a novel bounding

box regression loss for learning bounding box transfor-

mation and localization variance together, which helps to

merge neighboring bounding boxes during NMS.

3 Scale-aware feature pyramid architecture

3.1 Model architecture

To settle the issue on marine object detection, this paper

proposes scale-aware feature pyramid algorithm, and the

model architecture is represented in Fig. 2. Our whole

method could be concluded as three process: feature

extraction, region proposal, and object detection.

3.1.1 Feature extraction

Feature extraction is the foundational but crucial process in

marine object detection. Because of the scattering and

absorption of light transferred under the water, underwater

images usually have poor visibility, which results in

disappearance of details feature. This paper proposes fea-

ture extraction architecture based on residual network to

obtain abundant and robust feature maps.

Firstly, we propose backbone subnetwork by replacing

the first convolutional layer with three-stacked convolu-

tional blocks. For the original structure in ResNet-50, first

convolutional layer processes input images with a 7� 7

size of filter that may weaken some fine-grained informa-

tion. This paper takes three-stacked convolutional blocks to

extract abundant fine-grained features. Each layer in block

contains a smaller size of filter. So the generated features

are discriminative for small object detection.

Then, several residual blocks are following with backbone

subnetwork as feature extraction network. Each block designs

with residual thoughts that provide two pathway to transfer

parameters. One pathway processes with several convolu-

tional layers and the other escapes from it. There are different

scale feature maps generated by these residual blocks.

Finally, this paper builds a multi-scale feature pyramid

based on feature extraction network. Each low level feature

map is enhanced with context information from top-down

pathway. Specifically, half of low level features are

acquired from low level residual blocks and the other half

are upsampled from higher level feature map. What is

more, our pyramidal feature maps contain higher level
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Fig. 2 The architecture of scale-aware feature pyramid networks.

a The structure of backbone subnetwork. b The basic residual blocks

adopted in convolutional block C l ð l ¼ 2; 3; 4; 5Þ. c The structure of
proposed scale-aware feature pyramid network. We adopt ResNet as

feature extraction network and design a particular backbone structure

to generate abundant fine-grained features. To enrich semantic

information, we design a multi-scale feature pyramid structure. After

extracting ample feature maps, each target could generate several

bounding boxes. To suppress reduplicative boxes, it is essential to

replace traditional NMS algorithm with Soft-NMS. Finally, R-CNN is

concatenated to calculate the loss of classification and regression
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features. This pyramidal feature maps contain abundant

fine-grained and strong semantic information that benefit

for marine object detection.

3.1.2 Region proposal

After acquiring feature maps, this paper generates proposal

bounding box by region proposal networks(RPN). We

adapt RPN by replacing the single-scale feature map with

our multi-scale feature maps. RPN produces multiple scale

bounding boxes for each pixel on feature maps and sup-

presses the reduplicative boxes. However, classical non-

maximum suppression method has issue of miss elimina-

tion. Thus, this paper replaces NMS method with Soft-

NMS algorithm to release miss suppression issue. As a

result, the proper proposals could be selected by RPN.

3.1.3 Object detection

While the proposals are produced, this paper detects targets

with fast r-CNN algorithm. ROI data map with feature

maps by ROI pooling layer and different scale ROI match

with different scale feature map. Furthermore, the redu-

plicative boxes are suppressed by soft-NMS method, and

each box is detected as a specific category with locations.

3.2 Backbone subnetwork for abundant fine-
grained features extraction

Fine-grained features are essential to small object detection,

which contain discriminative information, such as fine-

grained texture and edge information. Abundant fine-grained

features are beneficial to distinguish the target from the similar

but inhomogeneous one. For instance, the scallop could be

distinguished from some stone with abundant fine-grained

texture features. However, the sea cucumber may be ignored

without fine-grained edge features. So extracting abundant

fine-grained features is the foundation of object detection task.

