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Abstract
In this study, an advance computational intelligence scheme is designed and implemented to solve third-order nonlinear

multiple singular systems represented with Emden–Fowler differential equation (EFDE) by exploiting the efficacy of

artificial neural networks (ANNs), genetic algorithms (GAs) and active-set algorithm (ASA), i.e., ANN–GA–ASA. In the

scheme, ANNs are used to discretize the EFDE for formulation of mean squared error-based fitness function. The

optimization task for ANN models of nonlinear multi-singular system is performed by integrated competency GA and

ASA. The efficiency of the designed ANN–GA–ASA is examined by solving five different variants of the singular model to

check the effectiveness, reliability and significance. The statistical investigations are also performed to authenticate the

precision, accuracy and convergence.

Keywords Nonlinear Emden–Fowler equation � Artificial neural networks � Statistical analysis � Genetic algorithms �
Singular systems � Active-set algorithm � Hybrid computing

1 Introduction

Astrophysicist Lane [1] and Emden [2] first time intro-

duced nonlinear singular Lane–Emden model working on

thermal performance of a spherical cloud of gas and clas-

sical law of thermodynamics [3]. The singular models

designate a variety of phenomena in physical science [4],

density profile of gaseous star [5], catalytic diffusion

reactions [6], isothermal gas spheres [7], catalytic diffusion

reactions [6], stellar structure [8], electromagnetic theory

[9], mathematical physics [10], classical and quantum

mechanics [11], oscillating magnetic fields [12], isotropic

continuous media [13], dusty fluid models [14] and mor-

phogenesis [15]. To find the solution, these singular models

are always very challengeable and hard to handle due to the

singularity at the origin. The generic form on of such

model represented with third-order nonlinear Emden–

Fowler equation is written as [16]:

y000ðtÞ þ 2p

t

� �
y00ðtÞ þ pðp� 1Þ

t2
y0ðtÞ þ f ðtÞgðyÞ ¼ 0;

yð0Þ ¼ y0; y0ð0Þ ¼ 0; y00ð0Þ ¼ 0:

ð1Þ

There are only few numerical and analytic existing

techniques to tackle such nonlinear singular models (1). To
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mention few reported techniques to solve the singular

models represented with differential equations include

Shawagfeh [17] used the Adomian decomposition method

(ADM), Wazwaz [18] also applied ADM to avoid the

difficulty of singularity, Liao [19] applied an analytic

algorithm to avoid the singularity, He and Ji [20] devel-

oped a numerical scheme based on Taylor series, Nouh

[21] applied power series solution by using Pade approxi-

mation technique as well as Euler-Abel transformation and

Mandelzweig and along with Tabakin [22] developed

Bellman and Kalabas quasi-linearization method. All these

techniques have their own performance, accuracy and

efficiency, as well as inadequacies over one another.

Beside these deterministic procedures, numerical solvers

based on heuristic computing paradigm look promising to

be incorporated in the domain of nonlinear singular

systems.

The considerable potential of heuristic computing

paradigm based on stochastic numerical solvers is exploi-

ted for solving linear/nonlinear systems by manipulating

the universal approximation competency of artificial neural

networks (ANNs) optimized with local/global search

methodologies [23–25]. Few recent applications of para-

mount significance include Thomas–Fermi atom’s model

[26], prey-predator models [27], plasma physics problems

[28], models of fractional ordinary differential equations

[29], model of heartbeat dynamics [30], linear fractional

cable equation [31], machines [32], control systems [33],

cell biology [34], power [35] and energy [36]. The inten-

tion of the present study is to present the detail study of the

singular Emden–Fowler model along with numerical

results for better system understanding using the stochastic

technique.

The aim of the present study is to find the solution of

Eq. (1) by integrated intelligent computing paradigm based

on the artificial neural networks (ANNs) optimized with

genetic algorithms (GAs) refined by the active-set algo-

rithm (ASA), i.e., ANN–GA–ASA. The major features of

the proposed solver ANN–GA–ASA are briefly given

below:

• A novel application of integrated intelligent computing

paradigm ANN–GA–ASA is presented for finding the

solution of nonlinear multi-singular models governed

with third-order nonlinear Emden–Fowler equation.

• Consistently matching outcomes of the proposed ANN–

GA–ASA with reference solutions for different variant

of nonlinear Emden–Fowler system established the

worth of the solver in terms of accuracy and

convergence.

