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Abstract

This paper probes into the synchronization for memristor-based hybrid neural networks via nonlinear coupling. At first, a
new condition is established to judge whether quadratic functions are negative or not on a closed interval regardless of their
concavity or convexity. Then, by utilizing Legendre orthogonal polynomials, a recent extended integral inequality with
free matrices is popularized to get tighter lower bound of some integral terms. Next, based on a novel Lyapunov functional,
by applying our new integral inequality with free matrices, linear convex combination method and the new criterion, a new
delay-dependent condition is gained to reach the global synchronization for the considered neural networks. At last, an
example is presented to account for the validity of our results.

Keywords Memristive neural networks (MNNs) - Synchronization - Linear convex combination - Nonlinear coupling -

Quadratic function

1 Introduction

For the sake of retaining symmetry with capacitor, resistor,
and inductor in logicality, Chua [5] conceived there must
exist a fourth elementary circuit component that connects
flux and charge with a curvilinear relation. Chua entitled it
memristor, as a condensation of memory and resistor (cf
Fig. 1). In 2008, Chua’s conjecture was corroborated by the
Hewlett—Packard Labs [34]. This scientific research team
produced the model of memristor. Since the memristor’s
resistance relies on the charge that had previously passed
through the device, the memristor is thought as a auspi-
cious successor to simulate biological synapses in circuit
implementation of neural networks. Replacing resistors
with memristors as the connection weights of neural net-
works in the circuit realization, it will produce neural
networks called as MNNs. MNNSs have a lot of applications
in image processing, brain emulation, and pattern
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recognition, therefore get widespread attention from sci-
entific researchers (see [1, 3, 7, 16, 28, 38, 40, 43, 44, 51]).

As we know, since the potential paper [27] was revealed
to the world, many researchers have strenuously committed
to exploring various synchronization issues of chaos. So
far, a great variety of synchronization results have been
presented due to their potential applications in cryptogra-
phy, biological system, secure communication, information
processing, chemical reactions [15, 19, 39, 49, 50]. By
introducing linear diffusive term and sign function term,
Guo et al. [7] derived several global exponential synchro-
nization criteria for coupled MNNs (CMNNs) which are
based on some suitable Lyapunov—Krasovskii functionals
(LKFs). By the Lyapunov stability theory, Yang et al. [43]
proposed a set of global robust synchronization conditions
and a pinning adaptive coupling issue for a class of
CMNNSs with nonidentical uncertain parameters a discon-
tinuous diffusive term. By using Halanay inequality and the
matrix measure method, Rakkiyappan et al. [28] estab-
lished a sufficient condition that ensures the exponential
synchronism of coupled inertial MNNs based on a state
feedback controller. Based on Lyapunov functional and
matrix inequality method, Zhang et al. [51] designed
periodically intermittent controller to ensure exponential
synchronism of CMNNs with time-varying delays. By

@ Springer


http://orcid.org/0000-0003-1505-8873
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05166-1&amp;domain=pdf
https://doi.org/10.1007/s00521-020-05166-1

2874 Neural Computing and Applications (2021) 33:2873-2887
] Resistor another different confirming criterion with (i), (ii),
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), (2)  On the basis of Lemma 2 [24], a further developed
. &f"‘“ B integral inequality with free matrices is established
*g ’ g in Lemma 4 by utilizing Legendre polynomials,
§ | °;a«\\ ‘§ which encompasses Lemma 2 [24] and Lemma 5 [4]
= 1 ‘o i as its special cases. In fact, Lemma 5 [4] can be
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Fig. 1 Relationship between the four fundamental circuit components

(8]

means of simple feedback controllers and adaptive feed-
back controllers, the authors [3, 44] put forward sufficient
conditions to assure exponential synchronism of CMNNs
with impulsive and stochastic turbulence. Based on Lya-
punov functions, matrix inequalities, and Halanay
inequality, Bao et al. [1] obtained sufficient conditions of
exponential synchronism of stochastic CMNNs with
probabilistic delay coupling and impulsive delay. By uti-
lizing differential inclusion and Halanay inequality, Li
et al. [16] proposed some new sufficient conditions to
achieve synchronization of inertial CMNNs with linear
coupling. In order to provide deep applications, it is
important to investigate synchronization problem of MNNs
with less conservativeness.

