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Abstract
Time-series analysis and forecasting is generally considered as one of the most challenging problems in data mining.

During the last decade, powerful deep learning methodologies have been efficiently applied for time-series forecasting;

however, they cannot guarantee the development of reliable prediction models. In this work, we introduce a novel

framework for supporting deep learning in enhancing accurate, efficient and reliable time-series models. The major novelty

of our proposed methodology is that it ensures a time-series to be ‘‘suitable’’ for fitting a deep learning model by

performing a series of transformations in order to satisfy the stationarity property. The enforcement of stationarity is

performed by the application of Augmented Dickey–Fuller test and transformations based on first differences or returns,

without the loss of any embedded information. The reliability of the deep learning model’s predictions is guaranteed by

rejecting the hypothesis of autocorrelation in the model’s errors, which is demonstrated by autocorrelation function plots

and Ljung–Box Q test. Our numerical experiments were performed utilizing time-series from three real-world application

domains (financial market, energy sector, cryptocurrency area), which incorporate most of global research interest. The

performance of all forecasting models was compared on both problems of forecasting time-series price (regression) and

time-series directional movements (classification). Additionally, the reliability of the models’ forecasts was evaluated by

examining the existence of autocorrelation in the errors. Our numerical experiments indicate that our proposed method-

ology considerably improves the forecasting performance of a deep learning model, in terms of efficiency, accuracy and

reliability.
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1 Introduction

Time-series are encountered in a large variety of real-world

applications, ranging from finance [10, 18] and commodi-

ties [8, 20] to healthcare [9, 29] and pollution management

[4, 14]. Time-series data consist of discrete data points,

obtained at successive equally spaced points in time. The

main properties and characteristics of time-series data are

responsible for distinguishing them from other types of

data. More specifically, they frequently contain much

noise, exhibit high volatility as well as extremal directional

movements and possess a tendency for possible reversing

these movements in the near-term future. Due to these

significant characteristics, time-series forecasting is gen-

erally considered as one of the most challenging problems

in data mining. As a result, the analysis of time-series data
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has been an active subject of research for decades

[6, 7, 23, 30].

In the literature, the problem of time-series price and

movement forecasting has been comprehensively studied

for decades and numerous rewarding approaches have been

proposed. Traditional time-series methods such as ARIMA

(Auto-Regressive Integrated Moving Average) [5, 6] and

its variations as well as the more elaborated Machine

Learning methods [1, 3] probably constitute the most

famous and widely utilized methods for time-series pre-

diction. Nevertheless, these methods frequently do not

possess the ability to accurately model such complex data

and be successfully effective, since they cannot depict the

stochastic nature and high volatility of time-series.

During the last decade, the rapid advances in artificial

intelligence, as well as the vigorous developments in deep

learning techniques, attracted wide attention of scientific

and industrial communities for the development of efficient

and robust time-series forecasting models. Probably the

most popular and widely utilized deep learning methodol-

ogy is the development of an ANN-type network utilizing

convolutional and long short-term memory (LSTM) layers,

along with the classical dense layers. The former are uti-

lized to filter out the noise of the input data [11], and the

latter are tailored to efficiently capture complex temporal

dependencies and sequence pattern information by

exploiting their special architecture design [2]. Along this

line, researchers [18–20, 31] paid special attention to

exploit the advantages and benefits of both mentioned deep

learning techniques, proposing forecasting models utilizing

both convolutional and LSTM layers.

Recently, Pintelas at al. [24, 25] evaluated the perfor-

mance of several deep learning models for price and

movement forecasting of major cryptocurrencies. The

major novelty in their work was the application of a series

of tests for examining the prediction efficiency but mostly

the reliability of the models. In other words, they examined

whether the models have properly fitted the time-series

data and exploited all the available mined information,

during the training process. Based on their experimental

analysis, the authors stated that even the powerful deep

learning methodologies cannot guarantee the development

of reliable forecasting models. Additionally, they con-

cluded that new more sophisticated algorithmic methods

should be considered for the development of an accurate

and reliable prediction model.

In this work, we propose a novel framework for the

development of efficient and reliable deep learning models

which constitutes the main contribution. The novelty of our

proposed methodology is that it guarantees considerable

improvement in the deep learning model’s forecasting

performance in terms of reliability and accuracy, regarding

any utilized time-series. More analytically, the proposed

methodology ensures the ‘‘suitability’’ of a time-series for

fitting a deep learning model by performing a proper

transformation, in order to satisfy the stationarity property

and therefore no autocorrelation in the model’s errors. The

stationarity is secured by the application of Augmented

Dickey–Fuller test and transformations based on first dif-

ferences or returns. It is worth mentioning that an adequate

deep learning model trained with the transformed series

presents no autocorrelation in the errors and a big

improvement of the forecasting performance is expected,

compared with the same model trained with the original

non-transformed series. We conducted a detailed and

comprehensive experimental analysis on time-series from

three real-world application domains which incorporate

most of global research interest, that is, financial stock

market, energy sector and the novel cryptocurrency area.

All prediction models were evaluated on both problems of

forecasting time-series price (regression) and also for the

prediction of time-series directional movements (classifi-

cation). Furthermore, the reliability of the models’ fore-

casts was evaluated by examining the existence of

autocorrelation of the errors using the autocorrelation

function plot and the Ljung–Box Q test.

The remainder of this paper is organized as follows:

Sect. 2 presents a brief review of state-of-the-art deep

learning-based models for time-series forecasting. Sec-

tion 3 presents a comprehensive description of the problem

of reliability introduced in deep learning models for time-

series forecasting. Section 4 presents our proposed frame-

work, providing special attention to its theoretical advan-

tages and benefits. Section 6 presents our experimental

methodology including the data preparation and prepro-

cessing as well as the detailed experimental analysis,

regarding the evaluation of proposed methodology. Sec-

tion 7 summarizes our findings and discusses the experi-

mental results. Finally, Sect. 8 presents the conclusions and

some future directions.

2 Related work

Time-series forecasting is generally considered as one of

the most challenging and significantly complex research

areas. The complexity of time-series’ internal structure is

caused by the variety of factors which have a deep influ-

ence on the series and on the volatility of these factors

[5, 6, 30]. During the last years, the significant develop-

ments in computer science as well as rapid advances in

research lead to the exponential generation of temporal and

sequential data [13]. Therefore, time-series infiltrated

almost every task and assignment, requiring a human

cognitive process. Recently, Fawaz et al. [11] provided an

excellent review, presenting a comprehensive overview of
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the application of deep learning approaches in various

time-series domains. More specifically, they presented in

detail the process of mining time-series data using deep

learning methods for discovering new insights, and how

those insights impact the process of decision making. In the

rest of our research, we focus on three time-series appli-

cation domains which incorporate most of global research

interest, that is, financial stock market, energy sector and

the novel cryptocurrency area.

