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Abstract
Nowadays, many deep learning applications benefit from multi-task learning with several related objectives. In autono-

mous driving scenarios, being able to infer motion and spatial information accurately is essential for scene understanding.

In this paper, we propose a unified framework for unsupervised joint learning of optical flow, depth and camera pose.

Specifically, we use a feature refinement module to adaptively discriminate and recalibrate feature, which can integrate

local features with their global dependencies to capture rich contextual relationships. Given a monocular video, our

network firstly calculates rigid optical flow by estimating depth and camera pose. Then, we design an auxiliary flow

network for inferring non-rigid flow field. In addition, a forward–backward consistency check is adopted for occlusion

reasoning. Extensive analyses on KITTI dataset are conducted to verify the effectiveness of our proposed approach. The

experimental results show that our proposed network can produce sharper, clearer and detailed depth and flow maps. In

addition, our network achieves potential performance compared to the recent state-of-the-art approaches.

Keywords Geometry understanding � Multi-task learning � Depth � Optical flow

1 Introduction

Scene geometry understanding is one of the critical prob-

lems for several computer vision applications, such as

autonomous driving and augmented reality. Being able to

estimate motion and depth from a monocular video is

essential for scene inference, especially in autonomous

driving perception. Traditional approaches for geometry

understanding, such as structure from motion (SfM) [18],

dense tracking and mapping (DTAM) [16] and ORB-

SLAM [15], always rely on feature matching, which

requires accurate image correspondence. However, these

methods usually fail to match features in the regions of thin

structure, non-textured and occlusion.

To address this issue, some recent approaches learn

geometry understanding using deep learning technique.

Recent state-of-the-art deep networks for depth and flow

estimation usually depend on the availability of a large

amount of labeled data, such as [3, 4, 9, 13, 20]. Although

these supervised approaches achieve promising results,

these networks need to be trained on a large amount of

labeled data that are expensive and difficult to be acquired

in real world. Therefore, many works [6, 7, 17] attempt to

learn optical flow or depth in an unsupervised manner.

They usually use prior knowledge constraint to define loss

function and only use unlabeled data for training. Garg

et al. [6] propose an encoder–decoder architecture (U-Net)

similar to FlowNet [3], which is used to predict single-

image depth map. The training process is guided by the

photometric assumption and smoothness constraint. Based

on [6], Godard et al. [7] also design an unsupervised U-Net

for depth prediction, which uses left–right consistency loss

additionally. However, [6, 7] are limited to use calibrated

stereo image pairs for training. Moreover, although these

unsupervised methods sidestep the requirement of the
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labeled data, these works only focus on the single task and

cannot estimate optical flow and depth in a unified net-

work. In addition, real application scenarios often need

multi-task collaborative work to extract more 3D scene

geometry information, especially for autonomous driving.

To solve the above problem, several works

[14, 27–29, 35] propose to design a multi-task network for

3D scene geometry, which can infer several tasks simul-

taneously, such as depth, camera pose and optical flow.

Zhou et al. [35] propose a novel network for unsupervised

learning of depth and ego-motion by watching a monocular

video. In contrast to [6, 7], the work [35] only needs to use

monocular video instead of stereo image pairs to train the

network, which is conventional for real-world application.

In addition, the work [35] can predict depth map and

camera ego-motion from the monocular video simultane-

ously. Following [35], Mahjourian et al. [14] introduce a

novel 3D-based loss function, which can enforce consis-

tency of the estimated 3D point cloud and ego-motion.

Yang et al. [28] present a depth-normal representation and

conduct a dense edge-aware depth-normal consistency

during the training process. Furthermore, Yang et al. [27]

propose a novel network for learning edge with geometry,

which defines an edge estimation branch to predict edge

map. Then, they use the edge map to constrain the depth

and camera ego-motion branches. Yin and Shi [29] intro-

duce a residual flow network into [35] for dense motion

estimation. Although [14, 27–29, 35] introduce various

constraints and networks to extract more accurate depth,

flow and camera motion from the monocular video, these

approaches ignore the effectiveness of features represen-

tation on geometry understanding and lack the ability of

discriminative learning across features channel and spatial

dimensions. In addition, these methods fail to adaptively

integrate local features with their global dependencies,

which hinders the network from capturing rich contextual

information. In particular, for real scenes, such as auto-

matic driving, the contextual information of the scene is

rich, including many high-frequency and low-frequency

signals, which requires the network to discriminate the

importance of features. Therefore, it is necessary to

enhance the discriminative ability of feature representa-

tions for the task of geometry understanding.

