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Abstract
The reinforced concrete (RC) infrastructure can be retrofitted by adhesively bonding fiber-reinforced polymers (FRPs) to

the tension face. In the FRP-to-concrete bonding system, the debonding of the FRP plate from the member is the most

common failure type. Predicting the bond strength of FRP-to-concrete joints using traditional predictive models is far from

being satisfactory because of the highly nonlinear relationships between the bond strength and a large number of influ-

encing variables. To address this issue, this study proposes a metaheuristic-optimized least-squares support vector

regression (LSSVR) model to predict the bond strength of FRP-to-concrete joints. The hyperparameters of the LSSVR

model are tuned using a recently proposed beetle antennae search (BAS) algorithm. In addition, the Levy flight is

incorporated in the BAS algorithm to improve its searching efficiency. The proposed model is then trained on a dataset

collected from internationally published literature. To understand the importance of each input variable on the bond

strength, the variable importance is calculated using the random forest algorithm. The results show that the proposed

LBAS-LSSVR model has comparatively high prediction accuracy, as indicated by a high correlation coefficient (0.983)

and low root mean square error (1.99 MPa) on the test set. Width of FRP is the most sensitive variable to the bond strength.

The proposed model can be extended to solve other regression problems in structural engineering.

Keywords Fiber-reinforced polymer � Reinforced concrete � Bond strength � Lest squares support vector regression �
Levy flight � Beetle antennae search algorithm

1 Introduction

The reinforced concrete (RC) beam can be retrofitted or

strengthened using external bonding of fiber-reinforced

polymer (FRP) plates. The flexural strength of a concrete

beam can be increased by bonding the FRP plates to the

tension face (soffit) of the reinforced concrete (RC) beam

[20]. This technique has been widely used in bridges,

buildings and tunnel lining due to a variety of advantages

such as good corrosion resistance, ease of site handling and

minimum increase in weight and structural size

[28, 45, 55].

In the FRP-to-concrete bonding system, the debonding

of the FRP plate from the member is usually caused by the

concrete fracture close to the FRP-to- concrete interfaces.

The occurrence of the debonding failure will reduce the

strain of the bonded FRP plate to 20–50% of the rupture

strain of the FRP plate. Therefore, FRP plates are not fully

utilized when the debonding failure occurs [17, 26].

Moreover, the deformability of the strengthened member

will be reduced with the premature failure [5]. A variety of

factors need to be considered when explaining the bond

mechanism, such as FRP material properties, adhesive, and

RC properties [10]. Many experiments have been con-

ducted to evaluate the bond strength. The two widely

applied experiments are modified beam tests [56, 68], and

single shear tests [3, 11, 12] as they can be easily imple-

mented in laboratory. However, as there exist a large

number of influencing variables, it is impossible to evaluate

the bond strength accurately using the time and money

consuming laboratory experiments.
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To address this issue, statistical models were proposed

to predict the bond strength [14, 34, 48]. These models

evaluate the bond strength of FRP-to-concrete joints by

combining the fracture energy, the axial rigidity of the FRP

system and the bond width. Generally, empirical relation-

ships are established in these models by using small test

data, and there are not enough factors considered in these

models. Therefore, the generalization ability of these

models is not high enough.

To address this problem, machine learning (ML) algo-

rithms are used to predict the bond strength of FRP-to-

concrete joints as ML algorithms do not rely on explicit

equations. Among many ML methods, support vector

regression (SVR) has been extensively applied in civil

engineering such as prediction of unconfined compressive

strength (UCS) [19, 63], elastic modulus [50, 59], tensile

strength [60] and fresh-state properties [47]. As one of the

best ML algorithms, SVR is able to solve regression

problems by estimating the implicit functions accurately

using kernel tricks and risk minimization principles [31].

The SVR algorithm has a number of advantages over other

ML models, including excellent performance on small

datasets [13], and non-convergence of local solution [39].