Liu et al. [18] developed a CNN–LSTM framework for

modeling and analyzing stock markets’ quantitative

selection and timing strategy. The convolutional-based

framework is used for determining the selection of the

quantitative stock strategy and subsequently, the LSTM-

based framework is utilized for performing the quantitative

timing strategy in order to improve the amounts of profits.

The stock time-series data used in their research range from

January 1, 2007, to December 31, 2017. Their experiments

demonstrated that their proposed CNN–LSTM framework

could be efficiently applied for defining a quantitative

strategy and achieving better profits than the classical

Benchmark index.

Fischer and Krauss [12] focused on developing an effi-

cient forecasting model based on deep learning techniques

and unveil the sources of stock profitability. More specif-

ically, the utilized LSTM networks for predicting the

directional movements for Standard & Poor’s 500

(S&P500) constituent stocks. The utilized data contained

prices of S&P500 constituents from Thomson Reuters from

December 1989 to September 2015. The experiments

reported that LSTM exhibited a Sharpe Ratio of 5.8 prior to

transaction costs and daily returns of 46% per day. Addi-

tionally, LSTM networks outperformed computationally

efficient classification methods such as deep neural net-

work, random forest and logistic regression. Finally, the

authors developed a rule-based decision support making

system which focused on selecting winning and losing

stocks, exploiting the LSTM predictions.

Zhao et al. [32] proposed a deep learning ensemble

forecasting model to address the problem of forecasting oil

prices. Their proposed model is based on Bootstrapping

aggregation (Bagging) ensemble strategy which exploits

the predictions of advanced deep learning base models,

called Stacked Denoising Auto-Encoders (SDAE). The

data utilized in their study contained monthly prices cov-

ering a period from January 1986 to May 2016, concerning

198 exogenous factors such as cost of crude oil imports,

refiner values of crude oil products, information on rigs and

development wells drilled, oil product consumption, crude

oil production as well as macroeconomic and financial

indicators. Their experimental analysis showed the fore-

casting superiority of the proposed model, which was sta-

tistically proved by three nonparametric tests.

Cen and Wang [8] aimed at forecasting the volatility

behaviors of crude oil prices for increasing the prediction

accuracy of oil market price. The authors considered a

methodology based on a transfer learning approach in order

to extend the size of training set. Their research contained

daily data of West Texas Intermediate covering a time

period from January 31, 2005, to December 5, 2016, and

daily data of Brent oil covering a range from January 31,

2006, to October 17, 2017, concerning oil factors such as

opening price, closing price, lowest price and highest price.

Their proposed methodology was evaluated by comparing

the performance of a classical LSTM model trained with

the initial data and with the data transfer approach. Their

experiments showed that their methodology improved the

performance of the LSTM model, and thus, the authors

stated that the prediction was able to catch most fluctua-

tions of crude oil prices.

Nakano et al. [21] considered improving the traditional

‘‘buy-and-hold’’ strategy presenting a new methodology

which exploits the predictions of advanced machine

learning models on Bitcoin’s high-frequency technical

trading. More specifically, they designed ANN-based

models to extract the useful trading signals from technical

indicators calculated from the time-series return data at

time intervals of 15 min. The utilized data in this research

concerned historical returns and technical indicators,

ranging from December 2017 to January 2018, during

which Bitcoin suffers from substantial volatility and a

significant number of negative returns. Their preliminary

experimental results reported that the utilization of various

technical indicators could prevent over-fitting and consid-

erably enhance trading performance.

Ji et al. [16] studied the prediction performance on

Bitcoin price of various deep learning forecasting models

such as deep neural networks, convolutional neural net-

works, LSTM networks, deep residual networks and their

combinations. In their study, they utilized Bitcoin data

from 2590 days (from November 29, 2011, to December

31, 2018), containing 29 features. The authors performed a

comprehensive experimental procedure, considering the

problems of predicting the next’s day Bitcoin price, and

whether or not the next day price will increase or decrease.

Their numerical experiments demonstrated that deep neural

networks reported the best performance for price move-

ment, while the LSTM models exhibited the best perfor-

mance for forecasting Bitcoins’ price, slightly

outperforming the rest prediction models.

Pintelas et al. [24, 25] performed a comprehensive

research, evaluating advanced deep learning models for

forecasting the prices and directional movements of major

cryptocurrencies. Furthermore, the authors conducted a

detailed discussion, concerning if deep learning models can

be trusted as reliable predictors and if the cryptocurrencies
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prices follow a random walk process. Their experimental

analysis presented that even the state-of-the-art deep

learning models were unable to create reliable forecasting

models. Moreover, the authors stated that a few hidden

patterns in cryptocurrency prices may probably exist,

although these prices seem to follow almost a random walk

process.

Summarizing, most approaches proposed in the litera-

ture attempt to exploit deep learning techniques for

extracting useful knowledge from time-series data, aiming

at obtaining better performance compared to the already

existing proposed models. In this research, we propose a

different approach and introduce a novel framework for the

development of efficient and reliable deep learning models.

The novelty of the proposed methodology is that it guar-

antees the forecasting reliability of the model’s predictions,

independent of the time-series data and selected deep

learning model. It is worth noticing that none of the

mentioned research approaches considered to improve both

the accuracy and reliability of a deep learning model by

exploiting the information provided by the characteristics

of the time-series as well as the error of prediction model.

3 Reliability evaluation on times-series
forecasting

3.1 Significance of autocorrelation in model’s
forecasting reliability

Let y1; y2; . . .; yn be the observations of a time-series. A

nonlinear regression model of order m is defined by

yt ¼ f ðxt; hÞ þ �t; ð1Þ

where xt ¼ ðyt�1; yt�2; . . .; yt�mÞ 2 Rm consists of m values

of yt, h is the parameter vector and �t is the white noise

residual. After the model structure has been defined,

function f ð�Þ can be determined by sophisticated machine

learning or deep learning methods.

After a prediction model has been successfully fit, it is

significant to evaluate and assess how well the model is

able to capture patterns. The most commonly utilized

metrics for evaluating the regression performance of a

forecasting model are mean absolute error (MAE) and root

mean square error (RMSE).

Nevertheless, both regression evaluation metrics help

determine how close the predicted values are to the actual

ones, they do not evaluate whether the model properly fits

the time-series data, while the residuals are usually dedi-

cated to evaluate this. In other words, provided that func-

tion f is appropriately estimated, the prediction model’s

residuals

�̂t ¼ yt � ŷt; ð2Þ

are identically distributed and asymptotically independent,

where ŷt is the predicted value.

It is worth noticing that in case the assumption of no-

autocorrelation in the residuals is violated in a forecasting

model, implies that its predictions may be inefficient, since

the model has not exploited all the available mined infor-

mation during the training process. In other words, the

dependence between the residuals indicates that the model

has not properly fitted the time-series data and there exists

significant information left over which should be taken into

account.