One limited way to address this issue is to use skipping

connection to fuse multi-level features so that the network

can capture multi-level scene contexts. Garg

et al. [6, 9, 14, 28] adopt the encoder–decoder architecture

for depth estimation, which contains skipping connection

between encoder and decoder. The feature of the encoder

can be reused in the decoder via skipping connection,

which enhances the diversity of features in the decoder.

Nevertheless, this operation cannot enhance more useful

features and suppress unimportant features adaptively,

hindering the representational power of the network.

Recently, self-attention is an effective solution to address

the above issues and is widely used in many vision tasks

[2, 21, 26, 34], which can adaptively capture meaningful

feature information to guide feature learning. However,

few works have been proposed to investigate the effect of

the self-attention for the task of scene geometry

understanding.

Motivated by the above observation, in this paper, we

propose to boost the feature refinement for 3D scene

geometry understanding by employing self-attention mod-

ule and design a unified network for depth, flow and

camera pose estimation, which can model global and local

feature dependencies and emphasize meaningful features

along channel and spatial dimensions adaptively. Our

network can be trained end to end in an unsupervised

manner and can predict optical flow, depth and camera

pose from the monocular video. Since the rigid motion can

be calculated by depth map and camera pose, our network

is suitable for automatic driving scenarios. In summary, the

main contributions of this work are as follows:

1. A novel, end-to-end trainable architecture with feature

refinement module is proposed, which can jointly learn

depth, optical flow and camera ego-motion from a

monocular video. To the best of our knowledge, we are

the first to introduce the feature refinement module into

scene geometry understanding, which not only recal-

ibrates channel-wise feature but also models rich

contextual relationships over local feature

representations.

2. The feature refinement is conducted on both optical

flow and depth tasks for boosting the quality of flow

and depth maps.

3. The qualitative and quantitative results show that the

proposed framework performs substantially better than

most of the existing approaches and achieves compa-

rable results on KITTI dataset compared to the recent

state-of-the-art approaches.

The rest of the paper is organized as follows: Section 2

reviews the related works of scene geometry understand-

ing. Section 3 mainly describes the details of feature

refinement module, the entire architecture of our proposed

network and multi-task learning loss function. Section 4

introduces the training details and the datasets used in our

experiments and reports the experimental results on public

benchmarks. Finally, we give the conclusion and future

work in Sect. 5.
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2 Related work

In this section, we first introduce the traditional approaches

for scene geometry understanding briefly. Then, we review

supervised geometry understanding based on CNNs. Fur-

thermore, we mainly describe unsupervised learning of

geometry understanding. Finally, we review the attention-

based image analysis methods.

2.1 Traditional approaches for geometry
understanding

Structure from motion (SfM) is a long-standing problem,

which predicts scene structure and camera motion jointly

from adjacent images or video. Traditional approaches

always rely on feature matching [15, 16, 18], which require

accurate image correspondence. However, these methods

fail at the regions of low texture, stereo ambiguities and

occlusion and cannot handle single view reconstruction.

Recently, many deep learning-based methods are proposed

to address the above issues.

2.2 Supervised geometry understanding using
CNNs

Recent advances in CNNs have achieved significant suc-

cess in scene geometry understanding. Many methods

attempt to learn depth in a supervised manner. Eigen et al.

[4] propose a single-image depth estimation network,

which incorporates coarse-scale depth prediction with fine-

scale prediction. To explore the relationships among image

features, Liu et al. [13] propose a novel network, which

combines CNNs and conditional random field (CRF).

Laina et al. [11] introduce residual network into depth

estimation and mainly focus on indoor scene. Fu et al. [5]

develop a deep ordinal regression network, which conducts

the ordinal competition among depth values. Although the

supervised deep learning greatly improves the performance

of depth estimation, these methods require a large amount

of labeled data for training, which is particularly difficult to

be collected in real world.

2.3 Unsupervised geometry understanding
using CNNs

To address the above problems, recently, many works tend

to learn geometry in an unsupervised manner. Garg et al.

[6] propose a classic unsupervised network for depth esti-

mation, which uses image reconstruction loss and depth

smoothness loss to guide the training process. The work [6]

shows that the unsupervised learning of depth can be seen

as an image reconstruction problem. Based on [6], Godard

et al. [7] propose a depth estimation network with left–right

consistency loss. However, these two networks only can be

used to estimate the depth map and rely on stereo image

pairs for training. Zhou et al. [35] propose a novel network

for geometry understanding from a monocular video,

which can learn depth and camera pose in a joint manner.