Over the past years, Jensen integral inequality [6] has been
extensively utilized in time-delay systems because of its high
efficiency in acquiring easy-to-verify stability criteria
expressed as linear matrix inequality. To get less conserva-
tive result, the authors [13, 22, 30] presented Wirtinger-
based integral inequalities of single, double and multiple
integral forms which include the Jensen ones and obtain
greater lower bounds of integral term; by means of auxiliary
functions, Park et al. [26] presented some integral ones which
include those in [6, 13, 22, 30]. To further abate conserva-
tiveness, Chen et al. [4] established two general integral
inequalities which include those [6, 13, 22, 26, 30] and are
greater than all existing ones. In fact, there still exists some
space to advance with respect to integral inequality.

Stimulated by mentioned before, in this paper we dis-
cuss the global synchronization of a class of CMNNs with
linear diffusive and discontinuous sign terms. The main
devotion of this paper can be epitomized as follows:

(1) A new condition (see Lemma 5) is established to
ascertain whether quadratic functions are negative or
not on a general closed interval regardless of their
concavity or convexity, which includes Lemma 2
[12] and Lemma 4 [45] as its special cases and raises
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acquired by fixing some slack matrices of Lemma 4.

(3) Enlightened by [31] and [14], a new Lyapunov
functional is constructed based on the sector condi-
tion of the activation function. Due to this new
functional, less conservative delay-dependent syn-
chronism criteria can be obtained from linear matrix
inequality technology.

(4) Proper integration of Chen et al.’s integral inequality
(cf Lemma 3) with Lemmas 4, 5 can result in less
conservative synchronization conditions than exist-
ing ones. It is proved [4] that Lemma 3 includes the
Jensen inequality, Wirtinger-based one and auxiliary
function-based ones as its peculiar cases, and is
greater than all existing ones.

The developed results thus provide insight into hybrid
neural networks via nonlinear coupling with memristors,
which may help appreciate biological evolution and neural
learning.

Notation Throughout this paper, solution of a system is in
Filippov’s sense. O~ !, QT mean the inverse and the transpose
of a matrix separately. Q <0( > 0) means a definite negative
(positive) symmetric matrix, 0,,, 7, mean the zero matrix and
the identity matrix of n—dimension separately, 0,,., means
an m x n zero matrix, symbols aQ(x)", o’ Q(*) mean aQu”
and o Qu, respectively. The expression col{Q1, Qs . .., O}
means a column matrix with the matrices Qy, 0, ..., O.
sym(Z) means Z + Z”, diag{-} means a diagonal or block-
diagonal matrix. For y > 0,C([—x,0]; R") means the set of
all continuous functions ¢ from [—y,0] to R" with norm
@Il = sup_, <5<o|¢(s)|. If not declared in advance,

. . . . A B
matrices are required to have proper dimensions. « C

means A B
BT c|

2 Problem description

As shown in [39], a single memristor-based recurrent net-
work can be expressed as the following simple form:

¥(1) = —Ay(1) + B(y)k(y(t))

+ C)k(y(t — (1)) + v(1), (1)
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where y(1) = (y1(2),y2(2), ..., va(t))" € R" denotes the
state vector of the networks at time ¢, n indicates the
number of neurons, A is a diagonal positive matrix indi-
cating neuron self-inhibitions, B(y) = (bjq(¥(1))),sns
C(y) = (¢jg(¥(£))),x, are the feedback connection matrix
and the delayed feedback connection matrix, respectively.

k() = (ki 01 () ka(32()s - oo k() € R

is the neural activation function. The bounded function
o(t) is  unknown  time-varying delay  with
0<w(t) <d,m <o(t) < w,, where @ > 0, w; and w; are
scalars. v(7) is an external input vector. On the basis of the
feature of memristor and the current-voltage characteris-
tics, we define

o sign s I (30(0)) ~ ()] <O,
big(1)) = d

by sign = lky (3 (1)) = (1)) > 0,
and

, . d

Cig> SN kg (vq(t — (1)) — y;(t)]
i O(0) = .Y

s sign -k (g (1 = (1)) = 3 (1)

dr
> 0,

for j,q € N'={1,2,...,n}, where b b, ci,ci

known constants. Throughout this paper, we denote B =

being

Big)nsns € = (Cig)pwn  With  bjg = max{b; g ]q}7ch =
max{cj,, cj, }, and biy = by — bl Gig = |cjy — clul-

As Well known, because of disturbances from environ-
ment noises or modeling errors, the network parameters
often embody uncertainties. Therefore, (1) can be revised
as a more practical one

¥(t) = —Ay(1) + [B(y) + 4B(1)lk(y(1))
+ [CO) + AC@O)]k(y(t — (1)) (2)
+ (),
where matrices 4B(t) and AC(t) indicate the parameter
uncertainties.
Now, we discuss a system containing m identical MNNs
with nonlinear coupling

