
ORIGINAL ARTICLE

Super ensemble learning for daily streamflow forecasting: large-scale
demonstration and comparison with multiple machine learning
algorithms

Hristos Tyralis1,2 • Georgia Papacharalampous1 • Andreas Langousis3

Received: 28 December 2019 / Accepted: 26 June 2020 / Published online: 6 July 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Daily streamflow forecasting through data-driven approaches is traditionally performed using a single machine learning

algorithm. Existing applications are mostly restricted to examination of few case studies, not allowing accurate assessment

of the predictive performance of the algorithms involved. Here, we propose super learning (a type of ensemble learning) by

combining 10 machine learning algorithms. We apply the proposed algorithm in one-step-ahead forecasting mode. For the

application, we exploit a big dataset consisting of 10-year long time series of daily streamflow, precipitation and tem-

perature from 511 basins. The super ensemble learner improves over the performance of the linear regression algorithm by

20.06%, outperforming the ‘‘hard to beat in practice’’ equal weight combiner. The latter improves over the performance of

the linear regression algorithm by 19.21%. The best performing individual machine learning algorithm is neural networks,

which improves over the performance of the linear regression algorithm by 16.73%, followed by extremely randomized

trees (16.40%), XGBoost (15.92%), loess (15.36%), random forests (12.75%), polyMARS (12.36%), MARS (4.74%), lasso

(0.11%) and support vector regression (- 0.45%). Furthermore, the super ensemble learner outperforms exponential

smoothing and autoregressive integrated moving average (ARIMA). These latter two models improve over the perfor-

mance of the linear regression algorithm by 13.89% and 8.77%, respectively. Based on the obtained large-scale results, we

propose super ensemble learning for daily streamflow forecasting.

Keywords Combining forecasts � Ensemble learning � Hydrology � Stacking

1 Introduction

Streamflow forecasting at various temporal scales and time

steps ahead is important for engineering purposes (e.g.

hydro-power generation, dam regulation and other water

resources engineering purposes), as well as environmental

and societal purposes (e.g. flood protection and long-term

water resources planning). Here, we are interested in one-

step-ahead daily streamflow forecasting.

In streamflow forecasting, the predictive ability of the

implemented model is of high importance; therefore, more

flexible albeit less interpretable models (e.g. machine

learning algorithms) are acceptable, given that they are

more accurate. While accuracy is important in engineering,

the current trend in the field of hydrology favours model

interpretability (see, for example, [11]). The reader is

referred to [18, 45, pp 24–26)] and [73], for a general

discussion on the issue of interpretability versus flexibility
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or, equivalently, understanding versus prediction in algo-

rithmic modelling. Here, focus is on accuracy.

The dominant approach in daily streamflow forecasting

is the implementation of machine learning regression

algorithms, while linear models (mostly time series mod-

els) have been found to be more competitive at larger time

scales (e.g. monthly and annual; [62, 63]). Regression

algorithms model the dependent variable (streamflow at

some time) as function of a set of selected predictor vari-

ables (e.g. past streamflow values, past precipitation values

and past temperature values, with the latter two types of

information being collectively referred to as ‘‘exogenous

predictor variables’’ for this particular forecasting prob-

lem). In the case of machine learning regression, this

function is learnt directly from data through an algorithmic

approach. Popular algorithms include neural networks (see,

for example, [1, 25, 54, 78]), support vector machines [69],

decision trees, random forests and their variants [85], with

numerous algorithmic variants (see, for example, [28] for

the most representative ones) having been more or less

applied to hydrologic case studies. Note, however, that

existing approaches to daily streamflow forecasting are

mostly based on the implementation of a single machine

learning algorithm.

Combining forecasts from different methods has been

proved to increase the forecasting accuracy. This point was

initially raised by [7], while the argumentation in favour of

forecast combinations, referred to as ‘‘ensemble learning’’

in the literature, was further strengthened in the early 90s

(see, for example, [37, 93]). The ‘‘no free lunch theorem’’

[103] implies that no universally best machine learning

algorithm exists. Thus, ensemble learning, i.e. combining

multiple machine learning algorithms (hereinafter termed

as base-learners) instead of using a single one, may

increase the predictive accuracy of the forecasts. Over-

views of model combinations in general and ensemble

learning in particular can be found in [29] and [72],

respectively. Here, we are interested in stacked general-

ization (also referred to as stacking), a particular type of

ensemble learning where base-learners are properly

weighted, so certain performance metrics are minimized

(see, for example, [66, 87] for specific applications in

probabilistic hydrological post-processing), which was

initially suggested by [102] and later investigated by [16]

for regression.

