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Abstract
Autism spectrum disorders (ASDs) are heterogeneous neurodevelopmental conditions. In fMRI studies, including most

machine learning studies seeking to distinguish ASD from typical developing (TD) samples, cohorts differing in gender

and symptom severity composition are often treated statistically as one ‘ASD group.’ Using resting-state functional

connectivity (FC) data, we implemented random forest to build diagnostic classifiers in four ASD samples including a total

of 656 participants (NASD = 306, NTD = 350, ages 6–18). Groups were manipulated to titrate heterogeneity of gender and

symptom severity and partially overlapped. Each sample differed on inclusionary criteria: (1) all genders, unrestricted

severity range; (2) only male participants, unrestricted severity; (3) all genders, higher severity only; and (4) only male

participants, higher severity. Each set consisted of 200 participants per group (ASD, TD; matched on age and head motion):

160 for training and 40 for validation. FMRI time series from 237 regions of interest (ROIs) were Pearson correlated in a

237 9 237 FC matrix, and classifiers were built using random forest in training samples. Classification accuracies in

validation samples were 62.5%, 65%, 70%, and 73.75%, respectively, for samples 1–4. Connectivity within cingulo-

opercular task control (COTC) network, and between COTC ROIs and default mode and dorsal attention network con-

tributed overall most informative features, but features differed across sets. Findings suggest that diagnostic classifiers vary

depending on ASD sample composition. Specifically, greater homogeneity of samples regarding gender and symptom

severity enhances classifier performance. However, given the true heterogeneity of ASDs, performance metrics alone may

not adequately reflect classifier utility.

Keywords Autism spectrum disorder � Autism diagnostic observation schedule � Conditional random forest �
Functional connectivity � fMRI � Symptom severity � Machine learning � Heterogeneity

1 Introduction

Autism spectrum disorders (ASDs) encompass neurode-

velopmental conditions characterized by sociocommu-

nicative impairments and presence of restricted and
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repetitive patterns of behavior [1]. Although ASDs occur

on a spectrum from mild to severe, most individuals

require lifelong support in some form (familial, commu-

nity, taxpayer, health systems, etc.), making research in this

population a high public health priority [2]. Despite a large

number of neuroimaging studies, no distinct neural signa-

ture for ASDs has been established, likely because no

single etiology could account for all variants of the disorder

[3]. Moreover, many additional factors including age,

comorbidities, and treatment history affect neural devel-

opment; thus, neural signatures for ‘classifying’ ASDs at

the individual level cannot be easily identified. Although

findings of atypical brain functioning in ASDs have not

fully converged, most studies using functional magnetic

resonance imaging (fMRI) have found that children and

adults with ASDs show atypical functional connectivity

(FC) between many brain regions, both within and between

neural networks [4]. FMRI detects low-frequency fluctua-

tions in the blood oxygen level-dependent (BOLD) signal

during task performance or in a resting state. Correlations

between BOLD time series in different brain regions are

considered to reflect FC [5].

Machine learning (ML) classification methods promise

to advance understanding of how brain functioning is

affected in ASDs at the group level, since they are data-

driven approaches that do not require specific hypotheses

and can tolerate the high dimensionality of fMRI datasets.

Indeed, FC variables have been used in previous ML

studies for diagnostic classification of ASD [6–8]. A sub-

section of these studies (e.g., [9–11]) implemented random

forest (RF) [12], a nonparametric ensemble ML method

that constructs numerous decision trees (classification and

regression trees) and makes final predictions (e.g., ASD vs.

non-ASD) based on the class majority votes or mean pre-

diction from all trees. FC variables can be used to build

classifiers with RF. Such data-driven approaches can

identify atypical brain patterns in ASDs even when specific

hypotheses may be unwarranted (given inconsistent evi-

dence in the literature, e.g., [13].

Previous ML studies of ASDs have mostly included

highly heterogeneous ASD samples with respect to the

range of symptom severities, gender composition, medi-

cation status, and other variables. It is currently unknown

how sample heterogeneity affects the performance of ML

classifiers of ASDs. This restricts the inferences that can be

drawn from previous research. Heterogeneity is a critical

factor that has hindered progress in understanding atypical

brain organization in ASDs in general [14]. For example,

although about 20% of individuals with ASDs are female,

the impact of gender on atypical brain connectivity in

ASDs is not fully understood [15]. The limited literature

comparing FC in males and females with ASDs suggests

sex differences [15] that are network dependent [16, 17],

presumably due to divergent neurodevelopmental trajec-

tories [18]. Secondly, studies often include ASD partici-

pants with mild symptom severity, as these may comply

more easily with constraints and instruction during rs-

fMRI scans. However, since atypical connectivity may be

more distinct in ASD individuals with greater symptom

severity, inclusion of mild cases may impede diagnostic

classification.