Two significant tools for testing the existence autocor-

relation of the residuals are the auto-correlation function

(ACF) plot and the Ljung–Box Q test for residual auto-

correlation [6]. More analytically, ACF is obtained from

the linear correlation of each residual �̂t to the others in

different lags, �̂t�1; �̂t�2; . . . and illustrates the intensity of

the temporal autocorrelation, while Ljung–Box Q test is a

‘‘portmanteau’’ test which assesses the null hypothesis H0

that ‘‘a series of residuals exhibits no autocorrelation for a

fixed number of lags L, against the alternative H1 that

‘‘some autocorrelation coefficient is nonzero.’’ More

specifically, the Ljung–Box Q test statistic is defined by

Q ¼ nðnþ 2Þ
XL

k¼1

q2k
n� k

; ð3Þ

where qk are autocorrelation coefficients at lag-k, defined

by

qk ¼
Pn�k

i¼1 ðyi � yÞðyiþk � yÞ
Pn

i¼1ðyi � yÞ2
; ð4Þ

with y ¼ 1
n

Pn
i¼1 yi. Under H0 the statistic Q asymptotically

follows a v2ðLÞ distribution. The null hypothesis H0 is

rejected and state that the model exhibits autocorrelation if

Q[ v21�a;L ð5Þ

where the critical value of the Chi-square distribution is

defined for significance level a, or critical level p ¼ 1� a,
known as p value.

3.2 Strict stationarity and weak stationarity

Time-series exhibit a variety of properties which appear so

often that are called stylized facts which include autocor-

relation, long memory, fractal and multi-fractal properties.

The major drawback when dealing with prices or values

(levels) of such series is, from the stochastic processes

point of view, that they follow a random walk process. The

autocorrelation coefficients qk, with k[ 1 are statistically
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significant for a large number of lags L and the first-order

autocorrelation coefficient q1 is equal to one [27]. Such

series are also named unit root time-series or integrated of

order one and are denoted by I(1).

Under these conditions, modeling the levels of such

series is inefficient because the residuals of the models

display autocorrelation setting the whole structure of sta-

tistical significance under question. In order to study effi-

ciently these series, they have to be stationary, which is a

highly significant for ensuring the development of a reli-

able prediction model.

Suppose that Fyðyt1þs; . . .; ytnþsÞ is the cumulative dis-

tribution function of the unconditional joint distribution of

fytg at times t1þs; . . .; tnþs, then the stochastic process fytg
is strictly stationary if

Fyðyt1þs; . . .; ytnþsÞ ¼ Fyðyt1 ; . . .; ytnÞ; ð6Þ

for all s; t1; . . .; tn 2 R and n 2 N. Nevertheless, in time-

series the strong form of stationarity is relaxed leading to

the weak-stationarity or covariance stationarity [6].

Therefore, a stochastic process is covariance stationary if

the mean is constant, the second moment is finite, and the

covariance function depends only on the difference

between t1 and t2 and needs to be indexed by only one

variable, i.e.,

covyyðt1; t2Þ ¼ covyyðt1 � t2; 0Þ: ð7Þ

where covyy is the auto-covariance of series yt. Summa-

rizing, stationarity means that the statistical properties of a

stochastic process which generates a time-series are con-

stant over time. Stationary processes are easier to analyze,

model, and investigate, and it has been a common

assumption of many practices involving statistical infer-

ence, modeling and forecasting.

Having identified the problem, a solution for stationarity

comes from the partial autocorrelation function, where the

lag-k coefficient /k;k is given by the following formula

/k;k ¼
qk �

Xk�1

j¼1
/k�1;j qk�j

1�
Xk�1

j¼1
/k�1;j qk�j

;

/k;j ¼ /k�1;j � /k;k /k�1;k�j;

8
>>><

>>>:
ð8Þ

for k[ 1 and /1;1 ¼ q1 [26]. Clearly, in case the series

exhibits a unit root, that is q1 ¼ 1, it immediate follows

that the first-order partial autocorrelation coefficient /1;1

will be one. The significance of the partial autocorrelation

function is that if only the first coefficient is statistically

significant and the rest are not, which is the usual case in

most time-series of scientific interest, then this is a guide

that the initial series should be differenced by using the first

differences of the series, namely

Dt ¼ yt � yt�1: ð9Þ

Therefore, taking the first difference of the levels of the

series results in stationarity and these series are named

integrated of order zero and are denoted by I(0).

However, when dealing with time-series there might be

an overlapping of a variety of non-stationarities, including

unit-roots, structural breaks, level shifts, seasonal cycles, or

a changing variance. Notice that the typical transformation

when the series is I(1) (non-stationary) is to take the first

differences of the series and transform it to a series I(0)

(stationary), while if the series incorporate structural breaks

or a changing variance, i.e., due to crises, a nonlinear Box-

Cox transformation [22] is the appropriate available option.

A Box-Cox transformation is a way to transform non-

normal dependent variables into a normal shape, since

normality is a critical assumption for many statistical

techniques. The one-parameter Box-Cox transformation is

defined as

yt ¼
ykt � 1

k
; if k 6¼ 0;

ln yt; if k ¼ 0:

8
<

: ð10Þ

where common nonzero Box-Cox transformations are for

k ¼ �3;�2;�0:5; 0; 0:5; 1 and 2. The large majority of

time-series follow the rule k ¼ 0; therefore, the stationarity

of these series is achieved via the returns that is the first

logarithmic differences,

rt ¼ ln yt � ln yt�1 �
yt � yt�1

yt�1

; ð11Þ

the last expression being the percentage change or returns.

4 Research methodology and proposed
framework

In this section, we introduce our proposed methodology for

considerably improving the performance of a deep learning

model for time-series forecasting in terms of accuracy and

reliability. based on the well-established econometric the-

ory and time-series analysis with respect to stationarity and

non-stationarity properties.

Revisiting the problem, when applying a machine

learning or a deep learning model to time-series for fore-

casting, the levels of the series are not-stationary, meaning

that they possess unit roots and some order of integration1.

1 Non-stationary time-series which can be transformed in this way

are called series integrated of order d. Usually, the order of integration
is either I(0) or I(1); it’s extremely rare to see values for d that are 2 or
more in real-world applications [7]. Additionally, all series in this

research are I(1).
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Notice that the identification of a unit root in a time-series

can be easily performed via the Augmented Dickey–Fuller

(ADF) test [6, 23]. The testing procedure is applied to the

model,

Dyt ¼ aþ bt þ cyt�1 þ
Xk�1

i¼1

diDyt�i þ �t; ð12Þ

where a is a constant, b is the coefficient of time trend, and

c ¼ ðq1 � 1Þ where q1 denotes the first-order autocorrela-

tion coefficient. It is worth mentioning that k is the lag

order of the autoregressive process chosen so that no serial

correlation exists in the residuals �t, ensuring that the test is

efficient and reliable. If a ¼ 0 and b ¼ 0, then we have a

random walk stochastic process, while if a 6¼ 0 and b ¼ 0,

we have a random walk stochastic process with drift. The

unit root test is carried out testing the statistical signifi-

cance under the null hypothesis H0 : fc ¼ 0that isq ¼ 1g
against the alternative hypothesis H1 : fc\0that isq\1g.