The simplest combination of models is equal weight

averaging. The latter combination approach has been

proved ‘‘hard to beat in practice’’ by more complex

combination methods, a finding that has been termed

‘‘forecast combination puzzle’’ by [79]. While research on

the causes of the ‘‘forecast combination puzzle’’ is cur-

rently inconclusive (see, for example, [23, 76, 83]), one can

intuitively attribute its sources to the fact that as the level

of uncertainty (or equivalently the number of base-learn-

ers) increases, weight optimization may not lead to sig-

nificant improvements relative to simple averaging, i.e. a

uniform weighting scheme that assigns equal weights to all

base-learners (see [87]).

Most published studies focusing on daily streamflow

forecasting use small datasets (e.g. data collected from a

couple of rivers) to present some type of new method,

usually referred to as hybrid when combining, for example,

neural networks with an optimization algorithm. While

such studies may be useful from a hydrological standpoint,

the obtained results cannot be conclusive regarding the

accuracy of the proposed method, due to the high degree of

randomness induced by sample variability. While small-

scale applications were acceptable in the early era of neural

network hydrology, the current status of data availability

allows for large-scale applications. Actually, recent studies

based on big datasets have revealed ground breaking

results in the field of hydrological forecasting (see, for

example, [62, 65]), as large-scale applications allow for

less biased simulation designs to assess the relative per-

formance of new and existing methods (see, for example,

the commentary in [12]).

The aim of our study is to propose a new practical

system for streamflow forecasting based on a stacking

algorithm, specifically super ensemble learning [90]. We

conduct a large-scale investigation and find that the pro-

posed practical system outperforms a diverse and wide

variety of methods that are commonly used in hydrology

for daily streamflow forecasting. Along with the introduc-

tion of the new practical system, our study aims at

advancing the existing knowledge and current state of the

art in the field of machine learning by:

a. Introducing a super ensemble learning framework to

combine 10 machine learning algorithms, together with

a predictor variable selection scheme based on random

forests importance metrics, and comparing super

ensemble learning with the ‘‘hard to beat in practice’’

equal weight combiner.

b. Assessing the relative performance of two time series

models and 10 individual machine learning algorithms

in daily streamflow forecasting, and comparing them

with the super ensemble learning framework.

c. Using more than 500 streamflow time series to support

the quantitative conclusions reached.

Beyond presentation of the new practical system, we

consider remarks (b) and (c) above equally important, since

most studies in the field use small datasets (i.e. formed by a

single-digit number of time series) to compare a limited

number of machine learning algorithms. Use of big datasets

can provide insights and facilitate understanding and con-

trasting of the properties of various algorithms in
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predicting daily streamflow, consisting an important asset

for engineering applications.

2 Methods

In this section, we present short descriptions of the indi-

vidual machine learning algorithms (base-learners) used

(please note that an exhaustive presentation of the algo-

rithms is out of the scope of the present study), the three

combiner learners (i.e. super ensemble learner, equal

weight combiner and best learner), the variable selection

methodology, the statistical time series forecasting meth-

ods, the metrics used to assess the relative performance of

the algorithms and the testing procedure.

2.1 Statistical time series forecasting methods

Here, we present the statistical time series forecasting

methods that are compared to the proposed practical sys-

tem. These methods are well established in the literature,

while their implementation is fully automated in the fore-

cast R package [43, 44]; therefore, in what follows, short

descriptions are provided. A typical property of such

models is that they are fitted to the time series of interest

(i.e. the streamflow time series in our case), thereby not

exploiting available information from other predictor

variables (i.e. temperature and precipitation variables in

our case). Furthermore, such models can exploit temporal

dependencies in the observations [14], while most machine

learning algorithms cannot. Details regarding the training

periods of the time series models can be found in Sect. 2.6.

2.1.1 Exponential smoothing method

Simple exponential smoothing methods compute weighted

moving averages of past time series values. They were

introduced by [19, 41, 101]. Variants of exponential

smoothing models that can account for drifts and season-

ality also exist. Here, we used the automated method of the

forecast R package, which employs a procedure for auto-

matic estimation of trend parameters. We did not let the

algorithm estimate the seasonality of the data, because this

would result in unstable forecasts, given that 365 seasons

should be estimated. An alternative option is to fit different

models to each month, but we did not choose this option,

due to the secondary benchmarking role of the model. It

should be noted that the first application of exponential

smoothing models in geophysical time series forecasting

can be found in [27], and that a large-scale comparison

with other models can be found in [65]. While use of

exponential smoothing models has been limited to

geophysical time series forecasting, these algorithms are

popular in other fields (econometrics, etc.).