Our study aimed to examine the impact of ASD sample

heterogeneity on ML diagnostic classification, with respect

to both accuracy and selection of informative features.

Many variables contribute to heterogeneity in ASDs (e.g.,

treatment history, language abilities, psychiatric comor-

bidities). However, given limitations of publicly available

large samples, we focused on symptom severity and

self/caregiver-reported gender. This focus allowed us to

operationalize two factors of heterogeneity that likely

affect functional connectivity. We gathered four samples of

children and adolescents between the ages of six and

eighteen, with varying levels of heterogeneity in gender

composition and autism symptom severity, and used rest-

ing-state fMRI data to construct diagnostic classifiers for

each. We hypothesized that classification accuracy would

increase with greater sample homogeneity and that most

important FC features would differ across samples.

2 Methods

2.1 Datasets and participants

Children and adolescents between the ages of six and

eighteen with ASDs and typically developing (TD) same-

aged peers were selected from an in-house sample col-

lected at San Diego State University (SDSU) and from

publicly available multisite databases, the autism brain

imaging data exchange (ABIDE) I and II [19, 20]. The

scanning sites from ABIDE included in the current study

were SDSU (in-house, acquired in the period between 2012

and 2019), the Kennedy Krieger Institute (KKI), New York

University (NYU), Georgetown University (GU), Univer-

sity of California at Los Angeles (UCLA), University of

Utah School of Medicine (USM), and Oregon Health and

Science University (OHSU). Supplementary Figures 1–4

illustrate the number of participants from each scanning

site included in each sample. Although the in-house dataset

is partially available in the ABIDE database, additional

scans (unavailable in ABIDE) were included. For in-house

data, ASD diagnostic status was established based on the

DSM-5 criteria [1], supported by autism diagnostic obser-

vation schedule (ADOS) [21] or ADOS-2 [22] adminis-

tered by research-reliable clinicians, the autism diagnostic

interview-revised [23] administered to caregivers, and
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expert clinical judgment. Diagnostic status for ASD par-

ticipants in the current study was adopted directly from the

ABIDE database (see Supplementary Methods for details).

Inclusion in the TD group required absence of ASD or any

developmental disorder apart from ADHD. Other specific

exclusion criteria used for selecting TD participants (e.g.,

absence of neurological or psychiatric history or absence of

family history of ASDs) varied across ABIDE sites. Due to

known effects of eye status on FC [24], only resting-state

fMRI datasets acquired with participants’ eyes open were

included. As even minute amounts of head motion are

known to impact FC estimates [25], strict head motion

criteria were adopted. Only participants with C 80% of

volumes retained after censoring volumes with framewise

displacement C 0.5 mm and root-mean-square displace-

ment (RMSD, a summary measure of head motion

throughout the scan)\ 0.2 mm were included. Further,

only ABIDE sites contributing C 10 participants meeting

these head motion inclusion criteria were included; 306

participants with ASD and 350 TD participants were

included. The fMRI and clinical data shared in the ABIDE

database were de-identified from protected health infor-

mation. Collection of all in-house data was approved by the

Institutional Review Boards at San Diego State University

and the University of California, San Diego, and all par-

ticipants provided written consent to participate and also to

have their data included in the ABIDE databases. For

ABIDE data, prior to data contribution, sites were required

to confirm that their local Institutional Review Board or

ethics committee had approved both the initial data col-

lection and the sharing of fully de-identified datasets.

Four classification samples (each including 200 ASD

and 200 TD participants) were created by constricting ASD

sample heterogeneity in gender and ADOS or ADOS-2

total scores (depending on the edition of which was ADOS

administered). The four samples were as follows: sample 1

(‘full heterogeneity’): participants with a full range (unre-

stricted) of ADOS Total scores, gender unrestricted; sam-

ple 2 (‘reduced gender heterogeneity’): males only, all

ADOS Total scores included; sample 3 (‘reduced ASD-

symptom heterogeneity’): gender unrestricted with ADOS

Total scores C 10; and sample 4 (‘low heterogeneity’):

males only with ADOS scores C 10 (see Supplemental

Methods for details on ADOS Total scores).