The solution depending on the nature of the time-series

is to iteratively take the first differences (9) or the returns

(11) until the series is made stationary, implying that the

first-order autocorrelation coefficient q1 is less than one. It

is worth noticing that the series transformation based on

first differences or returns implies that the autocorrelation

in the residuals of the model is removed. This indicates that

the prediction model is able to explain the data much

better, since it captures all possible nonlinearities, ensuring

the efficiency and effectiveness of the model.

Table 1 presents the pseudo-code of our proposed

framework. Initially, the time-series data are imported

(Step 1). Then, the ADF test is applied to examine whether

the levels of the series are non-stationary, meaning that

they possess a unit root (Step 2). In case the series is non-

stationary the transformation based on first differences or

returns is iteratively applied on the training data until the

new transformed series is stationary (Steps 4–7). Subse-

quently, the new transformed time-series data are used for

training the prediction model (Step 8).

In contrast, in case the series is stationary, then the

levels of time-series are used for training the prediction

model (Step 10). Subsequently, the prediction model’s

errors on the training data are used for further examination

and testing. Notice that a model trained with a series which

does not possess a unit root and has not been differenced,

may exhibit autocorrelation in the training errors. In other

words, although for any reasonable model the predicted

values will be close to the real values, the existence of large

autocorrelation coefficients characterizes the model as

inefficient [28]. Therefore, the residuals of the training data

are examined for autocorrelation by simply performing

ACF plots and/or Ljung–Box Q test (Step 11). In case the

residuals possess autocorrelation, the proposed

transformation is applied on the training data and the model

is re-trained using the new transformed series (Steps

13–14). Notice that if the levels of the series are stationary

and the residuals on the training set exhibit no autocorre-

lation, then there is no need to transform the series, since

this will lead to the dangerous phenomenon of over-dif-

ferencing the series. In other words, over-differencing leads

the whole process to be ‘‘non-invertible’’ and lacks an

infinite-order autoregressive representation. Figure 1 pre-

sents an overview of the proposed architecture in the form

of a flowchart.

Finally, it is worth mentioning that in case the model is

trained with a transformed series based on first differences

or returns, the reverse transformation is used in the pre-

dictions of the model to obtain the prediction for the levels

of the original time-series.

5 Data

In our research, we utilized three benchmark datasets from

the popular real-world application domains: finance, com-

modity and cryptocurrency, in order to demonstrate the

efficiency of our proposed methodology.

From finance domain, we utilized data from January 1,

2013, to December 31, 2019, of Standard & Poor’s 500

(S&P500) prices in USD from http://finance.yahoo.com

Web site. The data were divided into training set consisting

of daily Brent prices from January 1, 2015, to December

31, 2018 (4 years), and a testing set consisting of daily

prices from January 1, 2018, to December 31, 2019 (1

year).

From commodity domain, we utilized daily data from

January 1, 2013, to December 31, 2019, of Brent prices in

USD from https://www.eia.gov/ Web site. The data were

divided into training set consisting of daily Brent prices

from January 1, 2015, to December 31, 2018 (4 years), and

a testing set consisting of daily prices from January 1,

2018, to December 31, 2019 (1 year).

From cryptocurrency domain, we utilized daily data

from January 1, 2015, to December 31, 2019, of Bitcoin

(BTC) cryptocurrency in USD from https://coinmarketcap.

com Web site. The data were divided into training set

consisting of daily BTC prices from January 1, 2015, to

June 30, 2018 (3.5 years), and a testing set consisting of

daily prices from July 1, 2018, to December 31, 2019 (1/2

year).

All time-series data contained no missing values, while

the outlier prices were not removed in order not to destroy

the dynamics of each series, even if these prices are the

result of exceptional events.

Table 2 summarizes the descriptive statistics for the

training and testing set of each dataset, including the
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measures: Minimum, Maximum, Mean, Standard Devia-

tion (Std. Dev.), Median, Skewness and Kurtosis, for pre-

senting the nature of the distribution. Additionally, Table 3

presents the increase and decrease cases and the corre-

sponding percentages in S&P500, Brent and BTC datasets.

6 Experimental analysis

In this section, we apply our proposed methodology to the

S&P500, Brent and BTC time-series to identify whether or

not the training data are stationary, utilizing the ADF unit

root test.

Table 4 presents the results of the ADF unit root test for

the training data of all series under consideration, i.e.,

S&P500, Brent and BTC, performed on the level of the

original series. By taking into consideration, the t-statistics

(t-stat.) and the associated p values, we conclude that the

null hypothesis H0: ‘‘the levels possess a unit root and are

non-stationary’’ is accepted for S&P500, Brent and BTC

series.

In the sequel, we perform the ADF test to the trans-

formed time-series based on both first differences (first

differenced series) and returns (returns series), to examine

if the unit root has been removed, according to our pro-

posed framework.

Table 5 presents the results of the ADF unit root test for

the training data of all transformed time-series. Notice that

(�) denotes statistical significance at the 5% critical level.

Clearly, performing either the first differences or the

returns transformation clearly solves the unit root problem,

since all p values are practically zero and therefore the null

hypothesis H0 is rejected and all transformed series are

indeed stationary.

Thus, both transformed series are ‘‘suitable’’ for fitting

a deep learning model which will present no autocorrela-

tion in the errors, and a big improvement of the forecasting

performance is expected, compared with the same model

trained with the original non-transformed series.

6.1 Numerical experiments

In the sequel, we present a comprehensive experimental

analysis, to evaluate the efficiency and reliability of our

proposed methodology. More specifically, we compare the

performance of two efficient deep learning forecasting

models trained with the levels of the time-series (Time-

series) and with the two transformed series based on first

differences (first differenced series) and returns (returns

series).

Under exhaustive experimentation (utilizing different

number of the CNN and LSTM layers, different number of

units in the LSTM layers, different number of filter in CNN

layers), the selected models were an LSTM model which

consist of a LSTM layer of 50 units and an output layer of

one neuron (Fig. 2) and a CNN–LSTM which consists of

two convolutional layers of 16 and 32 filters of size (2, )

with the same padding, followed by a LSTM layer of 50

units and an output layer of one neuron (Fig. 3). Notice that

both models were trained with Adaptive Moment Estima-

tion [17] with a batch size equal to 128, using a mean-

squared loss function. The implementation code was

written in Python 3.4 using Keras library [15] on a laptop

(Intel(R) Core(TM) i7-6700HQ CPU 2.6GHz and 16GB

Table 1 Proposed framework to enhance deep learning in time-series forecasting
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RAM) running Windows 10.0 operating system. Each

forecasting model was trained with the traditional time-

series, the first differenced series and returns series, uti-

lizing four different values of window size m, i.e., m ¼
4; 6; 9 and 12. Finally, in order to reduce exponential trend

and homogenize the variability and stability of the patterns,

the traditional time-series data were transformed utilizing a

natural logarithm (ln) and the model’s predicted value is

used to predict the price on the following day. Moreover,

we recall that in case the models were trained using the first

difference or returns transformation to series, the reverse

transformation is utilized and to predict the price on the

following day.