For CNNs in object detection, first convolution layer is

the foundation of following net structures because it is

responsible for extracting detail features from input ima-

ges. However, due to the constraint of computation speed

and memory capacity, filters in first convolution layer are

usually designed as lager scale. This design may result in

disappearance of fine-grained features because it is easily

affected by the surrounding noises and has the disadvan-

tage of subtle feature reservation, especially for small

objects. To this end, we analyze the structure of ResNet

and VGGNet and propose backbone subnetwork called

Root-ResNet to extract abundant fine-grained features.

Our backbone subnetwork is designed based on the

ResNet-50. As described in Fig. 3b, the first convolution

layer of original ResNet-50 is defined as 7� 7 kernel size

with stride 2. This setting is easily affected by the sur-

rounding noises and may lead to disappearance of detail

features for small objects. Inspired by [32, 44], we propose

a backbone subnetwork, which replaces the first convolu-

tion layer of ResNet-50 with stacked convolutional block,

to improve the competence of feature extraction. As shown

in Fig. 3c, our backbone subnetwork constitutes with three-

stacked 3� 3 convolution block, where the stride size of

the first convolution layer is set as 2 and the other layers as

1. Each convolution layer is adjacent to the BatchNorm

layer and ReLU layer, which could optimize the parame-

ters. By convoluting on input images with stacked small-

scale filters, our method could alleviate the affection of

surrounding noises and acquire abundant fine-grained

information. In Fig. 3d, we further change the stride size of

first 3� 3 convolution layer from 2 to 1. Without down-

sampling operation, the detection performance has been

improved slightly because it is able to exploit more detail

information from the images, so as to extract powerful fine-

grained features for small object detection.

3.3 Multi-scale feature pyramid for semantic
information enrichment

To acquire robust feature maps, this paper builds a multi-

scale feature pyramid. Inspired by FPN [17] and RetinaNet

[19], we take the second to fifth convolutional residual

blocks to extract feature maps and build our deeper feature

pyramid based on them. Generally, while high level feature

maps have much semantic information that is beneficial to

larger object detection, low level feature maps have

abundant detail information that is favorable to small

object detection. Thus, we conduct upsampling from higher

level feature map to enhance lower level feature map with

context information.

In this paper, our feature pyramids are combined with

six feature maps, where each feature map has a different

scale. Different from RetinaNet [19], our multi-scale fea-

ture maps are defined as {P2, P3, P4, P5, P6, P7}, where

the strides of them are {4, 8, 16, 32, 64, 128}, respectively.

Considering the fact that low level feature maps lack

semantic information, we enhance low level feature maps

with semantic features upsampled from high level feature

maps. Specifically, half of the features of P2 are learned

from second convolution block by bottom-up pathway and

half upsampled from P3 by top-down pathway, so as P3

and P4. P5 is extracted from fifth convolution block with

convolutional operation, while P6 is downsampled from

fifth convolution block by max pooling. To obtain addi-

tional context information, we further introduce a higher

level feature map P7. P7 in our method is downsampled

from P6 by 3� 3 max pooling with stride 2. Compara-

tively, in RetinaNet [19], P6 is obtained via a 3� 3 stride-2
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conv on C5, and P7 is computed by applying ReLU fol-

lowed by a 3� 3 stride-2 conv on P6. The architecture of

our feature pyramid is represented in Fig. 4.

The design of our multi-scale feature pyramid network

has two main superiorities. On the one hand, it extracts

abundant fine-grained information of low level blocks,
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which are especially beneficial to small object detection.

On the other hand, multi-scale feature maps bring richer

semantic information that is in favor of large object

detection. What is more, it has powerful competence of

feature extraction and could locate different scale object

with different scale feature map.

3.4 Soft non-maximum suppression
for reduplicative box elimination

Reduplicative box elimination plays an essential role in

object detection task. Non-maximum suppression (NMS) is

the classical suppression method, which could select the

bounding box with the maximum detection score for the

object and suppress its neighboring boxes. However, tra-

ditional NMS has miss suppression issue that may suppress

the boxes for its neighboring targets at the same time. To

settle this issue, this paper replaces NMS with Soft-NMS to

eliminate the duplicates.