2.1.2 ARIMA models

Autoregressive Integrated Moving Average (ARIMA)

stochastic processes model time series by combining

autoregressive (where dependent variables depend linearly

on their previous values) and moving average (where

dependent variables depend linearly on previous white

noise terms) stochastic schemes, and simultaneously model

trends. They have been popularized by [14], while a more

recent treatment can be found in [15]. A first application in

hydrology can be found in [20]. Here, we use the auto-

mated forecasting procedure implemented in the forecast R

package.

2.2 Base-learners

A detailed description of the majority of the base-learners

exploited herein is out of the scope of the manuscript and

can be found in [39, 45]. All algorithms have been

implemented and documented in the R programming lan-

guage. Details on their software implementation can be

found in ‘‘Appendix’’. To ensure reproducibility of the

results, ‘‘Appendix’’ also includes the versions of the

software packages used herein.

2.2.1 Linear regression

Linear regression is the simplest model used herein. It is

described in detail by [39 pp 43–55]. The dependent

variable is modelled as a linear combination of the pre-

dictor variables, while the weights are estimated by mini-

mizing the residual sum of squares (least squares method).

2.2.2 Lasso

The least absolute shrinkage and selection operator (lasso)

algorithm [82] performs variable selection and regulariza-

tion by imposing the lasso penalty (L1 shrinkage) in the

least squares method, aiming to shrink its coefficients,

while allowing for elimination of non-influential predictor

variables by nullifying their coefficients.

2.2.3 Loess

Locally estimated scatterplot smoothing (loess, [24]) fits a

polynomial surface (determined by the predictor variables)

to the data by using local fitting. Here, we used a second-

degree polynomial.
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2.2.4 Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS, [30, 31])

is a weighted sum of basis functions, with total number and

associated parameters (i.e. product degree and knot loca-

tions, respectively) being automatically determined from

data. Here, we build an additive model (i.e. a model

without interactions), where the predictor variables enter

the regression through a linear sum of hinge basis

functions.

2.2.5 Multivariate adaptive polynomial spline regression

Multivariate adaptive polynomial spline regression (poly-

MARS, [49, 80]) is an adaptive regression procedure that

uses piecewise linear splines to model the dependent

variable. It is similar to MARS, with main differences

being that ‘‘(a) it requires linear terms of a predictor to be

in the model before nonlinear terms using the same pre-

dictor can be added and (b) it requires a univariate basis

function to be in the model before a tensor-product basis

function involving the univariate basis function can be in

the model’’ [48].

2.2.6 Random forests

Random forests [17] are bagging (abbreviation for boot-

strap aggregation) of regression trees with an additional

degree of randomization, i.e. they randomly select a fixed

number of predictor variables as candidates when deter-

mining the nodes of the decision tree.

2.2.7 XGBoost

Extreme Gradient Boosting (XGBoost, [21]) is an imple-

mentation of gradient boosted decision trees (see, for

example, [32, 56, 58], albeit considerably faster and better

performing. Gradient boosting is an approach that creates

new models (in this case decision trees) to predict the

errors of prior models. The final model adds all fitted

models. A gradient descent algorithm is used to minimize

the loss function when adding new decision trees. XGBoost

uses a model formalization that is more regularized to

control overfitting. This procedure renders XGBoost more

accurate than gradient boosting.

2.2.8 Extremely randomized trees

Extremely randomized trees [36] are similar to random

forests. These two models mostly differ in the splitting

procedure. Contrary to random forests, in extremely ran-

domized trees the cut-point is fully random.

2.2.9 Support vector machines

The principal concept of support vector regression is to

estimate a linear regression model in a high-dimensional

feature space. In this space, the input data are mapped

using a (nonlinear) kernel function [77, 91]. Here, we used

a radial basis kernel.

2.2.10 Neural networks

The principal concept of neural networks is to extract linear

combinations of the predictor variables as derived features

and then model the dependent variable as a nonlinear

function of these features [39, p 389]. Here, we used feed-

forward neural networks [70, pp 143–180].

2.3 Super ensemble learning

Super ensemble learner is a convex weighted combination

of multiple machine learning algorithms, with weights that

sum to unity and are equal or higher than zero (see

[88–90]). The weights are estimated through a k-fold cross-

validation procedure (here, we choose k = 5) in the training

set (see Sect. 2.6), so that a properly selected loss function

is minimized. Here, we minimize the quadratic loss func-

tion, which is equivalent to minimizing the root-mean-

squared error (RMSE). Then, the base-learners are

retrained in the full training dataset, and the super

ensemble learner predictions are obtained as the weighted

sum (using the estimated weights of the cross-validation

procedure) of the retrained base-learners. The design of the

algorithm is presented in Fig. 1. Super ensemble learning

(as every stacking algorithm) can combine ensemble

learners (e.g. bagging algorithms, boosting algorithms and

more) and different types of base-learners, while, for

example, bagging or boosting algorithms use a single type

of base-learners.