Yp(t) = —Ayp (1) + [B(p) + 4By (1)]k(3, (1))
+ [COp) + AC, (1)K (3 (1 — (1))

Zd Ay, () Zd Azy,(t — (1)) (3)

+ Z;,,,ngn(y:](t) —5,0)

+v(t), pe M={1,2,...,m},

R" denotes the
=1,2 and

where y,(t) = (vp1(2), yp2 (1), - ., ¥t ))T

state vector of the pth MNN. D, = (d}, ),

Z = (Spy)mxm indicate outer coupling matrices satisfying

143 . 2 ~ T m L
conditions: d, >0,¢,, > 0(p # 9), d,, Z]:]#p d);
p =0, p,ge M. Matrices 4,4, and O =
diag{0;,0,,..., 0,} > 0 indicate inner coupling interests
between two

sgn(x) =
(Sign(x1)7Sign(x2)7"'a X = (x17x27"'7
x,)" € R" with

states.
sign(x,))"  for

1, z>0,
sign(z) = ¢ 0, z=0,
—1, z<0.

Remark 1 Many existing results suppose the coupling
matrices  being  symmetric, see for instance
[17, 20, 21, 32, 36, 39, 48]. In this paper, this requirement
is deleted. Thus our conditions are more efficacious than
those results.

Similar to [43], the uncertain matrices AB,(f) and
AC,(t) are supposed as follows:

ABP(I) = EN1P<I)L1,

AC,(t) = ENop(t)Ly, p € M (4)

where E and L, L, are known real matrices, and N, (t)
is unknown matrix with

||Nlp(t)||1§17 1=1,2;peM (5)
and || - ||, is the I-norm of a matrix.
The initial conditions of 3) are

»(s) = @,(s) € C([~@,01:R),p € M.

With different initial conditions, MNN (1) or (2) will
have different dynamical trajectories in general. But in the
coupled system (3), all MNNs’ states may be synchronized
finally although with different initial conditions.

The following suppositions are needed for our result.

Assumption 1 The activation functions are bounded, i.e.,
there is constant k; > 0 such that |k;(-)| <k;, j € N. Fur-
thermore, there exist real constants kj’7 kj+ such that
k- < i) = k0) <k,
T u—v (6)
VuveR, u#v.

Denote K = diag{k;k{ , ks k3, -,k k}}, Kr=
Ydiag{k; + ki ky +k3 -k, + k| }, K = diag{k?, k3,
ky} with k= max{|k|, [k'[}, je€N and k=
2k
Remark 2 In Assumption 1, k;",k/ (j € ) can be nega-
tive, zero or positive. Such a description was raised in [18]
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at first, which includes monotonic nondecreasing or the
Lipschitz condition as particular cases. Thus, the activation
functions satisfying Assumption 1 can be more common
than the usual sigmoid functions. Further, when utilizing
the Lyapunov theory to discuss the stability, this assump-
tion is particularly appropriate since it quantifies the acti-
vation functions that supply the feasibility of reducing the
conservativeness.
The following definition and lemmas are required.

Definition 1 The coupled networks (4) are said to be
globally robustly synchronized if lim, .o {|[y,(f) —
()|} =0, Vp,l € Mholds for any initial values and any
parameter uncertainties AB),(¢) and AC,(t) with (4) and (5).

Definition 2 (Wu et al [42]). Given a ring Ié, denote
T (RA7 €) the set of matrices with entries in R satisfying that
the sum of the entries in each row equals e for some ¢ € R.

Lemma 1 (Horn et al [9]). Let ® indicate the Kronecker
product, X, Y, Z and W are matrices with proper dimen-
sions. The following properties hold:

(1) (¢X)®Y =X® (cY), where c is a constant;
2 X+Y)RZ=XQZ+Y®Z;
B Xer(ZeW)=(XZ)e (YW).

Lemma 2 (Wu et al [42]). Let G be an m X m matrix in
the set T(R,e). Then the (m— 1) x (m— 1)matrix Q
defined by Q = JGP satisfies JG = QJ, where

1 -1 0 0 .. 0
01 -1 0 .. 0
J=|0 0o 1 -1 0 ’
0 0 0 1 -1,
1 )

01
0 0
P= ,
00 .. 0 1
00 ... 0 0,

where 1 is the multiplicative identity of R.