In this paper, region proposal network is adopted to

generate bounding boxes. For each pixel in images, we take

nine anchors, three different scales of width and height, to

produce bounding boxes. Each box is classified as a

specific label with scores. Considering the fact that these

boxes include both valid and invalid detections, we sort the

boxes based on the score and select top K (K ¼ 2000)

detections as proposals. What is more, the redundant pro-

posals can be eliminated by suppression method.

As illustrated in Fig. 5, all of the detection boxes in (b)

are sorted based on their scores and the detection box B

with the maximum score is selected as the proposal. The

intersection of union (IoU) between B and other box Bi is

calculated as follows:

IoU ¼ B \ B i

B [ B i
� ð1Þ

Meanwhile, the other detection boxes with a valid overlap

with B, which is according to a predefined threshold Tt
(Tt ¼ 0:5), are suppressed. The process is recursively

applied on the remaining boxes.

For traditional NMS algorithm in current object detec-

tion pipeline, it is bothered by the miss elimination. After

revisiting the NMS method in greater detail, the sup-

pressing process in the NMS algorithm can be described as

follows:

S i ¼
S i; IoU B;B ið Þ\T t

0; IoU B;B ið Þ� T t

;

�
ð2Þ

where Si is the score of box and Tt means the predefined

overlap threshold between detected box and true bounding

box. As shown in Fig. 6, while the red box is selected as

proposal, the yellow box that has a significant overlap with

(a) (b)

(c)(d)

Fig. 5 The detection of

proposal. a is original image. In

b, series of region bounding

boxes with classification scores

and regression offsets are

generated from feature maps. It

then gets rid of low-score boxes

and selects top K proposals in c.
Finally, NMS method is adopted

to remove duplicates with

threshold Tt and the detection

results are shown in d
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red box will be suppressed by resetting the score as 0.

However, in Fig. 6b, because of the miss suppression, the

yellow box has no chance to participate in the following

selection. That may lead to the reduction of accuracy for

the scallop detection. What is worse, this situation exists in

the whole detection and is severe for dense marine object

detection task.

To settle the issue, this paper adopts Soft-NMS method

to suppress the duplicates. Different from NMS, Soft-NMS

method resets the sore of yellow box as a lower one. The

process of Soft-NMS can be formulated as follows,

S i ¼
S i; IoU B;B ið Þ\T t

S i 1� IoU B;B ið Þð Þ; IoU B;B ið Þ� T t

:

�
ð3Þ

As a result, the yellow boxes will have the opportunity to

be selected as the proposal for the adjacent objects.

Comparatively speaking, Soft-NMS method tactfully

resets the scores of duplicates from 0 to a low but

nonzero value. So these boxes could participate the fol-

lowing selection. It is critical to avoid miss elimination

in marine object detection. Because of the aggregation

effect, marine objects in the captured underwater images

are usually dense. So miss suppression issue widely

exists in marine object detection task. Soft-NMS could

overcome this defect in reduplicative boxes removal. The

experiments conducted in the next section also validate

the effectiveness of Soft-NMS in marine object

detection.

3.5 Loss function

In this paper, our training loss function for an image is

defined as:

L p if g; t if gð Þ ¼ 1

N cls

X
i

L cls p i; p
�
i

� �

þ k
1

N reg

X
i

1 p �
i [ 0f g L reg t i; t

�
i

� �
;

ð4Þ

where i is the index of an anchor in amini-batch. pi denotes the

predicted probability of anchor i being an object and p �
i is

behalf of the ground-truth label, which is 1 if the anchor is

positive and is 0 if the anchor is negative. The predicted

bounding box is represented as a vector ti, which is combined

with 4 parameterized coordinates. Meanwhile, the ground-

truth box associated with a positive anchor is denoted as a

vector t �i . The classification loss Lcls and the regression loss

Lreg are set as in [5]. 1 p �
i [ 0f g represents the indicator func-

tion, being 1 if p �
i [ 0 and 0 otherwise. This term controls

that the regression loss is activated only for positive anchors

(p �
i ¼ 1) and is disabled otherwise (p �

i ¼ 0). To make sure

the cls term and reg term in Eq. (4) in same dimension, the cls

term is normalized bymini-batch size (Lcls ¼ 256) and the reg

term is normalized by the number of anchor locations

(Lreg ¼ 2400). k is the balanceweight for Lreg, which has been
tested in [5] that the detection results are insensitive to k in a

wide range from 1 to 100. Thus, we set k ¼ 10 to balance the

weight in this paper, which makes both cls and reg terms

roughly equally weighted after normalization.