Based on [35], Yang et al. [28] introduce an edge-aware

depth-normal consistency, which improves the geometry

consistency between different projections of the space.

Further, Yang et al. [27] introduce an edge network into

geometry understanding, which is used to constrain the

estimated depth map and camera ego-motion. Mahjourian

et al. [14] introduce a novel iterative closest point (ICP)

loss into geometry understanding, which can enforce con-

sistency of the estimated 3D point clouds and ego-motion.

Zhan et al. [31] introduce deep feature reconstruction into

depth estimation. Yin and Shi [29] propose a residual flow

network for handling non-rigid region. Although geometry

understanding based on CNNs has achieved great progress,

existing methods ignore to explore the effectiveness of

self-attention for geometry understanding.

2.4 Attention-based image analysis methods

The core goal of attention mechanism is to exploit the

global information of features, which can adaptively

enhance important features and suppress useless features.

The attention mechanism is widely used in many vision

tasks, such as image classification [8, 21, 26], image super-

resolution [12, 34] and object detection [2, 19, 37]. Wang

et al. [21] propose a residual attention network for image

classification. However, the computational burden is huge

due to the residual architecture. Hu et al. [8] propose

squeeze-and-excitation network for image classification,

which can model independences among feature channels.

Zhang et al. [34] use the channel attention module pro-

posed in [8] for image super-resolution task. Nevertheless,

the channel attention module [8] only considers the rela-

tionship between channels and cannot capture the spatial

dependencies. Woo et al. [26] propose a convolutional

block attention module for image classification, which not

only can adaptively refine channel-wise features by con-

sidering interdependencies among channels but also can

utilize global contextual information to emphasize or

suppress features in different spatial locations. However,

few works introduce spatial–channel combinational atten-

tion into geometry understanding. In this paper, we explore

the effectiveness of self-attention for scene geometry

understanding.
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2.5 Video analysis

Video analysis is an important task in the field of computer

vision. Wang and Wang [22] propose a cross-agent for

action recognition, which uses the transfer learning tech-

nique to model the relationship between the source agent

and the target agent. Yu et al. [30] propose a weakly

semantic guided method for both environment-constrained

and cross-domain action recognition. Zhang et al. [32]

propose a causal recurrent flow-based method for online

video object detection, which uses temporal context

information to enhance the ability of feature representation.

Wang et al. [23] propose a frame-subsampled and drift-

resilient method for video object tracking, which only

needs to handle the subsampled video frames. Zhang et al.

[33] propose a sitcom-star-based clothing retrieval method

for video content-based advertising. They design a deep

learning framework for human-body detection, human pose

selection, face verification, clothing detection and retrieval

from advertisements. In this paper, we mainly focus on the

task of scene geometry understanding from monocular

video.

3 Approach

The goal of this work is to estimate depth, flow and camera

pose from an unlabeled monocular video sequence. Given a

monocular video sequence, our network can predict the

depth map D, flow map W and camera ego-motion T di-

rectly in a joint way. The entire of our framework contains

three sub-networks: DepthNet, PoseNet and FlowNet.

Despite being jointly trained, the depth, flow and camera

pose estimation networks can be used independently during

inference. Figure 1 shows the entire architecture of our

proposed network. In the following, we first introduce the

structure of feature refinement module and then describe

the neural network architecture as well as its multi-task

learning loss in detail.

3.1 Feature refinement module

We assume that given original feature map

F ¼ fF1;F2; . . .;Fcg, where c is the number of channels,

the feature refinement module (FR) can produce the

channel attention map Ac and spatial attention map As

directly, which are used to refine the feature map F. The

width and height of F are W and H. Figure 2 shows the

details of FR. The FR contains two parts: channel and

spatial attention modules. We can see that channel atten-

tion contains four parts, max-pooling, avg-pooling, multi-

layer perceptron (MLP) and sigmoid function. The max-

pooling and avg-pooling operations can aggregate the

global information of input features. The global max-

pooling process can be defined as

Fmax
c ¼ MaxðFcði; jÞÞ; ð1Þ

where Maxð�Þ is the maximization function and Fcði; jÞ is

the value at position (i, j) of cth feature Fc. The global

average pooling process can be defined as

Favg
c ¼ 1

H �W
XH

i¼1

XW

j¼1

Fcði; jÞ; ð2Þ

where Fcði; jÞ is the value at position (i, j) of channel

feature Fc. H and W are the width and height of input

features. Then, these two features Fmax and Favg are fed

into multilayer perception (MLP) with one hidden layer to

reduce the channel number with radio of r. In our experi-

ments, r is set to 16.