Lemma 3 (Chen et al [4]). Assume that matrix Q > 0 and
function p: o, f] — R " is continuous, the following

@ Springer

inequalities are correct:

. p
@) (ﬁ—a)/ u(v)" Qu(v)dv >

7O + 3(%) Q(n) — ma) + 571 Q) + TRl O,

.. B
(ii) 2/ (v —a)u(v)" Qu(v)do >
1Oy + 8(x) Q(m2 — m3) + 37, 073,
(iii) 1
p—ua

1
> §n3TQ7I3 + 5(*)TQ(TE3 — Ty),

B
/ (v — o) u(v)" Qu(v)dv

725 7 (0 = o)p(v)dv,

— 671y + 103 — 574,

where 1y = f/ v)dv, 7 =

T =m —3m + 213, T =m

T3 = 3mpy — 8z + Smy
with fﬁ

ff(v - oc)3u(v)du.
Inspired by [24], we establish the following lemma.

4
=

Lemma 4 (The proof is put in “Appendix 17). Assume
that matrix U > 0 and function u: [o, f] — R " is contin-
uous, vector y and matrices T;({ =1,2,3,4) are with
proper dimensions, the following inequality is correct:

B
- [ ) vaoyew
4

1
S(ﬂ—“)zzg—_l
=

+ sym{XT[Tlm +Th(ny —m) + T3

T —1T
(TgU T,;)X

— T4ﬁ2]},
where Ty, Ty, Ty, Ty are defined in Lemma 3.

Remark 3 Letting

and 7Ty = gL U yields
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4

)-S5 A (L)

=1
+ Sym{XT[Tchl + T2(7t2 — 1'51) + Txm; — T4TE2]}:|

—[nlUn, + 57 Umy
+3() U(ny — m) + TR Uy

Then Lemma 4 reduces to Lemma 3 (i). Thus, Lemma 4
encompasses Lemma 3 (i). That is, Lemma 3 (i) is a par-
ticular case of Lemma 4 and can be acquired by fixing
some slack matrices. Thus, Lemma 4 is less conservative
due to additional freedom from the slack matrices.

Lemma 5 (The proof is put in “Appendix 27). Define a

quadratic  function  f(x) = a)x* + ayx +ay,  where

ap,ay,a; € R. if

(i) f(2) <0, (ii) f(B) <O, (iii) — (B —)’az +
fl@)<0, or (i) —(B—a)ay+f()<0, then
f(x)<0,Vx € [, .

Remark 4 Lemma 5 presents a condition to ascertain
whether quadratic functions are negative or not on a closed
interval [o, f] taking no account of their concavity or
convexity, which includes Lemma 2 [12] and Lemma 4
[45] as its special cases. This lemma will play important
role in establishing our main result.

3 Main result

For a clear presentation, we define

y(1) = col{y1(t),y2(t), - -, ym(1) },
V(1) = col{v(1),v(1),...,v(1)},
k(y(1)) = col{k(y:(1)), k(yz(t)) k(ym(2))},
g(yp) = B(yp) + 4B,(1),
B(y) = diag{B(y1),B(2),. .., Blym)},
C(yp) = C(yp) + 4C, (1),
C(y) = diag{ C(31), C(y2), -, Cym) }-

By means of the Kronecker product, the coupled neural
networks (3) can be changed into a compact form:

y(1) = ~Ay (1) + B(y)k(y(1))

+ Cyk(y(t — o(t))) (7)
+ Dyy(7) + Doy(t — (1))
v(t) + e,

where A =1, A, D, =D, ® A,,1 = 1,2, and

Z] 1 $]J@sgn(y]<t) —yi(1))
ijl S Osgn(y;(t) — y2(1))
e—= ) e R™.
Z;ﬂ:l gmj@Sgn(yj(t) - ym(t))
For simplicity, denote
J = J & In.vyt :.Y(t)v)Iw = y(t - ('.U(t)>7Y(Z) = Y(t - d))a)}t
=Y¥(),¥o =¥t — 0(1)),¥5 = y(t — ®),

where J is defined in Lemma 2 with R = R. Define

61 = COI{JyM JY(m JY(Da Jk(yt)7 Jk(Yw)a

Jk(y@)>JYt7JYw7JYQ37117T27T37T47T57767
t
/ (20 — 2t + w)JyUdv},
t—m

where
1 t
T] :—/ JYMdM7
CL)(I t—o(r)

1 t—ao(r)
- d
T2 (I)—U)([) /t,([, JYu u,
t
= u—t+ o(t)Jy,du,
wz(t) /t(a(t)[ ( >]

2 t—o(t) -
m/ ) (M — 1+ a))Jyudu,
— =

3 /t 2
T5 =——~ u—t+ ow(t) Jy,du,
w? (I) t—u)(t)[ ( )]