Given the overall small number of female participants in

ABIDE, corresponding to the generally lower prevalence of

ASDs in females [26], female-only samples could not be

included. Tables 1, 2, 3, and 4 present the demographic

characteristics of training and validation datasets for samples

1–4. In each sample, ASD and TD participants were matched,

at the group level, on head motion, handedness, and age. We

also matched groups on gender (where appropriate) and per-

formance intelligence quotient (PIQ) to the extent possible

given sample limitations. Matching was carried out using an

algorithm developed by coauthor A.J. [27], which determines

the optimal overall multivariate matching solution for two

groups of participants by using proximity or distance-based

metrics across multiple variables (here: age, motion, PIQ, and

in samples 1 and 3, gender). Where PIQ was not available

from ABIDE data (sample 1: n = 58, sample 2: n = 58,

sample 3: n = 67, sample 4: n = 66), full-scale intelligent

quotient (FSIQ) was used for matching purposes. In a pro-

portion of 80:20, datasets were selected randomly from each

site for the inclusion in the training model and validation

models (160 ASD participants for training model and 40 ASD

participants for the validation model). ASD participants

included in the training and validation models were separately

matched to same-sized TD groups for training and validation

using the matching algorithm described above. Sample

overlap for the four comparisons is depicted using Venn dia-

grams in Supplementary Figure 4.

2.2 Data acquisition and preprocessing

For each participant, anatomical MRI and resting-state

fMRI scans were collected. Acquisition parameters for

each included scanning site are detailed in Supplementary

Tables 1 and 2. Resting-state fMRI images were prepro-

cessed using the Analysis of Functional NeuroImages,

AFNI, [28] (afni.nimh.nih.gov) and FSL 5.0 [29] (fm-

rib.ox.ac.uk/fsl) software packages. Volumes at the

beginning of each scan were discarded for T1 equilibration

as needed (see Supplementary Table 3). In-house resting-

state fMRI data were field-map and slice-time corrected.

All data were motion-corrected and resampled to MNI

3 mm isotropic standard space using normalization tools

from FSL: FLIRT (functional to anatomical, six degrees of

freedom) and FNIRT (anatomical to standard, using sinc

interpolation). Images were spatially smoothed to a global

full width at half maximum of 6 mm and temporally

smoothed using a 0.008\ f\ 0.08 Hz band-pass filter.

Subject-level regression of eight nuisance variables and

their first derivatives (six rigid-body motion parameters

estimates from motion correction, mean white-matter sig-

nal, and ventricular cerebrospinal fluid obtained via FSL’s

FAST) was performed for denoising. Global signal

regression was additionally performed, as recommended

for multisite data [30]. All seventeen nuisance regressors

were band-pass filtered by the same second-order Butter-

worth filter (0.008\ f\ 0.08 Hz) as the functional time

series [31]. Single volumes with framewise displace-

ment[ 0.5 mm and two immediately following volumes

were censored, and time series segments with fewer than

10 contiguous volumes after censoring were also removed.

Preprocessed images were visually inspected for artifacts

and suitable brain coverage.
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Table 1 Participant demographics for sample 1 (‘full heterogeneity’: all gender participants with unrestricted ADOS Total scores)

ASD, mean ± SD (range) TD, mean ± SD (range) p value (t or V2 test)

Training model sample N (handedness) 160 (R-107, L-12, M-11, ND-30) 160 (R-118, L-10, M-6, ND-26) –

Age (years) 12.15 ± 3.04 (6.41–18) 12.02 ± 2.77 (6.36–18.55) 0.68

In-scanner motion (mm) 0.095 ± 0.04 (0.021–0.197) 0.09 ± 0.039 (0.02–0.188) 0.31

PIQ/FSIQ 105.8 ± 17.88 (53–149) 111.25 ± 13.11 (67–138) 0.002

Females n = 24 n = 38 0.047

Validation sample

N (handedness)