Then, O 1 and O 2 are merged by using element-wise

summation. We use a sigmoid function to normalize

DepthNet
Encoder

 Skip connection 

Depth map

Monocular video PoseNet
FCN

DepthNet
Dncoder

Avg-pooling
Ego-motion

Smoothness
loss

Perspective 
warping

Rigid 
flow

Feature 
refinement 

module

 Skip connection 

FlowNet
Encoder

FlowNet
Dncoder

Flow map

Smoothness
loss

Reconstruction 
loss

Reconstruction 
loss

Feature 
refinement 

module

Flow fusion

Fig. 1 Overview of our proposed unsupervised learning framework

for monocular depth, flow and camera pose estimation. Our network

contains three parts: DepthNet, PoseNet and FlowNet. This network

takes target and source view images It and Is as inputs, and outputs

per-pixel depth map Dt , optical flow map Wt!s and camera ego-

motion Tt!s. Both DepthNet and FlowNet adopt encoder–decoder

architecture. PoseNet adopts fully convolution network (FCN). The

feature refinement module is conducted on both DepthNet and

FlowNet for improving the quality of depth and flow maps
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features after the summation operation. The final channel

attention map Ac can be defined as

Ac ¼ SigðAc1þ Ac2Þ; ð3Þ

where Sigð�Þ denotes the sigmoid function. The feature

refined by channel attention can be defined as

F1
ref ¼ F � Ac: ð4Þ

The spatial attention mainly contains four parts, including

max-pooling, avg-pooling, convolution layer and sigmoid

function. Similar to channel attention, the max-pooling and

average-pooling operations can integrate local features

with their global dependencies. Thus, we obtain Fmax and

Favg using Eqs. (1) and (2).

Then, we concatenate Fmax
c and Favg

c . The concatenated

feature Fcon is convolved by a standard convolution layer

with a kernel of 7 � 7 followed a sigmoid function for

normalization, which produces a 2D spatial attention map

As. The final refined feature can be defined as

F2
ref ¼ F1

ref � As: ð5Þ

With the feature refinement module, the original feature

can be recalibrated adaptively.

3.2 Network architecture

The entire network architecture is shown in Fig. 1. Our

network can be divided into three parts: DepthNet, PoseNet

and FlowNet. Specially, we embed feature refinement

module (FR) into both flow and depth sub-networks, which

can recalibrate features alone two aspects and can produce

more useful and important features for improving the

quality of depth and optical flow maps.

Figure 3 shows the network architecture of depth and

camera pose estimation. For monocular depth estimation,

we adopt residual network [7] as the backbone, which

contains the contracting part and expanding part. The

contracting part is composed of one standard convolutional

layer, max-pooling layer and several residual blocks each

of which consists of 3 � 3 convolution layers. The con-

tracting part is similar to most encoder–decoder architec-

tures but incorporates the feature refinement module (FR).

The numbers of feature channels for layers from ‘‘Conv1d’’

to ‘‘Refined4’’ are 64, 64, 256, 512, 1024 and 2048,

respectively. The kernel of the first convolution ‘‘Conv1d’’

is set to 7 � 7. The encoder part is composed of six stages,

and each stage downsamples the image or feature to half

input resolution. The layer numbers of residual blocks at

each stage are set to 3, 4, 6, 3 after the second stage.

Figure 4 shows the expanding part of depth network, which

contains six deconvolution layers followed by FR. The

numbers of feature channels for layers from ‘‘Deconv1’’ to

‘‘Refined10’’ are 512, 256, 128, 63, 32 and 16, respectively.

The decoder part upsamples the output of the encoder using

successive deconvolution layers. Moreover, we use multi-

ple skip connections to input the output layers at each scale

of the encoder at the respective decoder scales.