4 Experiments and analysis

In this section, we design several group experiments of

proposed method and analysis of results to verify our work.

Our experiments are mainly conducted on the 3 category

underwater image datasets and the 20 category PASCAL

0.96

0.790.98

0.82

(a) Correct suppression (b) Miss suppression

Fig. 6 The representation of duplicate elimination. There are two

detected bounding boxes with different scores in each images. The

overlap of these two boxes lies within the predefined threshold. NMS

method sets the score of yellow box to 0.0; this means it will be

eliminated. For b, this process may suppress the candidate of the

adjacent object and increase the miss-rate. Soft-NMS believes it is

better to allot a lower score to yellow box, because it has the chance to

be selected for the next object (color figure online)
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VOC datasets [1], respectively. First of all, we execute

experiments on underwater image datasets to solve marine

object detection task and research the effectiveness of each

component in our algorithm. Then, we perform experi-

ments on the PASCAL VOC datasets to compare with the

common practice in both accuracy and speed and analyze

the performance of our method. The experimental results

reveal that our proposed method performs well not only on

underwater image datasets, but also on standard datasets. In

addition, we also conduct experiments on the 10 category

smart unmanned vending machines (UVMs) datasets

[45, 46] to test the generalization ability of our method.

Illustratively, this paper adopts mean average precision

(mAP) as evaluation criterion of accuracy and frames per

second (FPS) to test the speed of detection.

4.1 Training details

We take ResNet-50 as our backbone networks, and the base

ResNet-50 model is pretrained on ImageNet1k classifica-

tion set [47]. Unless specified, our network is trained with

stochastic gradient descent (SGD) for 100K iterations with

the initial learning rate of 0.001, which is reduced by a

factor of 10 at iteration 60K and 80K, respectively. We use

a weight decay of 0.0001 and a momentum of 0.9. In

addition, the input images are resized to 1280� 768. All of

the experimental results are implemented using a Nvidia

GeForce GTX 1080 Ti GPU and cuDNN v5.1 and an Intel

Core i7-6700K@4.00 GHz.

4.2 Experiments on underwater image datasets

The underwater image datasets are built with the same

layout of PASCAL VOC datasets, which mainly include

25,400 pictures with three categories: sea cucumber, sea

urchin, and scallop. In order to actually research the

detection of marine objects, we capture underwater images

with our integrated underwater robot in naturalistic ocean

environment and label them by ourselves. To improve the

multiplicity of the datasets, we augment the datasets by

doing mirror transformation and image enhancement for

some pictures.

We represent some instances of the underwater image

datasets in Fig. 7. Apparently, the underwater images are

blur and color cast. And the scales of marine objects in

underwater images are small. What is more, some marine

objects, such as sea cucumbers and scallops, have protec-

tive coloration to hide themselves into surroundings.

Because of the living habits of marine objects, the captured

images are usually have a high density of targets. These

natures aggravate the challenges of marine object detection

task. In accordance with the proposed algorithm, we per-

form series of experiments on underwater image datasets.

4.2.1 Comparison with popular detectors

We conduct experiments on underwater image datasets

with different popular detectors. Specifically, we reimple-

ment popular detectors with default setting on underwater

image datasets. The comparison results are shown in

Table 1. Apparently, the detection performance on marine

objects cannot catch the one on common classes. For

Fig. 7 The images in underwater image datasets. The first row and second row show original underwater images. The last row shows the images

after enhancement processing. We augment our datasets by enhancing some underwater images

Table 1 Comparison with popular detectors on the underwater image

datasets

Approach Backbone Input size FPS mAP (%)