40 (R-27, L-1, M-1, ND-11) 40 (R-26, L-1, M-1, ND-12) –

Age (years) 12.02 ± 2.96 (7.15–17.53) 12.78 ± 2.52 (8.74–17.1) 0.22

Motion (mm) 0.09 ± 0.043 (0.036–0.172) 0.083 ± 0.034 (0.03–0.177) 0.44

PIQ/FSIQ 106.1 ± 17.4 (81–145) 109.2 ± 13.93 (62*–131) 0.38

Females n = 5 n = 7 0.53

SD standard deviation, N number of participants, R right, L left, M mixed, ND no data

*The TD participant with PIQ 62 had a FSIQ in the low-average range (FSIQ = 79. Verbal IQ = 101)

Table 2 Participant demographics for sample 2 (‘reduced gender heterogeneity’: males only with unrestricted ADOS Total scores)

ASD, mean ± SD (range) TD, mean ± SD (range) p value (2 sample t test)

Training model sample N (handedness) 160 (R-108, L-11, M-8, ND-33) 160 (R-121, L-9, M-5, ND-25) –

Age (years) 12.16 ± 2.76 (6.41–17.94) 12.03 ± 2.9 (6.36–18.8) 0.7

Motion (mm) 0.094 ± 0.041 (0.021–0.191) 0.09 ± 0.037 (0.026–0.191) 0.32

PIQ/FSIQ 106.8 ± 16.67 (69–146) 111.9 ± 12.78 (83–147) 0.002

Validation sample

N (handedness)

40 (R-24, L-1, M-1, ND-14) 40 (R-23, L-2, M-3, ND-12) –

Age (years) 12.06 ± 2.67 (7.15–17.5) 12.82 ± 2.57 (8.06–18.21) 0.19

Motion (mm) 0.088 ± 0.41 (0.035–0.172) 0.08 ± 0.045 (0.027–0.177) 0.43

PIQ/FSIQ 105.5 ± 17.19 (77–145) 111.8 ± 16.17 (62*–147) 0.095

SD standard deviation, N number of participants, R right, L left, M mixed, ND no data

*The TD participant with PIQ 62 had a FSIQ in the low-average range (FSIQ = 79. Verbal IQ = 101)

Table 3 Participant demographics for sample 3 (‘reduced ASD-related heterogeneity’: all genders and ADOS Total scores C 10)

ASD, mean ± SD (range) TD, mean ± SD (range) p value (t or chi2 test)

Training model sample N (handedness) 160 (R-111, L-12, M-9, ND-28) 160 (R-120, L-11, M-5, ND-24) –

Age (years) 11.9 ± 2.69 (6.41–18) 11.7 ± 2.62 (6.36–18.55) 0.68

Motion (mm) 0.097 ± 0.04 (0.031–0.197) 0.092 ± 0.041 (0.023–0.191) 0.29

PIQ/FSIQ 105.1 ± 17.16 (53–146) 111.6 ± 13.3 (77–139) 0.0001

Females n = 23 n = 33 0.141

Validation sample

N (handedness)

40 (R-24, L-1, M-2, ND-13) 40 (R-30, L-1, M-1, ND-8) –

Age (years) 12.53 ± 2.89 (8.78–18.58) 11.79 ± 2.78 (7.25–17.5) 0.24

Motion (mm) 0.092 ± 0.038 (0.027–0.154) 0.084 ± 0.046 (0.021–0.177) 0.41

PIQ/FSIQ 110.05 ± 16.38 (82–142) 109.3 ± 14.65 (62*–140) 0.82

Females n = 6 n = 12 0.108

SD standard deviation, N number of participants, R right, L left, M mixed, ND no data

*The TD participant with PIQ 62 had a FSIQ in the low-average range (FSIQ = 79. Verbal IQ = 101)
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2.3 Regions of interest and connectivity matrices

Mean time series were extracted from 237 cortical, sub-

cortical, and cerebellar regions of interest (ROIs) and used

to create a 237 9 237 Fisher-transformed Pearson corre-

lation connectivity matrix for each participant. This final

set of ROIs included 214 of 333 ROIs from the cortical

atlas by Gordon et al. [32] and all 14 subcortical, as well as

9 of 26 cerebellar ROIs from the Harvard–Oxford sub-

cortical [33] and cerebellar [34] atlases (combining several

small ROIs). The following procedure was used to deter-

mine inclusion of each ROI: First, we identified all voxels

of the brain which included BOLD signal in[ 95% of

participants. Next, we calculated the percentage of these

included voxels in each ROI. Only ROIs for which[ 95%

of voxels contained true BOLD signal in[ 95% of par-

ticipants were included; 119 cortical and 17 cerebellar

ROIs did not meet these criteria and were excluded. The

connectivity matrices were calculated separately for each

participant in the training and validation set, with a size of

320 9 27,966 and 80 9 27,966, respectively.