Algorithm 1 presents the formal procedure of super

ensemble learning for a training set of N observations.

Some theoretical results and recommendations for the

implementation of super learning algorithms can be found

in [90]. In particular:

a. It is recommended to use as many as possible sensible

base-learners.

b. Due to the cross-validation procedure, overfitting is

avoided.

c. Different loss functions can be applied. For instance,

by construction random forests are not a minimization

procedure. However, if one wants to minimize the L1
loss, one can still include random forests in the mix of

base-learners, as the optimization procedure of super
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ensemble learning will assign appropriate weights to

them.

d. The super ensemble learner will perform asymptoti-

cally as well as the best base-learner.

2.4 Other ensemble learners

In addition to super ensemble learning, we applied the

equal weight combiner by assigning a uniform weighting

scheme (i.e. weights equal to 1/10) to all base-learners.

Furthermore, we used an ensemble learner (referred to as

best learner), which selects the best base-learner based on

its performance in the k-fold cross-validation procedure in

the training set.

Fig. 1 Design of the super

ensemble learner corresponding

to Algorithm 1. Red blocks in

the training dataset are used for

training, and blue blocks are

used for validation
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2.5 Variable selection

Variable selection constitutes a complex problem that has

been extensively investigated with no exact solution (see,

for example, [40]) as selection of variables is strictly linked

to the problem at hand. In daily streamflow forecasting,

daily streamflow qi may depend on past streamflow, pre-

cipitation and temperature values (qj, pj, tj, j = 1, …, i – 1,

respectively). Past precipitation and temperature values are

exogenous predictor variables in our problem. If non-in-

formative predictor variables are included in the model, the

performance of some algorithms (e.g. linear regression)

may decrease considerably, while if too many predictor

variables are included, the computational burden may

become prohibitive. Missing some informative predictor

variables may also harm the performance of the model.

Several strategies can be employed to select predictor

variables, e.g. an exhaustive search [84], use of correlation

measures, partial mutual information [55] and the like. An

overview of variable selection procedures in water

resources engineering can be found in [13].

Here, we selected to use the permutation variable

importance metric (VIM) used by random forests algo-

rithms for variable selection. The permutation VIM mea-

sures the mean decrease in accuracy in the out-of-bag

(OOB) sample by randomly permuting the predictor vari-

able of interest. OOB samples are the samples remaining

after bootstrapping the training set (see also Sect. 2.2.6).

VIM permits ranking of the relative significance of pre-

dictor variables [85] and is a commonly used variable

selection procedure. We computed VIM of daily values of

streamflow, precipitation and temperature of the last

month, i.e. 90 predictor variables in total. We selected the

resulting five most important predictor variables for each

process type (i.e. streamflow, precipitation and tempera-

ture). The fitting problem is formulated as:

qi ¼ f ðfqj; pk; tl; gÞ; j; k; l
2 ffive values in ði� 30; . . .; i� 1Þg ð1Þ

If some of the best ranked possible predictor variables

display negative VIM values, they are excluded from the

set of predictor variables, since they are non-informative

(see, for example, [86] and references therein). In this case,

the set of predictor variables includes less than 15

variables.

2.6 Training and testing

Machine learning algorithms in regression settings

approximate the function f in Eq. (1) through training on

data. During training, some hyperparameter optimization

can be performed to enhance the performance of the model.

However, default hyperparameter values used in software

implementations usually display favourable properties, as,

for example, proved in large-scale empirical studies in

hydrology [64], while hyperparameter optimization may be

computationally costly with little improvement in perfor-

mance. That said, in the present study, we decided to use

default hyperparameter values, as suggested in the corre-

sponding software implementations (see ‘‘Appendix’’).

Time series models are fitted in the training period using

the automated procedure of the forecast R package. One-

step-ahead forecasts are delivered in the testing period by

using the estimated parameters during the training phase.

To estimate the generalization error of the implemented

algorithms, one should compare to an independent set, i.e.

a set not used for training, termed as test set. Following

recent theoretical studies [4], we use training and test sets

of equal size (i.e. each one corresponding to 50% of the full

time series) to assess the performance of the algorithms.