Fast R-CNN VGGNet � 1000� 600 0.4 63.77

Faster R-CNN ZFNet � 1000� 600 14 61.95

Faster R-CNN VGGNet � 1000� 600 5.6 69.16

Faster R-CNN ResNet-101 � 1000� 600 3.4 71.01

YOLO GoogLeNet 448� 448 41 61.18

YOLOv2 Darknet-19 416� 416 61 73.86

YOLOv3 Darknet-53 416� 416 30 74.43

SSD VGGNet 300� 300 42 70.03

FPN ResNet-50 � 1280� 768 4.1 74.25

SA-FPNðoursÞ ResNet-50 � 1280� 768 3.5 76:27

Bold values indicate the best results
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instance, mAP of Fast R-CNN on underwater image data-

sets is 63.77%, where 70.0% mAP is achieved on the

PASCAL VOC datasets (shown in Table 5). It is because

underwater images are complicated and scales of marine

objects are usually small.

For object detection task, Faster R-CNN and YOLO are

classical approaches. And several improving versions are

proposed in recent years. Thus, this paper reimplements

different versions of these methods on underwater image

datasets. As represented in Table 1, Faster R-CNN with

ZFNet just achieves 61.95% mAP. While adopting com-

plicated structure, Faster R-CNN with VGGNet and

ResNet-101 could obtain 69.16% and 71.01%, respec-

tively. Comparatively, YOLO series methods have supe-

riority on detection speed. YOLO detector realizes a very

fast detection, which could process 41 frames within one

second. What is more, YOLOv2 could process 61 frames

per second at the mAP of 73.86%. YOLOv3 further

improves the detection accuracy on underwater image

datasets from 73.86% to 74.43. In addition, SSD detector

obtains feature pyramid networks gets 74.25%. Our pro-

posed method performs best on the underwater image

datasets with 76.27% mAP, and we will detailedly analyze

the effectiveness of our algorithm in the following.

4.2.2 Ablation study

To verify our design of proposed algorithm, we conduct

series of ablation experiments to show the comparative

effect of each component. In Table 2, we execute FPN on

underwater image dataset as baseline and introduce our

design on it to improve the performance.

Specifically, the results between first two rows demon-

strate that after introducing the high level feature pyramid,

the performance on marine object detection is improved.

That is benefited with the richer semantic information

generated by high level feature pyramid. What is more, the

comparison of first row with third row illustrates that the

redesign of backbone network also has contributions on

detection performance, because it could extract more

abundant feature than original structure.

By contrast with FPN, the algorithm proposed in this

paper has advantage on marine object detection.

Especially, via replacing non-maximum suppression

method with Soft-NMS, our method could avoid miss

elimination in duplicate removal. With the same setting of

experiments, we outperform FPN by 2.02%.

In addition, in terms of these three category objects, the

detection of the scallop is performed well than the others,

and the sea urchin is much harder to recognize under the

water.

4.2.3 Research on backbone subnetwork

We analyze the structure of ResNet and VGGNet and

redesign the backbone subnetwork, called Root-ResNet.

Specifically, our model is designed based on the ResNet-50

backbone network in experiments. Each convolution layer

in our backbone network is adjacent to the BatchNorm

layer and ReLU layer. To explore the effect of backbone

subnetwork on detection performance, the experiments on

different types of backbone structure are carried out.

In contrast to VGGNet, the original structure in ResNet-

50 uses relatively large kernel size 7� 7 with stride 2. As

shown in Table 3, it only produces 74.25% mAP on

underwater image datasets. Aiming to explore the effect of

the kernel size of the first convolution layer on the detector,

we attempt several experiments. As illustrated in the first

three rows of Table 3, while reducing the scale of filters in

first convolutional layer, the performance on detection has

been improved slightly. By replacing the kernel size of first

convolutional layer from 7 � 7 to 3 � 3, 0.33% mAP is

gained.

Activated by DSOD, we decide to replace the first 7� 7

convolution layer with several 3� 3 convolution layers.