• Validation of the performance is ascertained through

statistical observations on multiple execution of ANN–

GA–ASA in terms of mean absolute deviation (MAD),

Theil’s inequality coefficient (TIC) and Nash–Sutcliffe

efficiency (NSE) performance indices.

• Beside provision of accurate solution of nonlinear

Emden–Flower differential system, smooth implemen-

tation, ease in understanding, stability, applicability and

robustness are other valuable promises.

Rest of the paper is organized as follows: proposed

framework of stochastic solver ANN–GA–ASA is pre-

sented in Sect. 2, performance measures are listed at

Sect. 3, result with discussions is presented in Sect. 4,

while conclusions with future related works are listed

Sect. 5.

2 Proposed methodology

The proposed framework as shown in Fig. 1 for presenting

the solution of model (1) is divided in two portions. Firstly,

by introducing the procedure for formulation of an error-

based fitness function and secondly, the combination of

GA-ASA is presented to optimize the fitness function for

system (1).

2.1 ANN modeling

The variety of ANN models are introduced by research

community for the solutions of nonlinear systems arising in

application of broad fields [37–39]. The feed-forward ANN

models-based procedure for approximating solutions and

their respective mth order derivatives are mathematically

presented as:

ŷðtÞ ¼
Xn
j¼1

ajhðdjt þ bjÞ; ð2Þ

ŷðmÞðtÞ ¼
Xn
j¼1

ajh
ðmÞðdjt þ bjÞ; ð3Þ

where aj, dj and bj are the respective jth components of

a; d and b vectors, while m shows the derivative order. The

log-sigmoid expression h tð Þ ¼ 1 þ expð�tÞð Þ�1
and its

derivative are used as an activation/transfer functions in the

networks. The updated form of the above network is

written as follows:

ŷðtÞ ¼
Xn
j¼1

aj 1 þ e�ðdjtþbjÞ
� ��1

; ð4Þ

ŷðmÞðtÞ ¼
Xn
j¼1

aj
dm

dtm
1 þ e�ðdj tþbjÞ
� ��1
� �

: ð5Þ

In case of Emden–Fowler Eq. (1), the expression for

high order derivative in ANN formulations is given as:
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Fig. 1 Framework of proposed

methodology to solve nonlinear

Emden–Fowler model
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~y000ðtÞ ¼
Xn
j¼1

ajd
3
j

6e�3ðdjtþbjÞ

1 þ e�ðdj tþbjÞ
� �4

� 6e�2ðdi tþbiÞ

1 þ e�ðdjtþbjÞ
� �3

þ e�ðdi tþbiÞ

1 þ e�ðdj tþbjÞ
� �2

 !

ð6Þ

The networks (4) to (6) are arbitrarily combined to form the

ANN architecture for nonlinear Emden–Fowler equation as

shown in Fig. 2. The combination of Eqs. (4) to (6) is

exploited for the fitness function formulation of Eq. (1) in

mean squared error sense as:

e ¼ e1 þ e2; ð7Þ

e1 ¼ 1

N

XN
k¼1

ŷ000k þ 2pt�1
k ŷ00k þ pðp� 1Þt�2

k ŷ0k þ fkgðŷkÞ
� �2

;

ð8Þ

e2 ¼ 1

2
ððŷ0 � AÞ2 þ ðŷ00Þ

2 þ ðŷ000Þ
2Þ; ð9Þ

where e1 and e2 are the fitness/error functions associated

with main body of Eq. (1) and its initial conditions,

respectively, while

N ¼ 1=h; ŷk ¼ ŷ tkð Þ; tk ¼ kh; fk ¼ f tkð Þ: An appropriate

optimization procedure is adopted for learning of weight

vector W ¼ ½a; d; b�, such that error-based fitness function

(7) approaches to optimal zero value.

2.2 Optimization procedure

The weights of ANNs are trained by manipulating the

strength of integrated meta-heuristic computing procedure

based on GAs supported with ASA, i.e., GA-ASA. The

graphical abstract of present designed methodology for

solving Eq. (1) is presented in Fig. 1.