In spite of the benefits, SVR is computationally demand-

ing. The computational efficiency can be achieved by

introducing equality constraints to achieve closed form

least-square-type solutions. This form of SVR is called

least-squares support vector regression (LSSVR) [52]. The

prediction accuracy and generalization ability of LSSVR

rely on its hyperparameters. In order to tune and find

optimal hyperparameters, a new metaheuristic algorithm

called beetle antennae search (BAS) is used for hyperpa-

rameter tuning. It is easy to implement and converges very

fast because only one beetle is used to search rather than a

beetle swarm. Thus, in the present study, the BAS is

employed to tune the LSSVR model. However, the BAS

can be easily trapped into a local optima [25, 64]. To solve

this problem, this study modifies the BAS by incorporating

the Levy flight to improve its searching efficiency. Based

on this modification, a Levy-BAS based LSSVR (LBAS-

LSSVR) method is proposed for predicting bond strength

of FRP-to-concrete joints. This study makes several con-

tributions to the literature as follows:

(i) It firstly proposes a metaheuristic-based regression

model to predict the bond strength of FRP-to-

concrete joints. The prediction accuracy of the

proposed model is higher than the other ML

approaches.

(ii) The recently developed BAS algorithm is firstly

utilized to tune the hyperparameters of LSSVR,

which outperforms other metaheuristic algorithms

in terms of simple implementation, rapid conver-

gence, and global optima.

(iii) The Levy flight is incorporated into the BAS

algorithm to avoid being trapped into local optima,

which improves the searching efficiency of BAS

obviously.

(iv) The importance of each influencing variable on the

bond strength of FRP-to-concrete joints is com-

puted using the random forest algorithm.

The remainder of this paper will describe the applied

ML methods in Sect. 2, construction of the proposed

regression model in Sect. 3, and evaluation of the perfor-

mance of the proposed model in Sect. 4.

2 Overview of the used algorithms

2.1 Least-squares support vector regression

Least-squares support vector regression (LSSVR) is the

least-squares version of support vector regression (SVR).

SVR can convert a nonlinear problem into a linear one by

mapping the data from the sample space into a higher

dimensional characteristic space using a kernel trick to

learn the complicated relationship between predictors and

outputs. SVR is extensively used due to its advantages such

as excellent generalization ability, rapid learning speed and

good noise-tolerating ability [9, 46].

Suppose a training dataset of n points is given as

follows:

x1; y1ð Þ; x2; y2ð Þ; . . .; xn; ynð Þgf ð1Þ

where each xi is an l-dimensional real director and yi is the

scalar regression value. The regression function can be

derived using this dataset in the following form:

f xð Þ ¼ w � u xð Þ þ b ð2Þ

where u xð Þ is a nonlinear mapping function; w represents

the weight vector; b is the bias. f(x) is required to be as flat

as possible. Flatness in (2) means the Euclidean norm of w,

i.e., ||w||2 needs to be minimized [46]. If for each instance

xi, the deviation between f(xi) and yi is less than e (the

largest tolerance error), the function f(xi) is said to be

found. A loss function using the e-insensitive factor is

employed to measure the deviation degree:

L x; y; fð Þ ¼ yi � f xið Þj jE
¼ 0; yi � f xið Þj j\e

yi � f xið Þj j � e; yi � f xið Þj j � e

�
ð3Þ

This function indicates that the training points within the

e-tube are not penalized and only the data situated on or

outside the e-tube will be used as support vectors to build
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f(x). According to the structural risk minimization [2], the

problem can be written as follows:

R wð Þ ¼ 1

2
w2 þ

Xn
i¼1

L x; y; fð Þ ð4Þ

Some errors are allowed sometimes, and therefore slack

variables ni and n�i are introduced to cope with infeasible

constraints. The above problem can then be converted into

the following convex optimization form:

min
w;b;n;n�

R wð Þ ¼ 1

2
w2 þ C

Xn
i¼1

ni þ n�i
� �

s:t:

yi � w � u xð Þ � b� eþ ni
w � u xð Þ þ b� yi � eþ n�i
ni � 0

n�i � 0

8>>><
>>>:

ð5Þ

where C is a penalty parameter to determine the trade-off

between the flatness of f(x) and the penalizing extent of the

sample outside the tube. An example of nonlinear SVR

with an e-tube is shown in Fig. 1.