2.7 Metrics

Although the super ensemble learner is optimized with

respect to RMSE, we use multiple metrics to understand

the effect of this optimization and quantitatively assess the

relative performance of the algorithms. An overview of

metrics that can be used to assess the performance of

forecasting methods can be found in [42]. Here, we use

RMSE, the mean of absolute errors (MAE), the median of

absolute errors (MEDAE) and the squared correlation r2

between the forecasts fn and the observations on. All met-

rics, defined by the following equations, are computed in

the testing period.

En :¼ fn � on ð2Þ

MAE :¼ 1=jNjð Þ
X

n
Enj j ð3Þ

RMSE : = ((1/jNj)
X

n
E2nÞ1=2 ð4Þ

MEDAE :¼ mediann jEnjf g ð5Þ

r2 :¼ corr f ; oð Þð Þ2 ð6Þ

In Eq. (6), f and o denote the vectors of the forecasts and

observations, respectively, in the testing period. MAE,

RMSE and MEDAE take values in the range [0,!), with 0

values indicating perfect forecasts. r2 takes values in the

range [0, 1], with values equal to 1 denoting perfect

forecasts.

Following relevant suggestions by [6], we do not use

hypothesis tests to report the significance of the differences

between forecasting performances of pairs of methods, as

their use in the field of forecasting may lead to misinter-

pretations. Instead, we prefer to use ‘‘effect sizes’’, as, for

example, done in forecasting competitions [6], which in

our case are ‘‘percent error reductions’’ in terms of a
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specified metric. Our choice also overcomes the problems

of (a) computing significance of the forecasting perfor-

mance differences between every pair of the implemented

algorithms and (b) using some type of scaled metrics (e.g.

the widely used in hydrology Nash–Suttcliffe efficiency)

which is usually accompanied by other disadvantages.

3 Data and application

3.1 Data

We used CAMELS (Catchment Attributes and MEteorol-

ogy for Large-sample Studies) dataset, which is used for

benchmarking purposes in hydrology [61] and can be found

online in [2, 59]. A detailed documentation of the dataset

can be found in [3, 60]. The dataset includes daily mini-

mum temperatures, maximum temperatures, precipitation

and streamflow data from 671 small- to medium-sized

basins in the contiguous US (CONUS). Temperature and

precipitation time series for the needs of the analysis have

been obtained by processing the daily dataset by [81]. The

mean daily temperature was estimated by averaging the

minimum and maximum daily temperatures. Changes in

the basins due to human influences are minimal. Here, we

focus on the 10-year period 2004–2013, while basins with

missing data or other inconsistencies have been excluded.

The final sample consists of 511 basins representing

diverse climate types over CONUS; see Fig. 2.

3.2 Implementation of methods

In what follows, we detail the implementation of the

algorithms and their testing, while the workflow is pre-

sented in Fig. 3.

a. The training and testing periods (hereafter denoted by

T1 and T2, respectively) are set to T1 = {2004-01-01,

…, 2008-12-31} and T2 = {2009-01-01, …, 2013-12-

31}.

b. For an arbitrary basin, random forests VIM approach

(see Sect. 2.5) is applied in period T1 by using qj, pk, tl,

j, k, l[ {i-30, …, i-1) as predictor variables (90

predictor variables in total) and qi as dependent

variable. The training sample includes 1827 instances,

i.e. as many as the number of days in period T1. The

five most important predictor variables for each

process type (i.e. q, p, t) are selected based on their

VIM values (see Sect. 2.5) and used for training of the

algorithms. In the case, when less than five predictor

variables have positive VIM values for a certain

process type, the predictor variables with negative (or

zero) VIM values are excluded and the number of the

selected predictor variables reduces to less than 15.

The selected predictor variables are used in the next

steps.

c. All algorithms of Sects. 2.2.1–2.2.10 are trained in

period T1 in a fivefold cross-validation setting.

d. The time series models of Sect. 2.1 are trained in

period T1 using the procedure of the forecast R

package.

e. The super ensemble learner (composed by the ten base-

learners of step (c); see Sect. 2.3) is also trained in

period T1 using fivefold cross-validation. This is done

by estimating the fivefold cross-validated risk for each

base-learner in step (c) and computing its weight.

f. The ten trained base-learners of step (c) are retrained in

the full T1 period and predict streamflow in period T2.

The testing sample includes 1826 instances, i.e. as

many as the number of days in period T2.

g. The super ensemble learner (which uses the estimated

weights of step (e) and weights the retrained base-

learners), the equal weight combiner (which averages

the 10 retrained base-learners; see Sect. 2.4) and the

best learner (i.e. the retrained base-learner with the

least fivefold cross-validated risk in period T1; see

Sect. 2.4 and step (c)) predict daily streamflow in

period T2.

h. The metrics of Sect. 2.7 are computed for each of the

15 algorithms (see steps (e) and (f)) in period T2.

i. Finally, the metric values are summarized for all basins

in period T2.