The regression performance was evaluated utilizing the

metrics: mean absolute error (MAE) and root mean square

error (RMSE), while for the binary classification problem

of predicting whether the price would increase or decrease

on the following day, four performance metrics were used:

Accuracy (Acc), F1-score (F1), Sensitivity (Sen), Speci-

ficity (Spe), Positive Predicted Values (PPR) and Negative

Predictive Values (NPV) which are defined by

Acc ¼ TP+TN

TP+FP+FN+FP
; ð13Þ

F1 ¼
2TP

2TP + FP + FN
; ð14Þ

Spe ¼ TP

TP+FN
; ð15Þ

Spe ¼ TN

TN+FP
; ð16Þ

PPV ¼ TP

TP+FP
; ð17Þ

NPV ¼ TN

TN+FN
ð18Þ

where TP stands for the number of prices which were

correctly identified to be increased, TN stands for the

number of prices which were correctly identified to have a

decreased, FP (type I error) stands for the number of prices

which were misidentified to be increased, and FN (type II

error) stands for the number of prices which misidentified

to be decreased.

Moreover, we included area under curve (AUC) metric

in our analysis which constitutes one of the most significant

classification metrics and it is presented using the receiver

Table 2 Descriptive statistics

for S&P500, Brent and BTC

prices

Data Minimum Maximum Mean SD Median Skewness Kurtosis

S&P500

Training set 1457.15 2930.75 2153.78 367.52 2087.90 0.31 - 0.75

Testing set 2447.89 3240.02 2912.09 149.32 2918.65 - 0.26 0.17

Brent

Training set 26.01 118.90 71.46 25.84 63.27 0.43 - 1.28

Testing set 50.57 74.94 64.31 4.44 63.99 0.16 - 0.30

BTC

Training set 178.10 19497.40 3261.48 3675.02 1152.36 1.40 1.84

Testing set 6640.52 13016.23 9221.26 1466.76 9244.97 0.27 - 0.93

Table 3 The number of up and down movements of S&P 500, Brent

and BTC datasets

Data Decrease % Increase %

S&P500

Training set 815 54.01 694 45.99

Testing set 149 59.36 102 40.64

Brent

Training set 738 47.19 826 52.81

Testing set 140 53.64 121 46.36

BTC

Training set 900 55.87 711 44.13

Testing set 102 47.44 113 52.56

Table 4 ADF unit root test of all series under consideration

Series S&P500 Brent BTC

t stat. - 2.8469 - 1.1599 - 2.7497

p value 0.1806 0.9170 0.2166

Table 5 ADF unit root test of all transformed times-series based on

first differences and returns

Series S&P500 Brent BTC

First differenced series

t stat. - 39.146 - 38.516 - 7.3402

p value 0.0000� 0.0000� 0.0000�

Returns series

t stat. - 39.663 - 38.259 - 39.893

p value 0.0000� 0.0000� 0.0000�
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operating characteristic (ROC) curve. Notice that ROC

curve is created by plotting the true positive rate (Sensi-

tivity) against the false positive rate (Specificity) at various

threshold settings.

6.1.1 S&P500

Tables 6 and 7 present the performance comparison of

both LSTM and CNN–LSTM forecasting models, respec-

tively, for S&P500 dataset. The LSTM model improved its

average performance, in terms of MAE and RMSE scores

by 30.57%-43.88% and 18.73%-37.31%, respectively,

when trained with the first differenced series, while the

CNN–LSTM model considerably improved its MAE

average performance by 11.35%-45.34% and its RMSE

average performance by 4.82%-34.59%, in the same situ-

ation. Furthermore, the LSTM model reduced its average

MAE and RMSE scores by 23.76%-49.40% and 11.51%-

45.45% in case it was trained with the returns of S&P500

prices, while the CNN–LSTM model reduced its average

MAE performance by 21.10%-48.98% and its RMSE

average performance by 11.89%-38.96%. Summarizing,

we conclude that the regression performance of both

LSTM and CNN–LSTM forecasting models was consid-

erably improved, utilizing the first differenced and returns

series, instead of the traditional S&P500 time-series.

Furthermore, the classification performance of both

prediction models was also improved utilizing our pro-

posed methodology. More specifically, both LSTM and

CNN–LSTM models were biased in case they were trained

with the traditional time-series. In contrast, the trade-off

between sensitivity and specificity as well as between

positive and negative predictive values of both models was

considerably increased in case the models were trained

with the first differenced.

It is worth noticing that both LSTM and CNN–LSTM

models exhibited the highest classification performance in

case they were trained with the first differenced series and

the best regression performance when they were trained

with the returns series. Moreover, the LSTM model trained

with the first differenced time-series reported the best

classification performance for all values of window size m

and the best regression performance for m ¼ 6; 9 and 12.

The CNN–LSTM model trained with the first differenced

and returns series reported the best performance relative to

classification and regression accuracy, respectively.

6.1.2 Brent

Tables 8 and 9 present the performance comparison for

Brent forecasting problem of LSTM and CNN–LSTM,

respectively. The LSTM and CNN–LSTM models

improved their average MAE score by 6.44–29.66% and

5.88–17.52%, respectively, in case they were trained with

the first differenced series, instead of the traditional series.

Furthermore, their average RMSE score was reduced by

5.73–25.46% and 2.88–10.33% in the same situation.

However, the regression performance of both forecasting

models worsens, in case they were trained using the returns

series.

Regarding the classification performance, both LSTM

and CNN–LSTM models were biased in case they were

trained with the traditional series. On the other hand,

LSTM considerably improved its classification perfor-

mance utilizing either first differenced or returns series as

training data in terms of trade-off between sensitivity and

specificity as well as the trade-off between positive and

negative predicted values. Additionally, the CNN–LSTM

significantly improved its classification performance using

first differenced series as training data, in terms of both

accuracy and trade-off between sensitivity and specificity.

It is also worth mentioning that both LSTM and CNN–
Fig. 2 LSTM forecasting model architecture

Fig. 3 CNN–LSTM forecasting model architecture
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LSTM forecasting models improved their F1-score, in case

they were trained with the transformed series.

The performance of the forecasting models, relative to

the value of the window size m, both models improved

their performance as the value of window size increases.

Moreover, it is worth mentioning that the best overall

performance was reported by CNN–LSTM trained with the

first differenced series with m ¼ 12.