To address problems with constraints, Lagrange multi-

pliers can be used as follows:

L w; b; n; a; lð Þ ¼ 1

2
w2 þ C

Xn
i¼1

ni þ n�i
� �

�
Xn
i¼1

ai eþ ni � yi þ w � u xið Þ þ bð Þ

�
Xn
i¼1

a�i eþ n�i þ yi � w � u xið Þ � b
� �

�
Xn
i¼1

lini þ l�i n
�
i

� �

ð6Þ

where ai � 0, a�i � 0, li � 0 and l�i � 0 are Lagrange mul-

tipliers. When the constraint functions have strong duality

and the objective function is differentiable, KKT condi-

tions must be satisfied for each pair of the primal and dual

optimal points [6] as follows:

oL

ow
¼ w�

Xn
i¼1

ai � a�i
� �

u xið Þ ¼ 0

oL

ob
¼
Xn
i¼1

ai � a�i
� �

¼ 0

C � ai � li ¼ 0

C � a�i � l�i ¼ 0

8>>>>>>><
>>>>>>>:

ð7Þ

In addition, the product between the constraints and the

dual variables ought to be 0 based on the KKT condition at

the optimal solution:

ai eþ ni � yi þ w � u xið Þ þ bð Þ ¼ 0

a�i eþ n�i þ yi � w � u xið Þ � b
� �

¼ 0

C � aið Þni ¼ 0

C � a�i
� �

n�i ¼ 0

8>><
>>:

ð8Þ

By solving the above equations, the Lagrange dual

problem can be derived as follows:

max
i

� 1

2

Xn
i¼1

Xn
j¼1

ai � a�i
� �

aj � a�j

� �
xTi xj

 

� e
Xn
i¼1

ai þ a�i
� �

þ
Xn
i¼1

yi ai � a�i
� �!

s:t:

Pn
i¼1

ai � a�i
� �

¼ 0

ai; a�i 2 0;C½ �

8<
:

ð9Þ

From Eq. 8, the weight vector can be obtained as

w ¼
Pn

i¼1 ai � a�i
� �

u xið Þ, and therefore the regression

function can be derived as:

f xð Þ ¼
Xn
i¼1

ai � a�i
� �

u xið Þxþ b ð10Þ

For LSSVR, the total error in SVR is replaced by the

sum of the squared error variable ni. Therefore, the primal

optimization problem in Eq. 5 can be reorganized for the

LSSVR model as follows:

min
w;b;n

R wð Þ ¼ 1

2
wk k2þ 1

2
C
Xn
i¼1

n2i
� �

s.t. yi ¼ w � u xð Þ þ bþ ni; ni 2 R; i ¼ 1; . . .; n

ð11Þ

In a way similar to solving the SVR problem, the

Lagrangian function should be applied to obtain the dual

optimization problem of LSSVR as follows:

Fig. 1 Example of nonlinear SVR with e-tube
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L w; b; n; kð Þ ¼ 1

2
wk k2þ 1

2
C
Xn
i¼1

n2i
� �

�
Xn
i¼1

ki w � u xið Þ þ bþ ni � yið Þ ð12Þ

where ki are the Lagrangian multipliers. The following

conditions should be satisfied to achieve the optimal

solutions:

oL

ow
¼ w�

Xn
i¼1

kiu xið Þ ¼ 0

oL

oni
¼ Cni � ki ¼ 0

oL

ob
¼
Xn
i¼1

ki ¼ 0

oL

oki
¼ w � u xið Þ þ bþ ni � yi ¼ 0

8>>>>>>>>>>><
>>>>>>>>>>>:

ð13Þ

After the w and n terms are eliminated, the solutions can

be obtained as follows:

0 eTn�1

en�1 Xþ In=C

� �
b
k

� �
¼ 0

Y

� �
ð14Þ

where en�1 = [1,1,…,1]; k ¼ ½k1; k2; . . .; kn�;
Y ¼ ½y1; y2; . . .; yn�; In is the identity matrix;

Xi;j ¼ uT xið Þ � u xið Þ ¼ Xðxi; xjÞ; and X denotes the kernel

function. After obtaining k and b from Eq. (13), the

regression model for LSSVR can be expressed as:

f xð Þ ¼
Xn
i¼1

kið ÞX xi; xð Þ þ b ð15Þ

2.2 Beetle antennae search algorithm

Beetle antennae search (BAS) is a recently proposed

metaheuristic algorithm to solve optimization problems

inspired by the searching behavior of beetles [25, 62]. A

beetle searches neighboring areas using two antennae and

moves to a location of higher concentration of odour.