The PoseNet receives target and source view pair Is and

It as input and predicts the relative camera pose between

two input views. We conduct eight convolution layers

followed by an avg-pooling layer before final prediction to

regress 6-DoF camera pose. The details of the connection

are shown in Fig. 3. The numbers of feature channels for

layers from ‘‘Conv1p’’ to ‘‘Conv7p’’ are 16, 32, 64, 128,

256, 256, 256 and 6. The PoseNet is similar to [35], but we

do not share the weights of layers ‘‘Conv1p’’ to ‘‘Conv6p’’

with depth network. Each convolution layer is followed by

batch normalization and ReLU function except the last

layer.

The architecture of FlowNet is similar to the DepthNet,

which is designed to estimate non-rigid flow fields. We also

use FR module to refine the feature of optical flow. The

final optical flow is the addition of the rigid flow and non-

rigid flow.

3.3 Multi-learning loss function

The supervision signals for training our depth, camera pose

and optical flow prediction CNNs mainly come from image

reconstruction, depth regularization and flow regulariza-

tion. Here, we first introduce the rigid reconstruction from

the estimated depth and camera pose. And then, we intro-

duce the flow reconstruction from the estimated flow field.

3.3.1 Rigid reconstruction

The DepthNet and PoseNet are constrained by a perspec-

tive warping formula. Let It denote a target view and Is
denote a source view. Given monocular images, the

DepthNet and PoseNet can predict depth map Dt and

camera motion Tt!s between the target and source views.

These two branches are constrained by a perspective

warping formulation. Let pt denote the homogeneous

coordinates of a pixel in the target view It. The projected

coordinates pws on the source view Is can be defined as

Global 
max 

pooling

Global 
average 
pooling

MLP

O_1

O_2

+ Sigmoid

×

Global 
max 

pooling

Global 
average 
pooling

Conv Sigmoid

×

Global spatial 
information

Global channel-wise 
information

Input 
feature

Input 
feature

Input 
feature

Output 
feature

Fig. 2 The architecture of feature refinement module (FR)
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pws ¼ KTt!sDtðptÞK�1pt; ð6Þ

where K denotes the camera intrinsic matrix. Then, the

relative 2D rigid flow from target image It to source image

Is can be defined as

f rigt!sðptÞ ¼ pws � pt: ð7Þ

Further, let Iws denote the synthesized view using the rigid

flow f rigt!s. The rigid reconstruction loss can be defined as

Lbr ¼ a
1� SSIMðIt; Iws Þ

2
þ ð1� aÞjjIt � Iws jj1; ð8Þ

where SSIM denotes the image similarity measurement

[25] and jj � jj1 denotes the L1 norm. Weight a is introduced
to maintain the balance between perceptual similarity and

robustness to outliers. The above rigid reconstruction loss

is typically not sufficient to constrain the depth in tex-

tureless regions. Therefore, we introduce the smoothness

loss of depth map, which can be defined as

Lsd ¼
X

xt

j 5 DðxtÞje�jIðxtÞj; ð9Þ

where DðxtÞ is the estimated depth and 5 is the vector

differential operator. j � j denotes absolute operation.

Depth map

Monocular video

64

Conv1d

1/2

Max-
pooling
64, 1/4

256
1/8

Res
Block1 Res

Block2

512
1/16

FR

1024
1/32

Res
Block3

FR

2048
1/64

Res
Block4

FR

16
1/2

Conv1p

32
1/4

Conv2p

64
1/8 128

1/16

Conv3p
Conv4p

Conv5p

256
1/32

Conv6p

2561/64256 1/64

Conv7p Pred

6 1/64

Avg-
pooling

Decoder

Convolution 
layer

Residual
block

Fig. 3 The architecture of DepthNet and PoseNet. The DepthNet is composed of a series of convolution and deconvolution layers. From

ResBlock2, we use FR to refine the feature. The PoseNet is composed of successive convolution layer

Encoder

512
1/32

FR

Deconv1

256
1/16

Deconv2

FR

Deconv3

FR

128
1/8

Deconv4

64
1/4

FR

32
1/2

Deconv5

FR

Deconv6

16
1Res

Block3 Res
Block2 Res

Block1
Max-

pooling Conv1d

Deconvolution 
layer

Fig. 4 The architecture of

decoder part. Deconvolutional

layers in decoder are introduced

for the purpose of recovering

spatial and detail information
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3.4 Flow reconstruction

The residual flow sub-network is used to calculate the

motion of non-rigid region. Let f nont!s denote the non-rigid

flow. The full flow can be calculated as follows:

f fullt!s ¼ f nont!s þ f rigt!s: ð10Þ

Further, let Ifs denote the synthesized view using the esti-

mated full flow f fullt!s. The flow reconstruction loss can be

defined as

Lbf ¼ a
1� SSIMðIt; Ifs Þ

2
þ ð1� aÞjjIt � Ifs jj1: ð11Þ

The smoothness loss of full flow can be defined as

Lsf ¼
X

xt

j 5WðxtÞje�jIðxtÞj; ð12Þ

where WðxtÞ is the estimated full flow.