2.4 Machine learning algorithm

Random forest (RF) is an ensemble learning classifier that

builds a set of classification trees using a training dataset and

then classifies the validation dataset by the majority vote of

the predictors. RF is superior to other ensemble methods,

such as bagging and boosting, in terms of accuracy, com-

putational time, robustness against overfitting, and user

interface to choose tree size [12]. It has been suggested that

conditional random forest (CRF), which mitigates problems

tied to correlated predictor variables [35] as present in fMRI,

performs better in feature reduction, whereas RF is prefer-

able for classification [11]. Therefore, feature selection from

the high-dimensional FC matrix (320 9 27,966) was carried

out with CRF [11], and the classification model was built

with RF, using packages from R [36].

In our study, using the RF algorithm the training data

were obtained from a bootstrap sample of the data where

approximately 2/3 of the data was included in the training

dataset and the remaining 1/3, known as out-of-bag (OOB)

data, was used to test the error of the predictions for each

tree. The RF algorithm was initialized with the number of

trees grown and the number of variables used for the split

at each node. An un-pruned tree from each bootstrap

sample was grown such that at each node a number of

predictors were randomly selected as a subset of predictor

variables, and the best split from among those variables

was chosen [12]. The splitting algorithm used in RF is the

GINI index criterion. The OOB data were predicted and

corresponding error calculated based on the outcome of the

predictions of the ensemble of trees, after all the trees were

grown [37].

The GINI measure can identify the influential predictor

variables in random forest, but the influence of correlated

and uncorrelated predictor variables is better identified

using the conditional permutation importance [38]. We

used CRF dimensional reduction algorithm [11] with 2001

trees, to calculate the conditional permutation importance

(CPI). The most informative features based on sorted

positive values of CPI were selected. These most infor-

mative features were then fed into CRF dimensional

reduction method to find the next set of significant features.

We repeated this procedure until the feature set was

reduced to 2. The optimal feature set for the model was

identified based on the lowest OOB error in the training

dataset. We evaluated the performance of the CRF model

with optimal features in the test set using the RF classifier

with a tree number of 20,000. The number of trees for the

CRF and RF was chosen based on stability of results in

both CRF and RF. The number of variables at each node

Table 4 Participant demographics for sample 4 (‘low heterogeneity’: males only with ADOS Total scores C 10)

ASD, mean ± SD (range) TD, mean ± SD (range) p value (2 sample t test)

Training model sample N (handedness) 160 (R-106, L-13, M-7, ND-34) 160 (R-116, L-10, M-3, ND-31) –

Age (years) 12.25 ± 2.84 (6.41–18.65) 12.13 ± 2.87 (6.66–18.8) 0.71

Motion (mm) 0.096 ± 0.04 (0.017–0.197) 0.091 ± 0.04 (0.027–0.191) 0.31

PIQ/FSIQ 105.45 ± 16.77 (67–146) 110.65 ± 12.92 (76–138) 0.002

Validation sample

N (handedness)

40 (R-24, L-1, M-3, ND-12) 40 (R-25, L-1, M-1, ND-13) –

Age (years) 12.93 ± 2.81 (8.06–18.15) 12.11 ± 2.67 (8–18.24) 0.18

Motion (mm) 0.082 ± 0.043 (0.03–0.17) 0.089 ± 0.043 (0.027–0.19) 0.44

PIQ/FSIQ 109.8 ± 16.74 (62–147) 106.9 ± 15.66 (82–137) 0.43

SD standard deviation, N number of participants, R right, L left, M MIXED, ND no data
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was optimized as the square root of overall variables. The

performance of the model using the test set was evaluated

using the metrics such as accuracy, sensitivity, and speci-

ficity. The accuracy depicts the ability of the model to

differentiate the ASD and TD correctly and is given by

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN

The sensitivity shows the ability of the model to deter-

mine the ASD correctly and calculated by

Accuracy ¼ TP

TP þ FN

The specificity represents the ability of the model to

determine the TD correctly and estimated by

Accuracy ¼ TN

TN þ FN

where TP is the true positive (the number of participants

correctly identified as ASD), FP is the false positive (the

number of participants incorrectly identified as ASD), TN

is the true negative (the number of participants correctly

identified as TD), and FN is the false negative (the number

of participants incorrectly identified as healthy). The

informative brain networks were identified from the fea-

tures that helped to achieve peak classification accuracy.