Assume that the position of the beetle is represented by a

vector xi at the ith time instant (i = 1, 2,…). We define the

fitness function as f(x) representing the concentration of

odour at position x with its maximum value denoting the

source point of the odour. It can search for the global

optimum in a multi-dimensional space by a general

function:

Minimize

Maximize
f xð Þ; x ¼ x1; x2; . . .; xN½ �T ð16Þ

The searching behavior of the beetle can be defined as

follows:

b ¼ rnd k; 1ð Þ
rnd k; 1ð Þk k ð17Þ

xr ¼ xi þ dib ð18Þ

xl ¼ xi � dib ð19Þ

where b is a normalized random unit vector;rndð�Þ is a

random function; k is the dimensionality of the position; xl
and xr denote left-hand side and right-hand side areas,

respectively; d represents the antennae length.

The detecting behavior of the beetle is described by:

xiþ1 ¼ xi þ dib � sign f xrð Þ � f xlð Þð Þ ð20Þ

where di represents the step size at the ith iteration, sign �ð Þ
is the sign function. The step size updating formula is

written as:

diþ1 ¼ gdi ð21Þ

where g is the attenuation coefficient of the step size.

3 Methodology

3.1 Dataset description

The dataset including 150 instances is collected from

internationally published literature [11, 36, 41, 43,

53, 54, 58, 61, 67]. The input variables are width of the

prism (WP), width of FRP (WF), modulus of elasticity of

FRP (EF), thickness of FRP (TF), uniaxial compressive

strength of concrete cylinder (UCS), and bond length (BL).

The output variable is the bond strength of FRP-to-concrete

joints (BS). The statistics of the parameters are summarized

in Table 1. The relationships between input variables are

visualized using a correlation matrix (Fig. 2). It can be seen

that the correlations between any two input variables are

pretty low, indicating that these variables will not cause

multicollinearity issues [16].

Table 1 Statistics of the variables used in the dataset

Parameter Minimum Maximum Mean SD

WP (mm) 100 228.2 161.3 40.6

WF (mm) 10 100 39.9 21.5

EF (GPa) 83.03 300 178.0 58.6

TF (mm) 83.03 300 0.84 0.53

UCS (MPa) 16 50 33.7 9.3

BL (mm) 50 300 150.6 70.9

BS (MPa) 4.11 46.35 14.8 9.9
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3.2 Levy flight BAS algorithm

In the traditional BAS algorithm, the step size of a beetle is

fixed or decreases with each iteration. The BAS algorithm

can be easily trapped in a local optimum. To solve the

issue, this study has introduced Levy flight to adjust the

step size of BAS and proposes a new Levy flight BAS

(LBAS) algorithm for hyperparameter tuning. The pseu-

docode of LBAS is shown in Algorithm 1. Levy flight has

been used in many optimization algorithms and the results

are promising [40, 44, 57].

In the implementation, the step size in LBAS is updated

as follows

Step tð Þ ¼ gb	 Step t�1ð Þ; ð22Þ

where g is the same as that in Eq. (21); The product 	
means entrywise multiplications; b is defined as follows:

b ¼ ajLevyj; f tð Þ � f t�1ð Þ		 		\l fw � fbð Þ
1; otherwise

�
; ð23Þ

where a * U (0, 1); fw and fb are the historical worst and

best fitness values; l is a coefficient. In this study, l=10-5;

Levy is defined as follows:

Levy
 u ¼ t�k; ð1\k� 3Þ: ð24Þ
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3.3 Evaluation and validation methods

3.3.1 Performance evaluation methods

The following performance measures are applied to assess

the predictive performance of the proposed model.

• Root-mean-square error (RMSE)

RMSE measures the difference between predicted and

observed values using the following function [24]:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

y�i � yið Þ2
s

ð25Þ

where y�i is the predicted value; yi is the actual value; n is

the number of data samples.