6.1.3 Bitcoin

Tables 10 and 11 present the performance comparison of

LSTM and CNN–LSTM, respectively, relative to BTC

dataset. Similar conclusions can be drawn with the previ-

ous benchmarks. More specifically, the LSTM model

improved its MAE and RMSE average performance by

24.29–31.90% and 19.44–23.38%, respectively, when

trained with the first differenced series instead of the tra-

ditional series, while the CNN–LSTM model improved its

MAE average performance by 14.34–38.12% and its

RMSE average performance by 6.0–29.1%, in the same

situation. Moreover, the MAE and RMSE average perfor-

mance of the LSTM model was reduced by 21.14–36.59%

and 15.99–27.49% in case it was trained with the returns of

Bitcoin’s prices, while the CNN–LSTM model improved

its MAE average performance by 8.57–39.57% and its

RMSE average performance by 2.56–29.52%, in the same

situation. Summarizing, we can easily conclude that the

regression performance of both forecasting models was

considerably improved, utilizing our proposed methodol-

ogy for data preparation.

Regarding the classification performance, our proposed

methodology increased the accuracy of both prediction

models. More analytically, the interpretation of Tables 10

and 11 reveals that LSTM and CNN–LSTM models were

biased when trained with the traditional time-series. In

contrast, the trade-off between sensitivity and specificity as

well as the trade-off between positive and negative pre-

dictive values of both forecasting models was considerably

improved, in case they were trained with the first differ-

enced series or the returns series. Finally, AUC and F1-

score of both models were improved in case they were

trained with the transformed series instead of the traditional

time-series.

The LSTM model trained with the first differenced

series exhibited the best classification performance for all

values of window size m and the best regression perfor-

mance for m ¼ 6; 9 and 12. Moreover, the CNN–LSTM

model exhibited the lowest (best) MAE and RMSE scores,

in case it was trained with the returns series, while it pre-

sented the best overall classification performance, in case it

was trained with the first differenced series. Finally, it is

worth mentioning that both LSTM and CNN–LSTM

models exhibited the best regression performance when

they were trained with the returns series and the highest

classification performance, in case they were trained with

the first differenced series.

6.2 Reliability evaluation of the forecasts

In the sequel, we evaluate the reliability of all forecasting

models by examining the existence of autocorrelation in

the residuals utilizing the Auto-Correlation Function (ACF)

plot and the Ljung–Box Q test for residual autocorrelation

[6]. In other words, we examine whether each trained

model has properly fitted the time-series by examining

whether the residuals are identically distributed and

asymptotically independent. We recall that the Ljung–

Table 6 Performance comparison of the LSTM model for S&P500 dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 33.31 42.80 50.42 0.532 0.606 0.595 0.470 0.651 0.405

First differenced series 18.69 26.83 47.87 0.467 0.546 0.530 0.404 0.565 0.410

Returns series 16.85 23.35 46.59 0.435 0.570 0.597 0.274 0.546 0.347

Time-series 6 34.49 42.35 47.79 0.514 0.425 0.324 0.703 0.655 0.415

First differenced series 20.10 29.38 48.11 0.466 0.554 0.545 0.388 0.566 0.417

Returns series 19.31 31.56 49.00 0.460 0.590 0.617 0.304 0.565 0.352

Time-series 9 29.84 39.02 47.39 0.520 0.385 0.277 0.762 0.631 0.409

First differenced series 20.58 29.27 50.36 0.497 0.559 0.531 0.463 0.593 0.451

Returns series 18.94 29.40 50.07 0.486 0.574 0.565 0.406 0.583 0.409

Time-series 12 27.14 38.04 47.59 0.509 0.471 0.385 0.634 0.606 0.413

First differenced series 18.84 25.43 49.40 0.489 0.547 0.514 0.465 0.585 0.435

Returns series 20.69 30.12 47.12 0.466 0.524 0.493 0.439 0.562 0.402
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Box Q test is a ‘‘portmanteau’’ test which assesses the null

hypothesis H0 that ‘‘a series of residuals exhibits no

autocorrelation for a fixed number of lags L,’’ against the

alternative hypothesis H1 that ‘‘some autocorrelation

coefficient is nonzero.’’

Tables 12 and 13 present the information of the sta-

tistical analysis performed by Ljung–Box Q test for L ¼ 10

of LSTM and CNN–LSTM, respectively. Clearly, the null

hypothesis H0 of no autocorrelation in the residuals is

accepted, in case the models were trained with the first

differenced or returns series, relative to all benchmarks and

window sizes. On the other hand, both prediction models

reject the H0 in case they were trained with the traditional

time-series.

For completeness, we also present the ACF plots of

LSTM and CNN–LSTM for S&P500, Brent and BTC

datasets in order to illustrate the intensity of the temporal

autocorrelation. In each ACF plot, the confident limits are

denoted with blue dashed lines and are constructed

assuming that the residuals follow a Gaussian probability

distribution. Notice that the ACF plot of each model for

S&P500, Brent and BTC datasets was calculated for

m ¼ 9, m ¼ 9 and m ¼ 6, respectively, for which the

models exhibited the best performance.

Figures 4, 5 and 6 present the ACF plots of LSTM

model for S&P500, Brent and BTC datasets, respectively.

The ACF plots of the forecasting model trained with the

traditional time-series violate the assumption of no auto-

correlation in the residuals. More specifically, the signifi-

cant spikes that occurred in several lags suggest the

model’s predictions may be inefficient. In contrast, all ACF

plots of the LSTM trained with the first differences and

Table 7 Performance comparison of the CNN–LSTM model for S&P500 dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 33.40 38.70 48.59 0.501 0.395 0.421 0.581 0.601 0.272

First differenced series 18.26 25.31 50.20 0.478 0.551 0.529 0.426 0.575 0.411

Returns series 17.04 23.62 46.02 0.426 0.568 0.601 0.251 0.540 0.330

Time-series 6 23.40 29.67 51.67 0.535 0.494 0.437 0.634 0.649 0.437

First differenced series 20.75 28.24 51.41 0.516 0.554 0.507 0.525 0.610 0.451

Returns series 18.47 26.14 48.35 0.466 0.557 0.550 0.383 0.566 0.398

Time-series 9 35.46 42.18 46.45 0.509 0.356 0.275 0.743 0.623 0.412

First differenced series 22.78 31.94 53.41 0.458 0.513 0.480 0.436 0.554 0.403

Returns series 20.61 29.82 52.13 0.508 0.561 0.527 0.488 0.601 0.414

Time-series 12 33.96 40.96 45.38 0.489 0.389 0.302 0.677 0.577 0.398

First differenced series 23.97 33.03 52.08 0.459 0.519 0.487 0.465 0.557 0.395

Returns series 23.97 33.03 51.20 0.459 0.519 0.487 0.432 0.557 0.391

Table 8 Performance comparison of the LSTM model for Brent dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 1.40 1.81 53.05 0.543 0.442 0.370 0.717 0.618 0.496

First differenced series 0.99 1.35 48.42 0.485 0.499 0.479 0.490 0.522 0.467

Returns series 1.10 1.92 51.24 0.506 0.506 0.478 0.533 0.541 0.480

Time-series 6 1.33 1.75 53.75 0.545 0.497 0.439 0.652 0.608 0.501

First differenced series 1.25 1.86 50.19 0.504 0.503 0.472 0.537 0.541 0.497

Returns series 1.31 2.18 50.27 0.504 0.509 0.484 0.525 0.541 0.488

Time-series 9 1.62 2.03 52.36 0.530 0.462 0.449 0.610 0.584 0.508

First differenced series 1.37 1.86 51.43 0.514 0.534 0.519 0.508 0.550 0.498

Returns series 1.21 1.84 50.19 0.500 0.528 0.525 0.475 0.535 0.486

Time-series 12 1.68 2.16 53.67 0.536 0.536 0.544 0.528 0.588 0.494

First differenced series 1.45 1.94 51.66 0.515 0.543 0.537 0.493 0.551 0.499

Returns series 1.28 2.03 51.66 0.513 0.552 0.557 0.470 0.550 0.498
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returns of prices reveal that there is no autocorrelation in

the residuals which suggests the reliability of the model

and advocates the efficiency of its forecasts.