4 Results

Here, we summarize the predictive performance of the 15

algorithms in period T2 for the 511 basins. We present the

rankings of the algorithms (Sect. 4.1) and their relative

improvements with respect to the linear regression
Fig. 2 The 511 basins over CONUS used in the study
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benchmark (Sect. 4.2). An investigation on the estimated

weights of the super ensemble learner is also presented

(Sect. 4.3).

4.1 Ranking of methods

Figure 4 presents the mean rankings of the 15 algorithms

according to their performance in terms of the examined

metrics. Rankings range from 1 to 15, with lower values

indicating better performance. For instance, when exam-

ining an arbitrary basin, the 15 algorithms are ranked

according to their performance in terms of each metric

separately. Then, these rankings are averaged over all

basins, conditional on the metric.

Super ensemble learner is the best performing algorithm

in terms of RMSE and MAE, and the second best algorithm

in terms of MEDAE and r2; nonetheless, its difference

from the best performing algorithm in terms of r2 (i.e. the

equal weight combiner) is minimal. In terms of RMSE, the

equal weight combiner is the second best performing

algorithm, followed by the best learner. From the base-

learners, neural networks, extremely randomized trees and

loess are the best performing algorithms (ranked from best

to worst) in terms of RMSE, while support vector machines

are worse compared to the linear regression benchmark. It

is remarkable that time series models seem to outperform

some base-learners in terms of RMSE, although they do not

exploit information from exogenous predictor variables.

Two possible explanations are that: (a) temporal depen-

dencies include rich information, which is exploited by

time series models but not by regression algorithms, and

(b) additional information introduced by exogenous vari-

ables is relatively limited.

When focusing on metrics other than RMSE, one sees

that the rankings of the algorithms remain similar, albeit

not identical. For instance, while MARS is not well per-

forming in terms of RMSE, it is the best performing learner

in terms of MEDAE, contrary to the equal weight com-

biner, which does not perform well.

Figure 5 presents the rankings of the 15 algorithms

according to their performance in terms of RMSE for the

511 basins considered. While, in general, one sees similar

rankings of an algorithm at all basins (i.e. similar colours

dominate a given row), there are cases where the rankings

of an algorithm vary with respect to its mean performance.

Take, for instance, the super ensemble learner. While it is

on average the best performing algorithm, there are cases

where other algorithms perform better.

4.2 Relative improvements

The median relative improvement introduced by each

algorithm with respect to the linear regression benchmark

is important for understanding whether a more flexible (yet

less interpretable) algorithm is indeed worth implementing.

In this context, Fig. 6 presents the percentage of decrease

Fig. 3 Workflow of the

proposed practical system. Time

periods in which the models are

applied. T1 is the training

period, while T2 is the testing

period

Fig. 4 Mean rankings of the 15

algorithms according to their

performance in the 511 basins
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in the RMSE, MAE, MEDAE and r2 introduced by each of

the 15 examined learners relative to that of the linear

regression benchmark.

Focusing on RMSE, super ensemble learner improves

over the performance of the linear regression algorithm by

20.06%. The improvement introduced by the equal weight

combiner is equal to 19.21% (not negligible as well), fol-

lowed by the best learner with relative improvement equal

to 16.64%. The best base-learner is neural networks, which

improves over the performance of the linear regression

algorithm by 16.73%, followed by extremely randomized

trees (16.4%), XGBoost (15.92%) and loess (15.36%).

An important note to be made here is that the specific

ranking of an algorithm in terms of the improvement it

introduces relative to the linear regression benchmark

depends significantly on the metric used, i.e. RMSE, MAE,

MEDAE and r2. For instance, while the equal weight

combiner is the second best performing learner in terms of

RMSE, MAE and r2, it is the fourth worst performing in

terms of MEDAE. In addition, please note that the mag-

nitudes of the relative improvements differ considerably

for the various metrics. For instance, relative improve-

ments in terms of MAE mostly range between 25 and 35%,

while the respective relative improvements in terms of

RMSE are mostly between 10 and 20%.

To facilitate understanding of the range of forecast

errors, Fig. 7 presents boxplots of the RMSE values for all

15 algorithms considered. While in most cases the forecast

errors lie below 5 mm/day, one sees that MARS and

PolyMARS forecasts may fail considerably (see the

exceptionally high outliers), and this is the case for neural

networks as well. This form of instability could also

explain why MARS is amongst the best performing

methods in terms of MEDAE (a metric based on medians),

while it appears to be less performing when assessed using

metrics based on mean errors (i.e. RMSE, MAE and r2).