• Correlation coefficient (R).

R measures the strength of correlation between predicted

and observed values, which is described as follows: [4]

R ¼
Pn

i¼1 y�i � y�
� �

yi � yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y�i � y�ð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi � yð Þ2

q ð26Þ

where y� and y are the mean value of predicted and

observed values, respectively.

3.3.2 k-fold cross-validation

Several methods for validating the regression model have

been used such as simple substitution method [8], bootstrap

method [15], holdout method [29], and bolstered method

[7]. Among these methods, the k-fold cross-validation (CV)

is probably the most widely applied validation method for

training data [49]. In this study, k was assigned to be 10

according to recommendations and the number of datasets

[30]. During hyperparameter tuning, the training set is split

into 10 folds. The algorithms are trained in nine folds and

validated in the remaining one. This procedure is repeated

for 10 times with a different fold being employed as the

validating fold at each time. The 10 results from the folds

can then be averaged to give a single estimation.

3.4 Hyperparameter tuning

This study applied the radial basis function (RBF) as the

kernel function for LSSVR. The reasons for choosing this

function are as follows: (1) more parameters need to be

tuned in the polynomial kernel function, leading to a more

difficult model selection process. Numerical difficulties

such as underflow or overflow may be inevitable; (2) the

sigmoid kernel function is conditionally positive definite

for parameters in certain ranges and there exist similarities

between the RBF and the sigmoid kernel function [33]; and

(3) the linear kernel function is a particular case of RBF

[27].

Two hyperparameters need to be tuned on the training

dataset when the RBF kernel is used: the kernel parameter

c and the slack penalty coefficient C. The hyperparameters

are tuned on the training set including 70% of the instances

as per the recommendations of previous literature [23]. The

training dataset is split into 10 subsets in which the beetle

searches for the optimal hyperparameters on 9 subsets and

calculate the RMSE on the remaining subset. After con-

vergence, the optimal hyperparameters in this fold is

selected out. This process repeats for 10 times based on

ten-fold CV. After ten folds, the hyperparameters corre-

sponding to the smallest RMSE is selected as the optimal

hyperparameters used in this study. Finally, the predictive

performance of the model is tested on the test dataset

(containing 30% of the whole data points). Independent of

the training dataset, this dataset is applied only for

assessing the performance of the model. If a model fits well

on both the training and test datasets, minimal overfitting

has taken place [42].

Fig. 2 Correlation matrix of the input variables
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3.5 Construction of the metaheuristic-optimized
regression system

In the training set, the hyperparameters of the proposed

model are tuned by 10-fold CV and LBAS. The predictive

performance of the model with optimal hyperparameters

are then evaluated on the test dataset. The whole procedure

of the implementation of the proposed LBAS-LSSVR

system is shown in Fig. 3.

4 Results and discussion

4.1 Performance of the LBAS algorithm

To assess the performance of the proposed LBAS-LSSVR

model, eleven benchmark functions are used, including 6

unimodal ones and 5 multimodal ones [37]. The test results

are summarized in Table 2. Here, we take f7 as an example

to show the searching trajectories and convergence curves

of the LBAS algorithm (see Fig. 4). From the expression of

f7, it is known that when x is �1, y is �1. Therefore, the

smaller the obtained y is, the better performance an opti-

mization algorithm achieves. It can be seen that the beetle

gradually moves ‘‘deeper and deeper’’. For the BAS algo-

rithm, the y stops decreasing at the 23rd iteration (Fig. 4e),

while for the LBAS, y reaches a much smaller value (about

seven times smaller) after convergence (after 550 itera-

tions) (Fig. 4f). It can be observed from Table 2 that the

solution obtained by LBAS algorithm is much closer to the

global optimum, indicating the high searching efficiency of

LBAS algorithm.