3 Results

The performance of the classifiers over a range of feature

sets, using the training data, is shown in Fig. 1a–d. Feature

sets[ 1024 features failed to produce higher accuracies

and are not shown. The feature set achieving the lowest

OOB error rate for the training model was selected, and its

performance was tested in the validation dataset; classifi-

cation results for the validation test are summarized in

Table 5. This table indicates the influence of ASD-symp-

tom severity and gender composition on classification

accuracy, sensitivity, specificity, and number of features

contributing to the best classification performance in the

validation samples. Peak classification accuracies in the

training models are also included. Reduced sample

heterogeneity was overall associated with increased clas-

sification accuracy, sensitivity, and specificity. Figure 2a–d

shows for each of samples 1–4 the proportion of ROIs

included in the classifier that achieved peak classification

accuracy from each of the brain networks included in the

present study (classified according to atlases described in

Sect. 2.3). For each sample, the specific neural networks

that contributed the highest proportion of ROIs included in

the diagnostic classifier are described in the sections below.

Figure 3a–d shows, for each of samples 1–4, the

percentage of ROIs participating in most informative

connectivities per brain network.

3.1 Sample 1: Full heterogeneity (male
and female participants with unrestricted
ADOS scores)

OOB error rates of the RF classifier on the training data for

the different feature sets are shown in Fig. 1a. A maximum

training accuracy of 83.7% (16.2% of OOB error) was

achieved with the training model using 72 FC features. For

validation sample 1, we obtained a classification test

accuracy, sensitivity, and specificity of 62.5%, 60%, and

65%, respectively. Most informative connectivities for the

classifier with peak accuracy predominantly involved ROIs

in cingulo-opercular task control (COTC), visual, dorsal

attention (DA), and somatosensory motor hand (SMH)

networks, which together accounted for[ 50% of ROI

participations (Fig. 2a).

3.2 Sample 2: Reduced gender heterogeneity
(males only with unrestricted ADOS scores)

Figure 1b shows OOB error rate, sensitivity, and specificity

for the sample 2 training data. The training model dis-

criminated ASD from TD participants with a peak accuracy

of 86.9% (13.1% of OOB error) using 143 FC features. The

validation set test accuracy, sensitivity, and specificity of

the classifier were all 65%. Prominent among the infor-

mative regions were ROIs within COTC, DA, visual, and

fronto-parietal task control (FPTC) networks, which toge-

ther accounted for [ 50% of ROI participations. Figure 3b

shows that the highest number of informative classification

features (6 features) was found for FC between ROIs of

COTC and DA networks.

3.3 Sample 3: Reduced ASD-symptom
heterogeneity (all genders, ADOS
scores ‡ 10)

The performance of the RF classifier using the training

dataset of male and female participants with ADOS Total

scores C 10 is shown in Fig. 1c. For this sample, the

training model achieved a peak accuracy of 87.2% (12.8%

of OOB error) with 324 FC features. In the validation

sample, accuracy, sensitivity, and specificity of classifica-

tion were 70%, 67.5%, and 72.5%, respectively. Many

informative FC features involved ROIs within the COTC,

DA, visual, ventral attention (VA) and SMH networks,

together accounting for 57.8% of ROI participations. Fig-

ure 3c shows that connectivities within the COTC (11

informative features) were among the most informative

variables for diagnostic classification in this sample.