Values of r2 are also of interest. Close inspection of

Fig. 8 reveals that the super ensemble learner and the equal

weight combiner display values that lie mostly in the range

0.60–0.65, while the best learner exhibits somewhat lower

values. The remainder base-learners display, in general,

lower r2 values, while the mean r2 of linear regression is

somewhat higher than 0.5.

Figure 9 presents a comparison of the two best per-

forming methods in terms of RMSE (left panel) and

ranking (right panel) for each of the 511 considered basins.

In terms of RMSE, the performances of the two methods

seem similar, with the equal weight combiner being

slightly more stable (see the few points lying above the 45�
line). This behaviour should be attributed to the fact that, in

some basins, the super ensemble learner may assign higher

weights to inferior base-learners. Note, however, that based

on Figs. 4 and 6, the median behaviour of the super

ensemble learner is better than that of the equal weight

Fig. 5 Rankings of the 15 algorithms according to their performance in terms of RMSE for the 511 basins considered

Fig. 6 Median relative

improvements of the 15

algorithms with respect to the

linear regression benchmark in

the 511 basins considered
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combiner, and this is also observable in Fig. 9b, where the

number of red points lying below the 45� line (a total of

313) is larger than those lying above (a total of 198). In

other words, the super ensemble learner is ranked higher

relative to the equal weight combiner in 313 out of the 511

basins considered.

Fig. 7 Boxplots of the RMSE

values computed for the 15

algorithms in the 511 basins

considered

Fig. 8 Boxplot of the r2 values
computed for the 15 algorithms

in the 511 basins considered

Fig. 9 Visual comparison between the equal weight combiner and the

super ensemble learner, based on their performances in the testing set

for each of the 511 basins considered (red points): a scatterplot of

RMSEs. b Scatterplot with jitter of the ranking of the two methods

(i.e. multiple co-located points are randomly displaced to appear as

clusters (red points) around their exact location (black dots)) (color

figure online)
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4.3 Weights

The weights of the base-learners (used to compose the

super ensemble learner) are strongly linked to the perfor-

mance of the 10 base-learners in the test set. This becomes

apparent from Fig. 10, which presents the weights assigned

to the 10 base-learners per basin. More precisely, close

inspection of Fig. 10 alongside with Fig. 6 reveals that less

performing algorithms in the test set are assigned smaller

weights.

The boxplots in Fig. 11 also confirm the aforementioned

observation/finding, i.e. that the best performing methods

in the cross-validation set (i.e. methods that are assigned

higher weights) are those displaying the highest perfor-

mance in the test set (see also Fig. 6). The highest weights

are assigned to XGBoost, which is one of the best per-

forming algorithms.

The boxplots in Fig. 12 summarize results from all

basins considered and present how the weights assigned to

the base-learners composing the super ensemble learner are

related to their individual rankings within the testing per-

iod. Clearly, the higher the weight, the better the perfor-

mance of the algorithm in the testing period.

5 Discussion

An advantage of super ensemble learning is that it can be

optimized with respect to any loss function; in our case,

this loss function was RMSE. Albeit base-learners may be

designed to optimize other loss functions, a combination

approach (such as the super ensemble learner proposed

herein) may be useful to extract their advantages with

respect to a specific loss function. In general, other loss

functions could also be used for optimizing the super

ensemble learner.

Regarding the usefulness of the proposed method, one

should consider that it is fully automated and does not need

any assumptions, since it exploits a k-fold cross-validation

procedure (in contrast, for example, to Bayesian model

averaging, which is widely used in hydrology).

In this paper, it is empirically shown that predictive per-

formance improvements can be obtained by combining

algorithms. We would like to emphasize that the simplest

combination methods (best learner and simple averaging)

resulted in significant improvements with respect to the

exploited base-learners. Therefore, it is worth applying as

many algorithms as possible, with the aim to further combine

them. Moreover, it is empirically shown that the exploitation

of exogenous predictor variables can lead to considerable

improvements in forecasting performance (especially when

forecasts are made by ensemble learning algorithms), relative

to forecast schemes (e.g. ARIMA and exponential smoothing

methods) that exclusively use past information.

Due to its automation, the super ensemble learner can be

considered a practical system for hydrological time series

forecasting based on available data. Furthermore, it can be

integrated with weather forecasts of the exogenous vari-

ables of interest, which can be provided a day earlier and

can be incorporated into the practical system. Perhaps,

weather forecasts for the day of interest can provide sig-

nificant information, in addition to observed data from

previous days. Another extension of the practical system

would be to use the full available information of precipi-

tation and temperature from weather stations, instead of

averaging this information over the basin area.