4.2 Results of hyperparameter tuning

As stated before, we have tuned the hyperparameters

(C and c) of LSSVR using LBAS and ten-fold CV. At each

fold, the LBAS algorithm searches for the hyperparameters

on the training set and then after convergence, the set of

hyperparameters are selected out. To validate the perfor-

mance of the LSSVR model with this set of hyperparam-

eters, the RMSE value on the validation set is calculated by

this model. After ten folds, ten sets of hyperparameters

(C and c) are obtained, as shown in Table 3. The hyper-

parameters corresponding to the smallest RMSE value on

the validation set (typeset in bold) are selected as the

optimal hyperparameters for further study (the hyperpa-

rameters at tenth fold). We have also plotted the RMSE

versus iteration curve for the best fold, as shown in Fig. 5.

It can be seen that the RMSE curve converges within 20

iterations. This indicates that LBAS is very efficient in

tuning hyperparameters. In addition, the significant

decrease in RMSE shows that LBAS can find optimal

hyperparameters for LSSVR.

4.3 Performance of the LBAS-LSSVR algorithm

Figure 6 shows the predicted and actual BS values on the

training and test sets. The bars on the horizontal line rep-

resent the difference between the actual and predicted

values. It can be seen that most of the difference values are
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Fig. 3 Flow diagram of the LBAS based LSSVR
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pretty small (except several noises), indicating that the

LBAS-LSSVR model has high prediction accuracy. Fig-

ure 7 shows the correlation between the predicted and

actual BS values on the training and test sets. It can be seen

that the data points lie closely to the ideal fit, with corre-

lation coefficients of 0.9842 and 0.9828, respectively,

indicating excellent prediction performance of the LBAS-

LSSVR model. In addition, the similar and low RMSE

values on the training and test sets suggest that there are no

under-fitting and over-fitting issues.

4.4 Comparison of the LBAS-LSSVR model
with other models

The predictive performance of the proposed model is

compared with several widely used ML models, including

back propagation neural network (BPNN) [21, 51], deci-

sion tree (DT) [32, 65, 66], k nearest neighbors (kNN) [1],

logistic regression (LR) [22], and multiple linear regression

(MLR) [38]. The prediction performances of different

models in terms of RMSE and R on training and test sets

Fig. 4 Searching trajectories of the BAS (a) and LBAS (c) algorithms in 2-D input space; top views of the searching trajectories of BAS (b) and
LBAS (d); Convergence curves of the BAS (e) and LBAS (f)
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are summarized in Table 4. It can be observed that the

LBAS-LSSVR model achieves the highest prediction

accuracy, as indicated by the highest R value (0.983) and

the lowest RMSE value (1.99 MPa) on the test set, fol-

lowed by the kNN with R value of 0.947 and the RMSE of

3.52 MPa. DT performs the worst on the test set

(RMSE = 5.42 MPa, R = 0.880).

Figure 8 displays the distribution of the residual

between the actual and predicted BS value using a box plot.

The box plot is constructed using five metrics: the mini-

mum value (the lower whisker), the first quartile (the lower

edge of the box), the median (the red line in the box), the

third quartile (the upper edge of the box), and the maxi-

mum value (the upper whisker). It can be seen that the

LBAS-LSSVR achieves the smallest residual values for all

the five metrics, followed by kNN, while LR performs

worst in terms of the larger distribution of the residual

values. However, it should be noted that although the kNN

model has achieved comparatively higher prediction

accuracy, slight overfitting occurs, as the RMSE on the test

set is 4.5 times larger than that on the training set (see

Table 4).

A Taylor diagram is employed to quantify the degree of

correspondence between the actual and predicted BS val-

ues in terms of the standard deviation, RMSE and the

correlation coefficient. A model will lie nearest the ‘‘Ac-

tual’’ point if its predicted BS value agrees well with the

actual ones, indicating this model achieves comparatively

low RMSE and high correlation. It can be observed that the

LBAS-LSSVR model is situated closest to the ‘‘Actual

point’’, suggesting this model has the highest prediction

accuracy. LR has relatively large variations than the actual

Table 3 Hyperparameter tuning of the LSSVR model

Fold Hyperparameters RMSE

C c Training set Test set

1 9.45 36.51 2.0786 2.3176

2 39.48 49.81 1.8682 2.0923

3 9.70 38.89 2.0921 2.3155

4 24.21 20.29 2.0444 2.2538

5 34.22 8.26 1.8399 2.0691

6 26.89 24.23 1.7412 2.0169

7 2.96 49.86 2.0872 2.3622

8 27.45 49.51 1.9852 2.1209

9 49.13 48.64 2.0887 2.2243

10 23.29 2.45 1.7134 1.9902

Fig. 5 RMSE values on the

validation set at each fold (a);
RMSE versus iteration on the

validation set at fold 10

Fig. 6 Scatter plot of the

predicted and actual values on

the training set (a) and test set

(b)
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value, while DT has a lower correlation coefficient, in both

cases, leading to a comparatively large RMSE (Fig. 9).