3.5 Occlusion reasoning

A forward–backward consistency check is widely used in

many works [24, 36] to identify invalid regions. Here, we

use the forward–backward consistency check to extract the

occlusion region. This process can be defined as

jWf þWbj\a1ðjWf j2 þ jWbj2Þ þ a2; ð13Þ

where Wf and Wb denote the forward and backward flow

fields. a1 and a2 are threshold. When the network calculates

the loss, the occlusion point is eliminated. Furthermore, to

filter possible outliers and occlusions out automatically, we

conduct geometric consistency check during training,

which can be defined as

Lfg ¼
X

pt

½dpt �jj 4 f fullt!sðptÞjj1; ð14Þ

where f fullt!sðptÞ is the full flow difference at pixel pt com-

puted by forward–backward consistency check. dpt denotes
the condition of

jjf fullt!sðptÞjj2\maxfa; bjjf fullt!sðptÞjj2g; ð15Þ

where a and b are set to 3 and 0.05. jj � jj2 denotes L2 norm.

3.6 Total loss function

Based on the above discussions, the total loss for training

our multi-task neural network can be defined as

Ltotal ¼ kbrLbr þ kfrLfr þ kdsLds þ kfsLfs þ kfgLfg; ð16Þ

where kbr, kfr, kds, kfs and kfg represent respective loss

weights.

4 Experiments

In this section, we evaluate our depth results on KITTI

Eigen split set and compare our models to recent super-

vised and unsupervised approaches. Then, we evaluate our

flow results on KITTI2015 dataset. Moreover, we evaluate

our pose results on KITTI odometry dataset. Table 1 shows

the results of depth evaluation. Table 2 reports the results

of optical flow evaluation. In Table 1 and Table 2, bold in

each column represents the best result in each category.

Table 3 gives the results of camera pose estimation.

Table 4 shows the results of ablation study. In Table 3 and

Table 4, bold in each column represents the best result.

4.1 Evaluation criteria

For evaluation, we use the following metrics used by pre-

vious work:

• Mean absolute relative difference (Abs Rel):

AbsRel ¼ 1

jNj
X

y2N

jy� y�j
y�

: ð17Þ

• Mean squared relative difference (Seq Rel):

SeqRel ¼ 1

jNj
X

y2N

jy� y�j2

y�
: ð18Þ

• Root mean square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X

y2N
jy� y�j2

s
: ð19Þ

• Log RMSE:

RMSElog ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X

y2N
jlogy� logy�j2

s
: ð20Þ

• The accuracy with threshold t:

d ¼ maxð y
y�

;
y�

y
Þ\t; ð21Þ

where t 2 ½1:25; 1:252; 1:253�.
• Endpoint error (EPE):

EPE ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu� u�Þ2 þ ðv� v�Þ2

q
; ð22Þ

where u and v denote the estimated horizontal and

vertical flow vectors. u� and v� denote the horizontal

and vertical ground truth vectors.

From Eqs. (15) to (19), y denotes the estimated depth, and

y� denotes the ground truth of depth.
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4.2 Training details

We use TensorFlow [1] framework for the training and test

phases on a single Nvidia 1080Ti GPU and use the Adam

optimizer [10] with b1 ¼ 0:9, b2 ¼ 0:999. Our network is

trained and evaluated on KITTI raw dataset with a different

split. The entire training strategy can be divided into two

stages. The first stage is the joint learning of depth and

camera pose. The total number of iterations is set to 350k.

We use KITTI Eigen split to train and test our network.

The second stage is joint learning of depth, camera pose

and flow. The total number of iterations is set to 1500k.

The input image sequences are cropped to 128 � 416. The
learning rate is set to 2 � 10�4. The batch size is set to 4.

According to the previous works [7, 29, 36], the parameters

are set to a ¼ 0:85, a1 ¼ 0:01 and a2 ¼ 0:5. According to

the previous work [29], the loss weights are set to kbr ¼ 1,

kfr ¼ 1, kds ¼ 0:5, kfs ¼ 0:2 and kfc ¼ 0:2.