After introducing the stacked convolution layers, we found

that the speed is slower than original structure. To study the

impact of number of stacked convolution layers in the

backbone subnetwork, a group experiments are conducted

and the results are shown in Table 3. As the number of

convolution layers increases from 1 to 3, the detection

results are improved from 74.58 to 74.81%. Considering

the cost of computation, we take three 3� 3 convolution

layers as the basic structure in our backbone subnetwork. In

addition, we also test the effect on stride size in three-

Table 2 Ablation experiments

on underwater image dataset
Network AP (%) mAP (%)

Sea cucumber Sea urchin Scallop

FPN 71.20 70.92 80.64 74.25

FPN ? P7 72.34 71.78 81.36 75.16

FPN ? root 71.87 71.59 80.98 74.81

FPN ? root ? P7 72.61 72.32 81.66 75.53

FPN ? root ? P7 ? Soft-NMS(ours) 73.25 73.09 82.47 76.27
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stacked convolution block and get 75.16% mAP on

detection.

4.2.4 Effectiveness of learning rate

To explore the effect of learning rate in training, we design

several experiments with different learning rates. With the

same setting in other components in our method, we only

adjust the learning rate on training phase and observe the

detection results.

As demonstrated in Table 4, with the reduction of

learning rate, the performance on detection has been

improved. While the learning rate is set as 0.001, our

model gets 76.27% mAP on underwater image datasets.

However, too lower learning rate will affect the rate of

convergence of the network. So, we stop reducing learning

rate after 0.001. In this paper, we choose 0.001 as our

default learning rate.

4.2.5 Analysis on training

After repeated experiments, SA-FPN improves the perfor-

mance on marine object detection, even in seafood serried

scene. The comparison of precision–recall curve between

FPN and SA-FPN is shown in Fig. 8. While FPN achieves

74.25% mAP on underwater image dataset, our method

could perform 76.27% mAP.

Furthermore, to analyze the variation of our method

with FPN in training, we visualize the loss between these

two algorithms. As demonstrated in Fig. 9, our method

could converge quickly with lesser amplitude fluctuation of

loss in training.

With the intension of explaining the performance on our

method, we arbitrarily take some detection results on dif-

ferent methods as examples. In Fig. 10, while first row

results are conducted on FPN, second row results on our

algorithm. By carefully comparing each group image, we

found that our method outperforms FPN on marine object

detection. Specifically, SA-FPN could detect much more

objects in images, especially for the small one, that may

leave out with FPN method.

More detection results of our algorithm are shown in

Fig. 11. What revealed in Fig. 11 is that SA-FPN performs

well in different situations that varied from small serried

scene to bigger one. Even in weedy and muddy water

environment, our method still could detect the target

accurately.

However, our algorithm still faces with challenges on

marine object detection task. It is extremely difficult to

distinguish very close objects with same category from

each other. In addition, detection performance on shad-

owed objects also needs to be improved. Some failure cases

on marine object detection experiments are given in

Fig. 12. For example, while sea urchins are very close to

each other, it is hard to figure out whether they are regarded

as one target or not, so do as sea cucumber and scallop.

Besides, when the scallop is almost shadowed by sea

urchin in Fig. 12, it would be ignored to detect.

Table 3 The exploration on

how the structure of backbone

network affects the performance

on detection

Backbone subnetwork AP (%) mAP (%)

Sea cucumber Sea urchin Scallop

7 � 7, stride = 2 71.20 70.92 80.64 74.25

5� 5, stride = 2 71.39 71.12 80.75 74.42

3� 3, stride = 2 71.53 71.31 80.90 74.58

3� 3, stride = 2 71.69 71.45 80.93 74.69

3� 3, stride = 1

3� 3, stride = 2 71.87 71.59 80.98 74.81

3� 3, stride = 1

3� 3, stride = 1

3� 3, stride = 1 72:34 71:78 81:36 75:16

3� 3, stride = 1

3� 3, stride = 1

Bold values indicate the best results

Table 4 Analysis of learning rate for our proposed method on

underwater image dataset

Learning rate AP (%) mAP (%)

Sea cucumber Sea urchin Scallop

0.05 72.99 72.58 82.10 75.89

0.01 73.01 72.60 82.12 75.91

0.005 73.20 72.82 82.37 76.13

0.001 73.25 73.09 82.47 76.27
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(a) FPN (b) SA-FPN