Figures 7, 8 and 9 show the ACF plots of CNN–LSTM

model for S&P500, Brent and BTC datasets, respectively.

Clearly, all ACF plots of CNN–LSTM model trained with

the first differenced and returns series illustrate that there

exists no autocorrelation in the residuals. This implies that

the model is reliable, with respect to the efficiency of its

forecasts. On the other hand, the significant spikes pre-

sented in Figs. 7a, 8a and 9a reveal the CNN–LSTM

trained with the traditional time-series has not properly

fitted the training data and exhibited unreliable predictions.

7 Discussion

In this section, we perform a discussion relative to the

theoretical and experimental contribution of our research.

We presented a detailed theoretical background

regarding the problem of time-series forecasting and the

reliability of the forecasts of a prediction model. Since

most time-series datasets are extremely noisy and chaotic

by nature, the development of a reliable deep learning

prediction models is considered a significantly challenging

task. Moreover, the achievement of high accuracy or low

RMSE score cannot be considered as a reliable metric since

a model may just accidentally perform well on a specific

time period, while on a new different period, it may exhibit

a totally different and probably poor prediction

performance.

Table 9 Performance comparison of the CNN–LSTM model for Brent dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 1.13 1.51 53.01 0.535 0.494 0.464 0.607 0.583 0.500

First differenced series 0.98 1.35 50.77 0.508 0.522 0.502 0.514 0.545 0.491

Returns series 1.17 1.61 49.10 0.468 0.507 0.508 0.428 0.508 0.457

Time-series 6 1.35 1.74 53.17 0.548 0.421 0.330 0.765 0.632 0.496

First differenced series 1.17 1.64 51.47 0.521 0.542 0.509 0.521 0.550 0.505

Returns series 1.67 2.39 52.16 0.510 0.546 0.490 0.558 0.564 0.495

Time-series 9 1.54 1.94 52.97 0.544 0.414 0.353 0.734 0.612 0.500

First differenced series 1.27 1.80 53.74 0.548 0.541 0.521 0.535 0.565 0.511

Returns series 2.07 2.88 51.35 0.506 0.549 0.511 0.517 0.550 0.497

Time-series 12 1.44 1.90 53.82 0.537 0.551 0.558 0.515 0.587 0.500

First differenced series 1.35 1.85 54.57 0.545 0.564 0.549 0.542 0.581 0.515

Returns series 1.87 2.63 54.44 0.538 0.565 0.518 0.575 0.585 0.497

Table 10 Performance comparison of the LSTM model for BTC dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 404.57 551.17 51.17 0.500 0.462 0.693 0.294 0.501 0.524

First differenced series 275.52 428.92 52.54 0.524 0.499 0.501 0.547 0.500 0.549

Returns series 256.53 399.66 51.08 0.514 0.529 0.580 0.448 0.499 0.542

Time-series 6 436.77 576.23 50.85 0.501 0.446 0.653 0.348 0.509 0.521

First differenced series 297.88 459.85 53.66 0.538 0.532 0.558 0.517 0.521 0.565

Returns series 302.62 469.09 50.01 0.491 0.480 0.497 0.484 0.486 0.515

Time-series 9 447.30 617.72 49.48 0.498 0.475 0.703 0.259 0.509 0.526

First differenced series 338.67 497.64 53.15 0.529 0.491 0.488 0.571 0.526 0.555

Returns series 352.73 518.96 50.86 0.510 0.505 0.533 0.487 0.509 0.529

Time-series 12 483.96 672.34 50.19 0.497 0.477 0.702 0.396 0.508 0.510

First differenced series 348.62 515.16 51.08 0.514 0.521 0.569 0.458 0.509 0.541

Returns series 363.98 546.14 50.70 0.510 0.518 0.565 0.455 0.506 0.535
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In this research, we demonstrated theoretically whether

time-series data are ‘‘suitable’’ for fitting a deep learning

model, which constitutes the main contribution of our

research. In other words, we introduced a novel framework

which can efficiently identify if a time-series is suitable for

developing and training a deep learning model, which will

perform reliable and stable prediction performances, inde-

pendent of the characteristics of the series in any time period.

By the term ‘‘suitable,’’ we mean that the time-series

data has successfully passed our proposed theoretical cri-

teria and it can be used for training a prediction model. In

contrast, if the series fails satisfying the requested criteria,

then it is considered as ‘‘unsuitable’’ and every attempt for

building a reliable prediction model will be probably in

vain. Therefore, we provide a ‘‘starting point’’ for any

attempt on developing any prediction framework for any

time-series forecasting problem. This starting point is

indeed the critical point in which every attempt and

investment for building a model will result in a stable and

reliable predictor or it will be totally wasted out in the case

that the utilized starting dataset was unsuitable. By iden-

tifying the suitability of any time-series data, a ‘‘green

light’’ for the machine learning developer is provided, in

order to invest computational effort for building a fore-

casting framework.