4.3 Dataset

We use the KITTI dataset as training and test sets. The

dataset provides videos, 3D point clouds from LIDAR and

vehicle moving trajectory in automatic driving scenes

captured by stereo RGB cameras. In this paper, we only use

the monocular RGB image sequences to train our network.

Moreover, we use the split proposed in [4] consisting of

about 40000 frames for training, 4000 frames for validation

and 697 frames for testing, which covers a total of 29

scenes. We crop the images with a size of 128 � 416. To
make a fair comparison, we use the same cropping size as

other approaches.

Table 1 Performance comparison on KITTI Eigen split dataset

Method Training data Abs Rel Sq Rel RMSE RMSE log d\1:25 d\1:252 d\1:253

Lower the better Higher the better

Eigen et al. (C) [4] Single image 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. (F) [4] Single image 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [13] Single image 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Godard et al. [7] Stereo pair 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Garg et al. [6] Stereo pair 0.152 1.226 5.849 0.246 0.784 0.921 0.967

Zhou et al. [35] Monocular video 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Yang et al. [28] Monocular video 0.156 1.360 6.641 0.248 0.750 0.914 0.969

Mahjourian et al. [14] Monocular video 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Yang et al. [27] Monocular video 0.162 1.352 6.276 0.252 – – –

Yin and Shi [29] Monocular video 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Ours Monocular video 0.152 1.103 5.608 0.230 0.796 0.935 0.974

Table 2 Performance comparison on KITTI2015 flow training dataset

Method Supervised KITTI2015 Train (AEPE)

FlowNetS [3] Yes 14.19

FlowNetC [3] Yes 11.49

FlowNet2.0 [9] Yes 10.06

PWC-Net [20] Yes 10.35

Ren et al. [17] No 16.79

Yin and Shi [29] No 10.81

Ours No 10.19

Table 3 Absolute trajectory error (ATE) on the KITTI odometry

dataset

Method Seq.09 Seq.10

ORB-SLAM [15] 0.014 ± 0.008 0.012 ± 0.011

Zhou et al. [35] 0.021 ± 0.017 0.020 ± 0.015

Mahjourian et al. [14] 0.013 ± 0.010 0.012 ± 0.011

Ours 0.012 ± 0.013 0.012 ± 0.007

Table 4 Ablation study

Model Depth Flow

Abs Rel Sq Rel RMSE AEPE

Ours (w/o FR) 0.155 1.296 5.857 10.81

Ours (full) 0.152 1.103 5.608 10.19
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4.4 Depth evaluation

In Table 1, we compare our network to single-task-based

methods [4, 6, 7, 13] and recent multi-task-based methods

[14, 27–29, 35]. The error and accuracy metrics are com-

puted over the Eigen [4] test set. Note that ‘‘C’’ and ‘‘S’’ of

[4] denote coarse and fine versions. According to training

data, we roughly divide these approaches into three cate-

gories: single image, stereo image pair and monocular

video. We can find that Garg et al. [6] and Godard et al. [7]

can achieve promising results among the single-task-based

methods. In terms of two metrics of Abs Rel and d\1:25,

our model achieves comparable performance against

Godard et al. [7]. The [7] is a stereo-based approach, which

needs various calibrated stereo image pairs during training.

In contrast, our network only needs monocular image

sequences during training. Compared to the supervised

methods [4, 13], our model can outperform these methods

by a large margin. Our approach outperforms all of the

fives prior multi-task-based methods including Zhou et al.

[35], Yang et al. [28], Mahjourian et al. [14], Yang et al.

[27] and Yin and Shi [29], which demonstrates the effec-

tiveness of our proposed method. A qualitative comparison

is visualized in Fig. 5. We compare our model to the work

[35]. We can find that our model can produce sharper,

detailed and accurate depth map. Moreover, our model can

preserve details at object regions, such as motion bound-

aries, trees, poles and vehicles.

4.5 Optical flow evaluation

We evaluate the optical flow prediction performance on the

KITTI2015 dataset. The results are shown in Table 2. We

compare our method to both supervised and unsupervised

methods including FlowNetS [3], FlowNetC [3], Flow-

Net2.0 [9], PWC-Net [20], Ren et al. [17] and Yin and

Shi [29]. Compared to the supervised methods FlowNetS

[3], FlowNetC [3], FlowNet2.0 [9] and PWC-Net [20], our

model Our method performs slightly worse than Flow-

Net2.0 [9]. However, FlowNet2.0 [9] is a computationally

complex neural network architecture for optical flow esti-

mation, which stacks several networks to form a large

network. Moreover, it needs a large amount labeled data

for training. Compared to the unsupervised methods Ren

et al. [17] and Yin and Shi [29], our model shows signifi-

cant performance. Figure 6 shows the visual comparison.