3304 Neural Computing and Applications (2021) 33:3299–3310

123



3.4 Sample 4: Low heterogeneity (males
only with ADOS scores ‡ 10)

Training results for sample 4 are shown in Fig. 1d. The

performance of the training model improved for the clas-

sification of male-only ASD participants with higher

symptom severity scores from TD individuals, compared to

other samples, with an accuracy of 89.4% (10.6% of OOB

error) using 319 features. We also achieved the highest

validation test accuracy of 73.7% in this sample. Sensi-

tivity and specificity for this validation model were 75%

and 72.5%, respectively. Features including ROIs from

Fig. 1 RF OOB error rate, sensitivity and specificity after each dimension reduction for the training sample. Panels a–d correspond to samples

1–4, respectively

Table 5 Peak classification accuracy, sensitivity, specificity, number of features and top networks, and connections for samples 1–4

Sample Acc

(train)

Features Acc

(val)

Sen

(val)

Spec

(val)

Top four networks

(val)

Top connection (val)

(%) # (%) (%) (%)

1: ADOS total unrestricted, males

and females

83.7 72 62.5 60 65 COTC, visual, DA,

SMH

DA-SMH

2: ADOS total unrestricted, males

only

86.9 143 65 65 65 COTC, DA, visual,

FPTC

COTC-DA

3: ADOS total C 10, gender

unrestricted

87.2 324 70 67.5 72.5 COTC, DA, visual,

VA, SMH

Within COTC

4: ADOS total C 10, males only 89.4 319 73.7 75 72.5 COTC, visual, SMH,

DMN

COTC-DMN and

subcortical COTC

Acc accuracy, Sen sensitivity, Spec specificity, val validation set, train training set
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COTC, visual, SMH, default mode network (DMN) and

DA contributed most to the classifier, accounting for a total

of 56.8% ROI participations (Fig. 2d). Connections

between ROIs in the COTC and DMN networks and

between subcortical and COTC regions were most frequent

in the classifier (Fig. 3d).

4 Discussion

4.1 Relationships between ASD sample
heterogeneity and diagnostic accuracy

The current study sought to examine how ASD sample

heterogeneity with respect to gender and current autism

symptom severity impacts performance of ML classifiers

built using FC features from resting-state fMRI data.

Overall, we found that ML diagnostic classifiers and their

accuracy were sensitive to sample heterogeneity. Specifi-

cally, we found that FC features maximally distinguishing

between ASD and TD groups differed depending on sam-

ple composition. Classification accuracy for the validation

test in sample 1 (with the greatest heterogeneity in gender

composition and ASD-symptom severity) was lowest

(62.5%) compared to all other sample sets. With more

restricted sample heterogeneity (both in gender composi-

tion and in symptom severity), classification accuracy,

sensitivity, and specificity increased.

The optimal number of FC features achieving peak

accuracy was much higher in the more homogeneous

sample 4 (319 features), compared to sample 1 with full

heterogeneity (72 features). This was unexpected and is not

readily interpretable. One possibility is that the number of

FC features that can be used to discriminate between ASD

and TD youth reflects commonalities in brain function

among children and adolescents in the ASD group that are

not shared by TD peers. Thus, an increased number of

features could suggest that homogeneity of gender and

symptom severity within the ASD sample is associated

with greater homogeneity in atypical brain function, cor-

responding to a greater number of features informing

diagnostic classification. Conversely, our results suggest

that as sample heterogeneity increases, brain connectivity

varies more within the ASD cohort and only a smaller set

of shared connectivity features contributes to peak classi-

fication accuracy. Our results suggest that observed pat-

terns of FC differences between ASD and TD cohorts are

highly sensitive to cohort composition. This is consistent

Fig. 2 Pie charts show the brain connections that helped to achieve peak accuracy in each of the four sample sets, separated by network. a Full

heterogeneity, b reduced gender heterogeneity, c reduced ASD-symptom heterogeneity, d low heterogeneity
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with recent reports of low replication in resting-state FC

across ABIDE sites—and therefore across ASD cohorts

[13, 39].

In the present study, we achieved the highest classifi-

cation accuracy in external validation (73.75%) for sample

4, which included only males with ADOS Total scores

C 10. This classifier’s accuracy was higher compared to

most previous fMRI ML studies of ASD [11, 40, 41]

that applied classifiers to completely new external valida-

tion data in order to rule out a ‘peeking’ problem (which

occurs when feature selection includes data that are also

used for cross-validation) [42]; however, some studies have

reported slightly higher classification accuracies [43].