Furthermore, we established a novel and complete

framework which provides a solution for any ‘‘unsuitable’’

identified time-series by performing a transformation based

on first differences or returns and transform these series to

‘‘suitable.’’ Although these two techniques were well

known as a rule of thumb for transformation and prepro-

cessing for time-series data, it was not proved why, when

and how these formulae work and if they actually can be

successfully applied. Most approaches were relying on a

‘‘trial and error’’ logic something not appropriate and

viable especially on cases when costly and time-consuming

real-world projects aim to build accurate and reliable

forecasting models. In this work, we proved that these

formulae actually filtered these ‘‘unsuitable’’ data,

Table 11 Performance comparison of the CNN–LSTM model for BTC dataset

Series Horizon MAE RMSE Acc (%) AUC F1 Sen Spe PPV NPV

Time-series 4 315.41 448.46 49.58 0.489 0.512 0.693 0.277 0.488 0.516

First differenced series 270.19 421.57 53.33 0.535 0.533 0.562 0.507 0.527 0.563

Returns series 288.38 436.99 46.81 0.471 0.487 0.534 0.409 0.479 0.493

Time-series 6 366.81 514.74 52.21 0.513 0.476 0.489 0.552 0.518 0.539

First differenced series 269.45 415.27 53.99 0.524 0.511 0.525 0.523 0.519 0.549

Returns series 256.97 398.49 53.94 0.540 0.527 0.544 0.536 0.524 0.566

Time-series 9 399.61 534.20 51.41 0.499 0.531 0.584 0.383 0.500 0.536

First differenced series 258.88 396.16 51.24 0.514 0.515 0.546 0.482 0.507 0.541

Returns series 253.61 393.25 50.00 0.501 0.494 0.517 0.485 0.505 0.527

Time-series 12 417.20 553.32 51.40 0.510 0.510 0.592 0.399 0.511 0.523

First differenced series 258.15 392.60 50.70 0.507 0.488 0.509 0.483 0.505 0.538

Returns series 252.12 389.97 50.52 0.506 0.499 0.520 0.492 0.503 0.531

Table 12 Ljung–Box Q test for

10 lags with significance level

a ¼ 5% (LSTM)

Series Horizon p value H0 p value H0 p value H0

Time-series 4 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.170 Accepted 0.692 Accepted 0.764 Accepted

Returns series 0.071 Accepted 0.370 Accepted 0.228 Accepted

Time-series 6 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.295 Accepted 0.271 Accepted 0.052 Accepted

Returns series 0.486 Accepted 0.733 Accepted 0.383 Accepted

Time-series 9 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.286 Accepted 0.143 Accepted 0.235 Accepted

Returns series 0.244 Accepted 0.113 Accepted 0.110 Accepted

Time-series 12 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.325 Accepted 0.790 Accepted 0.391 Accepted

Returns series 0.423 Accepted 0.172 Accepted 0.400 Accepted
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eliminating this costly and time consuming ‘‘trial and

error’’ approach.

It is worth mentioning that an attractive property of our

proposed framework is that it can be easily extended to

cover the wider scientific area of time-series forecasting

applications without the requirement of any extra modifi-

cations or additional constraints. In more detail, the pro-

posed framework performs an efficient preprocessing step

in order to exploit the internal representation of the times-

series, through the utilization of statistic and econometric

test. Conclusively, we point out that our experimental

analysis indicated that although deep learning models

constitute a widely accepted and efficient choice for time-

series forecasting, our proposed framework provides a

significant boost in increasing the forecasting performance.

Nevertheless, an extensive research is under considera-

tion to identify which of these two methodologies can be a

priori efficiently applied depending on the characteristics

of each time-series in order to obtain better prediction

results. A possible approach could be the application of a

sophisticated preprocessing framework based on the

intrinsic time-series specific properties such as stationarity,

heteroskedasticity, seasonal cycles and changing variance,

for performing that a priori identification and the proper

time-series transformation methodology.

8 Conclusions and future research

Time-series forecasting and analysis is generally consid-

ered as one of the most challenging problems in data

mining. In the literature, most time-series forecasting

approaches attempt to exploit machine learning and deep

learning algorithms, aiming at obtaining better perfor-

mance compared to the already existing or proposed

models. Nevertheless, they cannot guarantee to develop

reliable forecasting models.

In this work, we propose a different approach and intro-

duce a novel methodology for the development of efficient

and reliable deep learning prediction models. The major

novelty of our proposed framework is that it guarantees the

forecasting reliability of the deep learning model’s predic-

tions, independent of the used time-series data. This is

achieved by applying a series of transformations, which

ensure that a time-series satisfies the stationarity property

and it is suitable for fitting a deep learning model. In addition

to the theoretical advantages of the proposed framework, we

provided empirical evidence about its efficiency and

robustness. More specifically, we performed a series of

numerical experiments using time-series from three appli-

cation domains, which attracted most of research interest,

namely financial stock market, energy sector and cryp-

tocurrency area. All compared models where evaluated on

both forecasting time-series price (regression) and time-

series directional movements (classification) as well as on

the reliability of their forecasts by examining the existence of

autocorrelation of the errors. Our comprehensive experi-

mental analysis illustrated that our proposed methodology

considerably improved the forecasting performance of a

deep learning model, in terms of accuracy and reliability.

By taking into consideration that our proposed frame-

work can be easily exploit any deep learning model, a

prediction model exhibiting even better forecasting ability

could be developed through the exploitation of deep

learning techniques together with regularization method-

ologies or through additional optimized configuration of

the utilized models.

It is worth mentioning that the introduced framework

can be easily extended to cover the wider scientific area of

time series forecasting applications such as weather fore-

casting, earthquake prediction, heartbeat rate and so on,

without the requirement of any extra modifications or

additional constraints. Furthermore, one issue which we

have not thoroughly investigated is the possibility of some

Table 13 Ljung–Box Q test for

10 lags with significance level

a ¼ 5% (CNN–LSTM)

Series Horizon p value Null H0 p value Null H0 p value Null H0

Time-series 4 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.102 Accepted 0.622 Accepted 0.834 Accepted

Returns series 0.137 Accepted 0.344 Accepted 0.254 Accepted

Time-series 6 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.657 Accepted 0.416 Accepted 0.160 Accepted

Returns series 0.180 Accepted 0.168 Accepted 0.064 Accepted

Time-series 9 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.105 Accepted 0.083 Accepted 0.560 Accepted

Returns series 0.619 Accepted 0.382 Accepted 0.435 Accepted

Time-series 12 0.000 Rejected 0.000 Rejected 0.000 Rejected

First differenced series 0.059 Accepted 0.060 Accepted 0.629 Accepted

Returns series 0.056 Accepted 0.869 Accepted 0.217 Accepted

Neural Computing and Applications (2020) 32:17149–17167 17163

123



(a)

(b)

(c)

Fig. 4 Autocorrelation of residuals for S&P500 dataset of LSTM

model

(a)

(b)

(c)

Fig. 5 Autocorrelation of residuals for Brent dataset of LSTM model
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(a)

(b)

(c)

Fig. 6 Autocorrelation of residuals for BTC dataset of LSTM model

(a)

(b)

(c)

Fig. 7 Autocorrelation of residuals for S&P500 dataset of CNN–

LSTM model
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Fig. 8 Autocorrelation of residuals for Brent dataset of CNN–LSTM

model
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Fig. 9 Autocorrelation of residuals for BTC dataset of CNN–LSTM

model
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minor information loss due to non-stationarity in the time-

series and the imposition of the proposed transformations.

This is to be included and fully investigated in our future

research. Furthermore, we intend to verify that the pro-

posed framework works with any kind of regression

algorithm.

Another direction for future research is to enhance our

experimental framework with new performance metrics

based on profits and returns. Finally, an interesting idea is the

application of our proposed framework for the prediction of

anomaly detection in order to ‘‘catch’’ outliers or other rare

signals, which could indicate forecasting instability.
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