Fig. 8 The comparison of precision–recall curve between FPN and SA-FPN

(a) FPN (b) SA-FPN

Fig. 9 The comparison of training loss between FPN and SA-FPN. Comparatively, our method is converged quickly with lesser amplitude

fluctuation of loss

FP
N

SA
-F

PN

Fig. 10 Qualitative detection results of FPN and SA-FPN algorithm

on underwater image dataset. Top row shows detection results on

FPN method, and bottom row shows experiments on SA-FPN. By

comparison, our method could detect more targets than FPN method

in underwater image and improve the performance on marine object

detection
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Fig. 11 Some detection results of SA-FPN method on underwater image dataset. Our method works well on marine object detection, even in

serried scene

Fig. 12 Failure cases on marine

object detection task
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4.3 Experiments on Pascal VOC datasets

To verify the effect of our proposed method on standard

object detection dataset, we conduct the experiments on the

PASCAL VOC datasets. Specifically, we train the model

on the VOC 2007 and VOC 2012 trainval sets (16,551

images) and test on the VOC 2007 test set (4952 images).

We compare SA-FPN with the state-of-the-art object

detection approaches on the PASCAL VOC 2007 datasets

in Table 5.

On the basis of whether region proposal is needed or

not, approaches of object detection are usually divided into

one-stage detectors and two-stage detectors. Two-stage

detectors firstly generate region proposal from feature

maps and then detect based on these proposals. One-stage

detectors frame object detection as a regression issue and

take a single neural network to detect object and category

from fully images in one evaluation.

As shown in Table 5, one-stage detectors have advan-

tages on detection speed. For example, YOLOv2 could

real-timely detect targets with speed of 67 FPS, and

SSD300 may reach 46 FPS on detection task. The upgrade

vision of these detectors, for instance YOLOv3, SSD512,

DSSD321, and GFR-DSOD300, achieve high detection

accuracy on the cost of increasing computation burden.

GFR-DSOD300 even achieves 78.9% mAP. As always,

two-stage detectors get satisfactory detection accuracy. For

example, faster R-CNN with ResNet-101 obtains 76.4%

mAP and FPN gets 77.1% on the PASCAL VOC 2007

datasets with default setting. R-FCN and MR-CNN

improve the detection accuracy to 77.4% and 78.2%,

respectively. Finally, we achieve 79.1% mAP and outper-

form FPN with 2% mAP on PASCAL VOC dataset.

In addition, we investigate the effectiveness of each

component of our SA-FPN framework. We design several

controlled experiments on the PASCAL VOC 2007 data-

sets for ablation study. As shown in Table 6, we implement

FPN with default setting on the PASCAL VOC 2007

datasets and get 77.06% mAP. Then, we add each com-

ponent on original FPN and observe the function of it.

From the experimental results, we found that the backbone

subnetwork carries out 0.39% improvement and our multi-

scale feature pyramid improves 0.79% mAP. What is more,

by combining these components together, our framework

achieves 79.13% mAP on the PASCAL VOC datasets.

Table 5 Detection results on the

PASCAL VOC 2007 datasets
Approach Backbone Input size FPS mAP (%)

One-stage detectors

YOLO [6] GoogLeNet 448� 448 45 63.4

YOLOv2 [29] Darknet-19 416� 416 67 76.8

YOLOv3 [31] Darknet-53 416� 416 34 77.2

RON384 [30] VGGNet 384� 384 15 75.4

SSD300 [7] VGGNet 300� 300 46 74.3

SSD512 [7] VGGNet 512� 512 19 76.8

DSSD321 [16] ResNet-101 321� 321 9.5 78.6

DSOD300 [32] DS/64-192-48-1 300� 300 17.4 77.7

GFR-DSOD300 [33] DS/64-192-48-1 300� 300 17.5 78.9

Two-stage detectors

Fast R-CNN [4] VGGNet � 1000� 600 0.6 70.0

Faster R-CNN [5] VGGNet � 1000� 600 7 73.2

Faster R-CNN [24] ResNet-101 � 1000� 600 5 76.4

ION [26] VGGNet � 1000� 600 1.25 75.6

FPN [17] ResNet-50 � 1280� 768 5 77.1

R-FCN [27] ResNet-50 � 1000� 600 11 77.4

MR-CNN [25] VGGNet � 1000� 600 0.03 78.2

SA-FPN(ours) ResNet-50 � 1280� 768 4 79:1

Bold value indicates the best result

Table 6 Ablation experiments on the PASCAL VOC 2007 datasets

Network mAP (%)