Global search efficacy of GAs, introduced by Holland in

early 1970’s [40, 41], is exploited for finding the weight

vector W of ANN. Population formulation with candidate

solution or individual in GAs is performed using the

bounded real numbers. While, each candidate solution or

individual has elements equal to unknown weights in ANN

models. GAs operate with its fundamental operators based

on selection, crossover, mutation and elitism procedures

and has been used in many applications recently, for

instance, solving nonlinear electric circuit models [42],

emergency humanitarian logistics scheduling [43],

dynamics of nonlinear Troesch’s problem [44], traveling

salesman problem [45], parameter estimation [46], fecal

coliform predictive model [47], nonlinear nanofluidic

model [48], optimization of wireless sensor network in

smart grids [49], nonlinear micropolar fluid flow systems

[50], recommendation systems [51] and prediction of

thermal conductivity [52].

The optimized parameters of GA converge faster by the

hybridization procedure with the appropriate local search

method by taking global best of GAs as initial weights.

Fig. 2 ANN architecture for nonlinear third-order singular Emden–Fowler model
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Therefore, efficient local search method based on active-

set algorithm (ASA) is used of rapid fine tuning of

parameters. Recently, ASA-based optimization is used in

many applications, e.g., water distribution systems [53],

solution of optimal control problems [54], distributed

model predictive control [55], transportation of discrete

network design bi-level problem [56] and solution of

ball/sphere constrained optimization problems [57]. In the

present study, the hybrid scheme based on GA-ASA is used

in order to tune the decision variables for solving the third-

order singular model (1). The detailed pseudocode of GA-

ASA is tabulated in Table 1

Stability of proposed stochastic solver ANN–GA–ASA

based on neural networks with arbitrary weights, that

dependent on number of neurons in the hidden layers, is

mainly carried out with the help of two procedures, i.e.,

theoretical analysis and stochastic analysis. In theoretical

analysis, appropriate global and local conditions are

derived generally with the help of problem specific Lya-

punov functions [58–60], while in stochastic analysis,

Monte Carlo simulation is conducted with different set of

the parameters of the neural networks and results of sta-

tistical observations are used to evaluate the stability

[61–63].

3 Performance measures

The performance measures of MAD, NSE and TIC are

incorporated for the analysis in this study.

The mathematical expression of MAD, TIC and NSE by

means of the exact/true solution y and approximate/calcu-

lated solution ŷ are provided below:

MAD =
1

n

Xn
m¼1

ym � ŷmj j; ð10Þ

TIC =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
m¼1 ym � ŷmð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
m¼1 y

2
m

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
m¼1 ŷ

2
m

q� �
ð11Þ

NSE = 1 �
Pn

m¼1 ym � ŷmð Þ2

Pn
m¼1 ym � �ymð Þ2

(
; �ym ¼ 1

n

Xn

m¼1
ym

ð12Þ
ENSE ¼ 1 � NSE ð13Þ

4 Results and discussion

The detailed results of proposed ANN–GA–ASA along

with necessary interpretation are presented for five cases of

nonlinear singular Emden–Fowler system (1) in this sec-

tion. The stability of the proposed stochastic solver ANN–

GA–ASA based on neural networks is evaluated on

stochastic analysis which is performed on 100 independent

runs of ANN–GA–ASA to solve nonlinear multi-singular

third-order Emden–Fowler equations. Additionally, the

accuracy, convergence, stability and robustness of the

proposed stochastic solver ANN–GA–ASA are examined

with the help of statistical observations on different per-

formance metrics, MAD, TIC, ENSE and their global

variants GMAD, GTIC and GENSE based on 100 number

of independent runs of the solver. The five cases of the

nonlinear singular Emden–Fowler system (1) are narrated

as follows.

Case I Consider the nonlinear Emden–Fowler equation by

putting p ¼ 1 and f ðtÞgðyÞ ¼ � 9
8
ðt6 þ 8Þy�5 in Eq. (1),

then we have:

y000ðtÞ þ 2

t

� �
y00ðtÞ � 9

8
ð8 þ t6Þy�5 ¼ 0

yð0Þ ¼ 1; y0ð0Þ ¼ 0; y00ð0Þ ¼ 0:

ð14Þ

The exact/true form of the solution of (14) is
ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ t3

p
,

and the fitness/error function for (14) is given below:

e ¼ 1

N

XN
m¼1

8tmŷ
000ðtmÞ þ 16ŷ00ðtmÞ � 9tmðt6m þ 8Þŷ�5

� �2

þ 1

3
ŷ0 � 1ð Þ2þ ŷ00

� �2þ ŷ000
� �� �

ð15Þ

Case II Consider the third-order Emden–Fowler model by

using p ¼ 2 and f ðtÞgðyÞ ¼ �9ð3t6 þ 10t3 þ 4Þy in

Eq. (1), then we have

y000ðtÞ þ 4

t

� �
y00ðtÞ þ 2

t2

� �
y0ðtÞ � 9ð4 þ 10t3 þ 3t6Þy ¼ 0

yð0Þ ¼ 1; y0ð0Þ ¼ 0; 00 ð0Þ ¼ 0:

ð16Þ

The exact/true solution of Eq. (16) is et
3

, and the fitness/

error function of above equation is given below:
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Table 1 Workflow of optimization scheme GA-ASA in pseudocode
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e ¼ 1

N

XN
m¼1

t2mŷ
000ðtmÞ þ 4tmŷ

00ðtmÞ þ 2ŷ0ðtmÞ
�

�9t2mð4 þ 10t3m þ 3t6mÞŷ
�2

þ 1

3
ŷ0 � 1ð Þ2þ ŷ00

� �2þ ŷ000
� �� �

ð17Þ

Case III Using p ¼ 3 and f ðtÞgðyÞ ¼ �6ð10 þ 2t3 þ
6t6Þe�3y in Eq. (1). The nonlinear Emden–Fowler equation

takes the form as:

y000ðtÞ þ 6

t

� �
y00ðtÞ þ 6

t2

� �
y0ðtÞ � 6ð10 þ 2t3 þ 6t6Þe�3y ¼ 0

yð0Þ ¼ 0; y0ð0Þ ¼ y00ð0Þ ¼ 0:

ð18Þ

The exact/true solution of Eq. (18) is logð1 þ t3Þ, and

the fitness formulation of above case is written as:

e ¼ 1

N

XN
m¼1

t2mŷ
000ðtmÞ þ 6tmŷ

00ðtmÞ þ 6ŷ0ðtmÞ
�

�6t2mð10 þ 2t3m þ 6t6mÞe�3ŷ
�2

þ 1

3
ŷ0ð Þ2þ ŷ00

� �2þ ŷ000
� �� �

ð19Þ

Case IV Take p ¼ 4, gðyÞ ¼ ym and f ðtÞ ¼ 1 in Eq. (1)

using m ¼ 0. The Lane–Emden Eq. (1) becomes in this

case as:

y000ðtÞ þ 8

t

� �
y00ðtÞ þ 12

t2

� �
y0ðtÞ þ ym ¼ 0;

yð0Þ ¼ 1; y0ð0Þ ¼ 0; y00ð0Þ ¼ 0:

ð20Þ

The true solution of the model (20) is 1 � 1
90
t3, and error

function becomes as:

e ¼ 1

N

XN
m¼1

t2mŷ
000ðtmÞ þ 8tmŷ

00ðtmÞ þ 12ŷ0ðtmÞ þ t2mŷ
m

� �2

þ 1

3
ŷ0 � 1ð Þ2þ ŷ0ð Þ2þ ŷ000

� �2
� �

ð21Þ

Case V By taking p ¼ 4 and gðyÞ ¼ �ð10 þ 10t3 þ t6Þy
in Eq. (1), the Emden–Fowler equation takes the form as

y000ðtÞ þ 4

t

� �
y00ðtÞ � ðt6 þ 10t3 þ 10Þy ¼ 0;

yð0Þ ¼ 1; y0ð0Þ ¼ 0; y00ð0Þ ¼ 0:

ð22Þ

The true solution of Eq. (23) is et
3=3, and error function

becomes as:

e ¼ 1

N

XN
m¼1

tmŷ
000ðtmÞ þ 4ŷ00ðtmÞ � tmð10 þ 10t3m þ t6m

� �2
ŷ

þ 1

3
ŷ0 � 1ð Þ2þ ŷ00

� �2þ ŷ000
� �2

� �

ð23Þ

Optimization is performed for all five cases of Emden–

Fowler equation for the trained inputs between 0 and 1 with

step 0.1 by the hybrid procedure GA-ASA for 100 inde-

pendent trails. Optimized weights of ANNs for each case of

the system are presented in Fig. 3, and these weights pre-

sented in Fig. 3a–e can be used in Eq. 4 to find the

approximate results of proposed ANN–GA–ASA in the

trained interval [0, 1] for solving cases 1, 2, 3, 4 and 5 of

the nonlinear singular Emden–Fowler system (1), respec-

tively. The solutions of proposed ANN–GA–ASA are

determined using weight in Fig. 3 in (4) for both trained

input grid, i.e., [0. 0.1, 0.2, …, 1] and testing input grid

[0.05, 0.15, …, 0.95], and results are illustrated in Fig. 4a–

d, f along with the reference exact solutions for cases 1, 2,

3, 4 and 5 of Emden–Fowler system (1), respectively.