4.5 Variable importance

In this study, the random forest (RF) algorithm is used to

calculate the variable importance [18]. The procedure is as

follows: The out-of-bag sample for a tree t is defined as

OOBt and the misclassification rate is denoted by errOOBt.

The influencing variables are permuted randomly in OOBt

to obtain a permuted sample O ~OBt and the error of pre-

dictor t errO ~OBt is then calculated. The variable impor-

tance of X can be written as

Fig. 7 Predicted BS versus

actual BS values on the training

set (a) and test set (b)

Table 4 Prediction performance of the models on training and test

sets

Model Training set Test set

RMSE (MPa) R RMSE (MPa) R

BPNN 3.19 0.947 4.18 0.917

kNN 0.777 0.997 3.52 0.947

DT 3.86 0.914 5.42 0.880

LR 4.28 0.939 5.19 0.921

MLR 4.46 0.883 4.62 0.895

LBAS-LSSVM 1.71 0.984 1.99 0.983

Fig. 8 Box plot of the residual between the predicted and actual BS

values for different models on the test set

Fig. 9 Performance comparison of the six models using Taylor

diagram on the test set

Fig. 10 Importance of the influencing variables on the bond strength

of FRP-to-concrete joints
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VI Xð Þ 1

ntree

X
t

errO ~OBt � errOOBt
� �

ð27Þ

where ntree is the number of tress in the forest.

The results show that WF is the most sensitive to the

bond strength of FRP-to-concrete joints with the highest

influence score (3.4776), followed by the BL (1.1419),

while UCS is the least sensitive to the bond strength

(0.1195). TF, WP and EF fall in between (0.7917, 0.7360

and 0.6745, respectively) (see Fig. 10). It is not unexpected

that the variables related with the rigidity of the FRP have

comparatively high influence on the bond strength of the

FRP-to-concrete joints. When the principle tensile strength

reaches the concrete tensile strength (half of the concrete

uniaxial compressive strength), debonding cracks start to

develop. Therefore, the UCS is not sensitive to the bond

strength [35].

5 Conclusions

This study predicts the bond strength of FRP-to-concrete

joints using an intelligent regression model. This model has

high prediction accuracy and can be used to solve structural

engineering problems. The recently proposed BAS algo-

rithm is introduced to search for optimal hyperparameters

for the LSSVR model. In addition, Levy flight is employed

to improve the searching efficiency of BAS. The results

show that incorporating Levy flight into the BAS algorithm

can avoid the premature convergence to local optima. The

LBAS is very efficient in tuning hyperparameters of

LSSVR. The prediction accuracy of the proposed LBAS-

LSSVR is pretty high, indicated by high correlation coef-

ficient (0.9828) and low RMSE (1.99 MPa) on the test set.

The variable importance result indicates the width of the

FRP has the most significant influence on the bond

strength, while the concrete UCS is the least sensitive

variable.

It should be noted, however, that the data samples used

in this study come from laboratory experiments. Thus, in

the future work, the following work should be conducted:

(1) to include a wider range of influencing variables (e.g.,

tensile strength of FRP, cement type, water-to-cement ratio

of concrete, and elastic modulus of concrete) to increase

the generalization ability of the proposed model, and (2) to

increase the volume of data used for training and testing the

proposed model. This will ensure more refined tuning of

hyperparameters and further improve the ability of the

model to obtain meaningful patterns form data with noise.

Since it is not convenient for engineers to use algorithms in

practice, a GUI that incorporates the proposed model can

be implemented in the future work to facilitate the design

of FRP-to-concrete composite joints for construction of

infrastructure and buildings.
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