FPN [17] 77.06

FPN ? P7 77.85

FPN ? root 77.45

FPN ? root ? P7 78.21

FPN þ root þ P7 þ Soft-NMSðoursÞ 79.13
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4.4 Experiments on smart UVMs datasets

In order to test the generalization ability of our algorithm,

we also train and evaluate our method on the smart UVMs

datasets. Smart UVMs datasets are compiled for object

detection in unmanned retail application environments,

which contain over 30,000 images captured in a refriger-

ator equipped with different cameras [45, 46]. For the static

detection task in Smart UVMs datasets, there are 34,052

images with 10 kinds of beverages in the dataset, including

14,651 images in the training set, 14,040 images in the

validation set, and 5361 images in the testing set.

We train our method on smart UVMs datasets and

compare with several state-of-the-art object detection

models in Table 7. For representation, label of fenda is

changed to FT, yingyangkuaixian to NE, jiaduobao to JDB,

Table 7 Detection results on the

smart UVMs datasets
YOLO-v2 YOLO-v3 Faster R-CNN R-FCN SSD DSSD SA� FPNðoursÞ

FT 90.90 90.90 90.91 90.90 90.91 90.90 90.90

NE 90.91 90.91 90.89 90.90 90.90 90.89 90.91

JDB 90.88 90.91 90.91 90.91 90.91 90.90 90.91

MZ 90.91 99.99 90.91 96.37 99.92 90.90 99.96

JGMT 90.84 90.90 90.73 90.88 90.87 90.85 90.88

GTEN 90.82 90.91 90.62 90.88 90.88 90.83 90.91

UAMT 90.90 90.89 90.83 90.86 90.86 90.86 90.90

VVM 90.77 90.87 90.78 90.85 90.85 90.85 90.88

IBT 90.89 90.91 90.91 90.90 90.90 90.89 90.90

MM 90.90 90.88 90.88 90.91 90.89 90.89 90.91

mAP (%) 90.87 91.81 90.84 91.43 91.79 90.88 91.81

Bold values indicate the best results

Fig. 13 Qualitative detection results on smart UVMs datasets

Neural Computing and Applications (2021) 33:3637–3653 3651

123



maidong to MZ, TYCL to JGMT, BSS to GTEN, TYYC to

UAMT, LLDS to VVW, KSFH to IBT, and MZY to MM

[45].

As shown in Table 7, our method could reach the best

performance of 91.81% mAP, the same as YOLOv3, on

detection task with smart UVMs datasets. In addition,

qualitative detection results of our model on smart UVMs

datasets are shown in Fig. 13. Our method could detect

targets accurately.

5 Conclusion

This paper proposes a scale-aware feature pyramid network

to detect marine objects. Firstly, we propose a special

backbone subnetwork architecture called Root-ResNet on

the foundation of ResNet-50 to extract fine-grained feature

maps. Root-ResNet improves 0.36% mAP on marine object

detection task by replacing the first 7� 7 convolution layer

with three-stacked 3� 3 convolution blocks. What is more,

we build a multi-scale feature pyramid to enhance the

semantic features. 0.91% mAP and 0.79% mAP are gained

on underwater image datasets and PASCAL VOC 2007

datasets, respectively. Finally, to suppress the reduplicative

bounding boxes on the targets, this paper adopts soft non-

maximum suppression algorithm to replace NMS, which

may cause miss elimination. The experimental results

reveal that our methods have effective performance on

marine object detection. After several experimental tests,

our methods could reach 76.27% mAP on marine object

detection and outperform FPN by 2.02%. In addition, we

also train and evaluate on the smart UVMs datasets to test

the generalization ability of our algorithm and achieve the

best performance of 91.81% mAP.

In the future, we will continue to exploit potentialities of

convolutional neural network on marine object detection

and improve the performance on turbid and crowded

environment.
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