The results of ANN–GA–ASA are consistently over-

lapping with exact solution for both training and testing

points for each case of the system. In order to show the

level of precision achieved, the values of absolute error

(AE) from reference exact solutions are determined for

both training and testing input grids and results are pre-

sented in Fig. 5 on semi-logarithmic scale. The absolute

error plots are shown in Fig. 5a–d, e of proposed ANN–

GA–ASA for nonlinear third-order Emden–Fowler equa-

tion for all respective five cases. The value of AE lies in the

range 10-09–10-06, 10-06–10-04, 10-05–10-07, 10-09–

10-07 and 10-06–10-09 for both train and test points of

cases 1, 2, 3, 4 and 5, respectively. No noticeable differ-

ence exists between training and testing results established

the worth of the ANN–GA–ASA for solving Emden–

Fowler equation.

Hundred trials of ANN–GA–ASA are conducted for

finding the solution of Emden–Fowler Eq. (1) for all five

cases. The best solutions with minimum value of error-

based fitness, mean solutions and reference exact results

are plotted in Fig. 6 for all five cases of model (1). It is

clear from all five Fig. 6a–e that the best and mean solu-

tions are overlapped with the true solutions for all cases.

The comparison of the performance is conducted on the

basis of best, worst and mean values of the absolute error

from all 100 independent executions of proposed ANN–

GA–ASA, and results are presented in Fig. 7 which have

five subfigures and Table 2 for all five variations of

Emden–Fowler system (1).

Additionally, the values of performances metrics MAD,

TIC and ENSE are calculated for best, worst and mean
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(a) ANNs weights for Case 1 (b) ANNs weights for Case 2

(c) ANNs weights for Case 3 (d) ANNs weights for Case 4

(e) ANNs weights for Case 5

Fig. 3 Set of weights by proposed ANN–GA–ASA for nonlinear third-order Emden–Fowler equation for all cases
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values of the absolute error from all 100 independent

executions of proposed ANN–GA–ASA and results are

presented in Fig. 8 for all five variations of nonlinear third-

order Emden–Fowler model.

One may observe from results presented in Fig. 7 and

Table 3 that the values of AE lie around 10-06–10-07,

10-04–10-05, 10-06–10-08, 10-06–10-09and 10-07–10-09

for the best solutions for cases 1–5, respectively, while

respective average values are 10-02–10-03, 10-01–10-02,

10-02–10-03, 10-02–10-04 and 10-04 to 10-05. The sta-

tistical analysis presented in the terms of minimum (Min),

mean (Mean) and standard deviation (SD) in Table 2

shows that Min values lie in the ranges of [10-07, 10-08]

for case 1, [10-05, 10-06] for case 2, [10-06, 10-08] for

case 3, [10-08, 10-10] for case 4 and [10-07, 10-09] for

case 5, whereas the mean values mostly lie in the ranges of

So
lu

tio
ns

 y
(t)

So
lu

tio
ns

 y
(t)

Inputs t
(a) Outcomes for Case 1

Inputs t
(b) Outcomes for Case 2

So
lu

tio
ns

 y
(t)

So
lu

tio
ns

 y
(t)

Inputs t
(c) Outcomes for Case 3

Inputs t

(d) Outcomes for Case 4

So
lu

tio
ns

 y
(t)

Inputs t
(e) Outcomes for Case 5

Fig. 4 Comparison of results for training and testing of proposed ANN–GA–ASA with exact solution for nonlinear third-order Emden–Fowler

equation for all five cases
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[10-02, 10-03] but in some cases range [10-05, 10-06] as

well. Moreover, the SD values in small ranges for all the

cases. These results further endorsed the consistent rea-

sonable precision of all three performance metrics MAD,

TIC and ENSE for proposed ANN–GA–ASA.