Although achieving higher accuracy in classification is

important for understanding how brain function may be

different in ASDs, the impact of sample heterogeneity

implies that classification accuracy may not be the sole

determinant of a classifier’s usefulness. A lower

classification accuracy obtained in a study including a

highly heterogeneous sample that is representative of the

diverse autism population at large may be informative in

different ways, by pinpointing brain features that tend to be

atypical across many (but not all) variants of ASDs. Future

research using larger sample sizes that are more hetero-

geneous, and research aiming to identify subtypes of ASDs

from representative samples, including sufficient samples

of females and individuals with lower cognitive abilities, is

warranted.

We observed that the accuracy of classification

decreased as the dimensionality of the feature set was

reduced to below 20 (Fig. 1). This suggests that informa-

tion that is critical for diagnostic classification is lost when

models are oversimplified, which may hinder efforts

toward discovery of more robust FC biomarkers of autism

[44]. In this context, it is remarkable that peak accuracy for

most homogeneous sample 4 was achieved for a

Fig. 3 Heat maps show the number of connectivity features included in the diagnostic classifier between ROIs classified into brain networks.

Panels a–d correspond to samples 1–4
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comparatively high number of over 300 features, which

indicates that greater homogeneity at the behavioral and

demographic levels may still be associated with hetero-

geneity at the neural level. Although classifiers with high

diagnostic accuracy are important, models containing very

large numbers of features may be difficult to interpret.

Trade-offs between maximizing prediction accuracy and

conceptual interpretation of findings must therefore be

considered. In view of the common terminology of ‘diag-

nostic classification,’ it is important to remember that ML

serves as a research tool for improved understanding of

atypical brain functioning in ASDs, whereas applications

as a truly diagnostic tool are currently (and possibly in

principle) unrealistic for a clinically defined disorder.

4.2 Regions and networks most informative
in diagnostic classification

The COTC network contributed the highest number of

features to classifiers achieving peak accuracy, across all

four samples. This informative role in classification was

similar to some recent diagnostic prediction studies of ASD

[10, 43]. However, representation of ROIs from other

networks varied by sample set. We observed a higher

number of informative features involving the COTC and

DMN in samples including individuals with ADOS scores

indicative of moderate to severe levels of symptoms

(samples 3 and 4), compared to samples of participants

with a wider range of symptom severity, including indi-

viduals with lower ADOS scores (samples 1 and 2). This

finding may be related to a significant positive correlation

between the ADOS and FC between COTC and DMN

observed in a previous study [9]. Relatively high numbers

of features from the visual network also contributed to

classifiers across all samples. This finding adds to a

growing body of research implicating atypical functioning

of the visual regions in ASDs [45–48].

Finally, we found that DA and VA network ROIs con-

tributed more features in sample sets 3 and 4, suggesting

disruption of connectivity involving attention networks that

may help differentiate more severely affected youth with

ASDs from TD peers. These findings are also consistent

with earlier reports that connectivity in DA and VA may

help to differentiate between cohorts of ASD and TD

individuals [49].

4.3 Limitations

Low availability of sufficiently large samples of low-mo-

tion fMRI data from a multisite source like ABIDE pre-

sents unavoidable constraints. Lack of an all-female

comparison group was an unavoidable limitation. As fur-

ther acknowledged in Sect. 1, only two prominent factors

of heterogeneity in ASD samples were manipulated in our

study. For example, age-related heterogeneity likely

impacts fMRI findings of group differences [50]. In the

present study, we matched samples on age keeping

heterogeneity in age similar across all comparison groups

(without being able to eliminate age-related heterogeneity).

We used ADOS Total scores as indices of autism symp-

tomatology, as this was the sole relevant measure available

across ABIDE sites. ASD symptomatology does not

straightforwardly relate to overall cognitive ability or other

variables, such as executive functioning. Although we tried

to match groups on IQ, the effect of heterogeneity on

diverse cognitive and behavioral variables remained

beyond the scope of our study, as such collateral data are

limited and reported inconsistently across different sites

contributing to ABIDE.

5 Conclusions

We examined the impact of sample heterogeneity on

diagnostic classification of ASD. Overall, reduced hetero-

geneity with respect to gender and range of symptom

severity was associated with improved performance of RF

classifiers. Greater homogeneity of samples impacted both

classification accuracy and selection of most informative

features. Differences in sample heterogeneity may account

for often conflicting findings in the neuroimaging literature

on ASDs. Stratification by gender, symptom severity, age,

cognitive ability, and other factors of variability may be

critical in future efforts to pinpoint atypical brain features

of ASDs.
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