The results of the present study can improve under-

standing of the relative performance of the implemented

base-learners and time series models when used for daily

streamflow forecasting, while allowing for interpretations

beyond the area of hydrological applications. Considering

that many large datasets are available in hydrology and

atmospheric sciences, information from these fields could

benefit machine learning applications by facilitating better

understanding of algorithmic properties.

6 Conclusions

We presented a new method for daily streamflow fore-

casting. This method is based on super ensemble learning.

The introduced algorithm combines 10 base-learners and

Fig. 10 Weights assigned to the 10 base-learners in the 511 basins considered
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was compared to an equal weight combiner and a best

learner (identified in the cross-validation procedure). We

applied the algorithms to a dataset consisting of 511 river

basins with 10 years of daily streamflow, precipitation and

temperature. The machine learning algorithms modelled

the relationship between next-day streamflow and daily

streamflow, precipitation and temperature up to the present

day.

The super ensemble learner improved over the perfor-

mance of the linear regression benchmark by 20.06% in

terms of the RMSE, while the respective improvements

provided by the other ensemble learners were 19.21%

(equal weight combiner) and 16.64% (best learner). The

best base-learner was neural networks (16.73%), followed

by extremely randomized trees (16.40%), XGBoost

(15.92%), loess (15.36%), random forests (12.75%), poly-

MARS (12.36%), MARS (4.74%), lasso (0.11%) and

support vector machines (- 0.45%). Exponential smooth-

ing and ARIMA time series models improved over the

linear regression benchmark by 13.89% and 8.77%,

respectively.

All ensemble learners improved over the performance of

the single base-learners. The performance of the super

ensemble learner was somewhat higher than that of the

equal weight combiner, which according to the ‘‘forecast

combination puzzle’’ is a ‘‘hard to beat in practice’’

combination method. Consequently, we consider that the

equal weight combiner can be effectively used as a

benchmark for new combination methods, while super

ensemble learning can result in better performances. One

could claim that based on statistical tests, this difference

may be insignificant; however, as mentioned by [6], these

tests should be avoided when comparing forecasting

methods, as they can be misleading.

We emphasize that our results are based on a big dataset

comprising of 511 basins with 10 years of daily data each.

Therefore, the reported relative improvements against the

linear regression benchmark (i.e. in the range 0–20% in

terms of RMSE, 0–35.5% in terms of MAE, 0–70% in

terms of MEDAE and 0–21% in terms of r2) can be con-

sidered realistic and can provide insightful guidance in

understanding whether results reported in the literature

(e.g. single case studies indicating improvements more

than 50% in terms of RMSE) could be attributed to chance

related to the use of small datasets. Assessments based on

big datasets can emulate neutral comparison studies, i.e.

studies focusing on comparison rather than aiming to

promote a single method [12].

Future research could focus on improving the variable

selection procedure and comparing the ensemble learner

with optimized base-learners, while testing on different

datasets could be also useful. Furthermore, pre-processing

approaches based on clustering techniques, as well as

frameworks formulated in a reinforcement learning context

(e.g. [50, 51, 53]), including spatial information (e.g. [52]),

may improve the performance of the proposed practical

Fig. 11 Boxplot of the weights assigned to the 10 base-learners in the 511 basins considered

Fig. 12 Boxplots of the weights assigned to the 10 base-learners conditional on their ranking in terms of RMSE

3064 Neural Computing and Applications (2021) 33:3053–3068

123



system. Besides machine learning, other techniques (e.g.

graphs [38]) can also be tested in such problems. An

additional topic of potential interest is to compare super

ensemble learning with other combination methods, e.g.

Bayesian model averaging or stacking using more flexible

combiners.
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Appendix: Used software

We used the R programming language [68] to implement

the algorithms of the study, and to report and visualize the

results.

For data processing, we used the contributed R packages

data.table [26], gdata [94], readr [98], stringi [35], stringr

[96], tidyr [97].

The algorithms were implemented by using the con-

tributed R packages earth [57], extraTrees [74, 75], forecast

[43, 44], glmnet [33, 34], kernlab [46, 47], Matrix [8], nnet

[71, 92], polspline [48], ranger [104, 105], SuperLearner

[67], xgboost [22].

The performance metrics were computed by imple-

menting the contributed R package mlr [9, 10].

Visualizations were made by using the contributed R

package ggplot2 [95, 99].

Reports were produced by using the contributed R

packages devtools [100], knitr [106–108], rmarkdown

[5, 109].
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