Analysis on the performance of ANN–GA–ASA is fur-

ther examined on the basis of histograms studies. The

values of the fitness, MAD, TIC and ENSE are illustrated

graphically in Figs. 9, 10, 11 and 12, respectively. The

presented results show that respective MAD, TIC and

ENSE values for cases 1–5 lie around 10-06–10-08, 10-04–

10-06, 10-04–10-06, 10-06–10-08 and 10-05–10-07,

10-10–10-12, 10-08–10-10, 10-08–10-09, 10-11–10-12 and

10-12–10-14, 10-09–10-10, 10-09–10-10, 10-11–10-12 and

10-13–10-15. The mean values of MAD lie around 10-02–

10-04, 10-02–10-04, 10-02–10-03, 10-02–10-04 and

10-01–10-03. The histogram plotted for all four perfor-

mances measure show the consistence of the convergence

A
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e 
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A
bs
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ut

e 
er
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Inputs t
(a) Outcomes for Case 1
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(b) Outcomes for Case 2

A
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e 
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e 
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Inputs t
(e) Outcomes for Case 5

Fig. 5 Comparison of results for training and testing of proposed ANN–GA–ASA for nonlinear third-order Emden–Fowler equation for all five

cases
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and the precision of ANN-GA-AS on the basis of fitness,

TIC, MAD and ENSE.

The results of global performance operators, i.e., GFIT,

GMAD, GTIC and GENSE being the average values of

fitness, MAD, TIC and ENSE, for 100 executions of ANN–

GA–ASA are tabulated in Table 3 for all five cases of

third-order nonlinear Emden–Fowler model. The magni-

tude (Mag) and SD of these global operators show rea-

sonable precision for all four global statistical operators

[GFIT, GMAD, GTIC and GENSE] for each scenario of

the problem.

5 Conclusion

The motivation behind this study is to solve third-order

nonlinear singular differential model by exploiting the

strength of integrated intelligent computing paradigm

based on artificial neural network models optimized with

genetic algorithm hybrid with active-set technique. Some

of the key findings are summarized below

• Artificial neural network is successfully applied to solve

the third-order nonlinear singular differential model.

So
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Fig. 6 The best and mean values of approximate solutions of proposed ANN–GA–ASA and their comparison with exact results for all five cases
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• The accuracy and convergence of the present method

are analyzed through the outcomes of statistical mea-

sures based on 100 independent runs to solve five cases

of third-order nonlinear singular differential model.

• The best AE values lie up to 10-05–10-09. However,

the worst solution of AE also lies up to 10-01–10-05.

• The global FIT, MAD, TIC and ENSE are presented

with good agreements with their optimal gauges.

The presented scheme ANN–GA–ASA looks promising

to be exploited for solving the higher order nonlinear
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Fig. 7 The best, mean and worst values of absolute error for the proposed ANN–GA–ASA for all five cases
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Fig. 8 The MAD, TIC and ENSE values of the performance indices for the proposed ANN–GA–ASA for all five cases

Table 3 Global performance

results for all five cases
Index Cases GFIT GMAD GTIC GENSE

Mag S.D Mag S.D Mag S.D Mag S.D

ŷðxÞ 1 9.4E-05 6.6E-04 2.7E-03 1.2E-02 6.1E-07 3.6E-06 2.2E-04 1.2E-03

2 4.2E-02 9.2E-02 3.7E-01 5.5E-01 5.2E-05 8.9E-05 1.0E?00 1.6E?00

3 2.0E-03 1.3E-02 7.1E-03 3.7E-02 2.8E-06 2.3E-05 1.1E-02 7.8E-02

4 3.7E-06 1.6E-05 2.8E-05 9.0E-05 4.3E-09 1.7E-08 3.2E-06 1.7E-05

5 7.5E-05 4.8E-04 5.0E-03 3.2E-02 5.9E-07 3.9E-06 1.5E-02 1.4E-01
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(e)  Histogram: Case 2 (f)  Histogram: Case 3

Fig. 9 The comparison on fitness through histogram studies for the proposed ANN–GA–ASA for all five cases

Neural Computing and Applications (2021) 33:3417–3436 3431

123



M
A

D

Runs
MAD values(a)  Analysis on 

(b)  Histogram: Case 1 (c) Histogram: Case 2 (d)  Histogram: Case 3

(e) Histogram: Case 2 (f)  Histogram: Case 3

Fig. 10 The comparison on MAD values through histogram studies for the proposed ANN–GA–ASA for all five cases
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Fig. 11 The comparison on TIC values through histogram studies for the proposed ANN–GA–ASA for all five cases
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Fig. 12 The comparison on ENSE values through histogram studies for the proposed ANN–GA–ASA for all five cases
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singular systems represented with differential equations

involving both integer and fractional order derivatives.
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