We can find that our method produces clearer object con-

tours and motion boundary than the work [29].

4.6 Pose evaluation

For completeness, we provide a comparison of the pose

network. Table 3 reports the ego-motion comparison of our

model and [14, 15, 35] on the KITTI odometry dataset. We

divide the 11 sequences with ground truth into two parts:

the 00-08 sequences for training and the 09-10 sequences

for testing. In Table 3, ORB-SLAM [15] is a traditional

method, and Zhou et al. [35] and Mahjourian et al. [14] are

deep learning-based methods. We find that our proposed

method significantly outperforms [35] and achieves the

results close to [14, 15].

4.7 Ablation study

Furthermore, we design two different variants of our net-

work to prove the effectiveness of feature refinement

module (FR). In the first variant ‘‘Ours (w/o FR),’’ we

remove the feature refinement module. In the second

variant ‘‘Ours,’’ we add the feature refinement module. The

results prove that using the FR module can reduce the error

of both depth and flow tasks. The results of the two variants

are shown in Table 4. Experimental results prove that

Zhou et al. OursGround truthImage

Fig. 5 Qualitative results of depth estimation on KITTI dataset. In each row left to right: image, ground truth flow and two predictions: Zhou

et al. [35] and Ours
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adding feature refinement module improves the perfor-

mance of depth and optical flow estimation significantly.

4.8 Running time

Efficiency is crucial for real-world applications. We test

our model on a single Nvidia 1080Ti GPU on the KITTI

2015 dataset. The running time listed in Table 5 is the

average time on all frames. We show the total time con-

sumed by a forward calculation. In Table 5, ‘‘Ours (w/o

FR)’’ denotes the model without using the FR module.

From Table 5, we can find that using the FR module

increases the running time of about 27ms. Moreover, our

model cannot achieve real-time performance. For real-

world applications, the model only can be used for post-

processing of the collected data. The efficiency problem for

real-time applications will be considered in our future

work.

4.9 Limitations

Figures 7 and 8 show some failure cases of optical flow

estimation and depth prediction. In Fig. 7, from the first

row, we can find that some estimation errors occur when

the vehicular gap is close. From the second row, we can see

that our model cannot handle the small displacement in the

scene well. The low-speed motion of the vehicle is not

extracted. From the third row, we can find that the esti-

mated flow map is blurry in the night scenario. In Fig. 8,

from the first and second rows, we can find that the depth

information in the region of the thin rod cannot be

extracted well. From the third row, we can find that the

estimated depth map loses texture details in the tree region.

The above experiments show some limitations of our

proposed approach. We leave these limitations as future

works.

5 Conclusion and future work

This paper focuses on geometry understanding from

autonomous driving scenarios, which is an under-studied

and very challenging problem. In this paper, we propose a

novel deep learning framework based on feature refinement

for estimating depth, optical flow and camera ego-motion.

Yin et al. OursGround truthImage

Fig. 6 Qualitative results of optical flow estimation on KITTI dataset. In each row left to right: image, ground truth flow and two predictions: Yin

and Shi [29] and Ours

Table 5 Running time
Model Running time

Ours (w/o FR) 232ms

Ours 259ms

Image Ground truth Ours

Fig. 7 Some failure cases of optical flow estimation. In each row left

to right: image, ground truth flow and our result

Image Ground truth Ours

Fig. 8 Some failure cases of depth estimation. In each row left to

right: image, ground truth depth and our result

3218 Neural Computing and Applications (2021) 33:3209–3220

123



It employs a feature refinement module to discriminate and

recalibrate features adaptively alone two aspects: channel

and spatial. The feature refinement module is embedded in

both flow estimation sub-network and depth prediction sub-

network, which can provide global channel-wise and spa-

tial information for these two tasks. The experimental

results on KITTI dataset prove the effectiveness of the

proposed approach.

In the future, we plan to introduce a context-aware

module into our model to extract more texture details.

Moreover, we plan to further design an additional module

to extract motion and depth from the night scenario. In

addition, it will be interesting to investigate a lightweight

network to improve the performance of real-time process.
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