3 t—ao(r) .
- 1—m

~—

Tqg =

Te —

From the integral mean-value theorem, we have that

lim 1,1 =Jy;, lim 1y, = Jy,.
o(t)—0" w(t)—n~
Therefore 7y, .. .,7¢ are well defined if we set
ng 1| O_JyN T2g| :’:Jydn g:17273

Denote n' = (m — 1)n and
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e; = [On’x(qfl)n’v In’aon’x(167q)n/]7
g=1,2,...,16,

H= m—1®Ha A= m—1®A7 K= m—1®K7
D;: (JDZP)®A17 K =1,19K,
Vi=[Y,12,Y3,Ys ], Vo =[V5Ys, Y7, Y5 ],

n n
0 = Z 2klbp1, 191, = szlép[a JAS N7
=1 =1

m

Z (gls + g1+1,.§)7

s=1,s#£1,1+1
1= 1,2,...,]’)’!— 1,
Ql = diag{Q173Q170n'70n/}7

N = Gt + S+l —

01 Qs
Qz{ 1 *},QF[QZ,QA,
Q4
0y — {Qa& Qs}7
* Qg
Ql :diag{Qh 3Ql7 5Qla 7Ql}7 l:778797 107
[WleU,Kl UK, }
= , 1= 1,27
* —-U -W,
R, K—-F K F, K
‘7:”:|: ! 7 2 :|7.]:17273;
’ * —-F,—R,

Ti=len e en], To=[Ouoryxan), @1 —e2 ],
Yi=e, e3, e11 ], Ta = es, ey, €2 —e3 ],
Ts= e es, Opiowyn |,

T = [ es; €, Opiomyn |,

T7 = [ Oew)x2w)> €2 — €10 |,

Ty = [ —mes, Oqgnyxn, €11 — €2 },

Ty = [O(Ifm’)xn’: es, Oien)xn ]a

[

[ e7, e1, Oiowys |
To=le, es], Tiz=1_e3 e,

[e2, 5], Tis = [ er, Opiomxn |

=ley er—er], Ti7=e3 e1 —e3],

[e1 — ez, e + ey —2e10, €1 — e+ beyg
— beyp, €1 + ey — 12e59 4 30e;, — 20614]7
Tio=[ew, e1 —ew ], To=[en, et —en |,
TH = [ ey —e3, ex+e3—2eqy, ey —e3+ 6ep
— 6ei3, 2 + e3 — 12e11 4 30e13 — 20es],

= a‘)e7{Q7 + Qs + %CDZQg + %653Q10}e7T,
I, = —Sym{(el — &) [(#Q2 + G)el

+ (@03 — Gi)(e1 — e10)"] +3(e1 + e

~ 2610)(@02 — ©0; +2G1 ) eno — e12)' },
I3 = —3(e1o — €12)(Qs — 205 + Q6) (+),

@ Springer

H4 = —sym{(ez — 63) [(UjQz + Gz)@{l

IIs =

I1; =

Iz =

My =

+ (©Qs

= Ga)(er — €11)T] +3(e2+e3
2e11)(002 — @03 +2Go)(enr — 613)7}7

—3a@(e11 — e13)(Qs — 205 + Q6) (),
s = —2(er — e10)Qo(x)"

4(er +2e10 — 3e12) Qo (x)"
6(8] — 3610 + 12612 — 106]4)Q9(>l<)T7

~2(es — 1) Qo(*)"

4(62 + 2(:‘11 — 3613)Qg(*)T
6(ez — 3e1y + 12¢13 — 10e15) Q9 (%),

~3(e; — e1)Qio(x)"

5(61 + 3612 - 4514)Q10(*)T7

—4(e; — e10)Qi0(x)"

8(e1 + 2e10 — 3e12) Q1o (*)"
12(e; — 3e10 + 12e10 — 10614)Q10(*)T7

Iy = 73(62 - 313)Q10(*)T

I}, = sym{e;[HD)e] — Hel — H(A’

+

5(82 + 3ej3 — 4315)Q10( )T7
e

D))ef
(ILn-1 ® HB)ej + (In-1 ® HC)el|},
T

I = —2(e10 — enn) (Xo3 + X33 ) (e10 — e11)

=

Al(r)
Ay(r) =

+
Xij
[
[

—

Sym{(*zelo +epn+ 613)M€1T6}7

)3><3
e1, reyg + (@ —r)e, 616}

€7, €1 —es,

(e + e3) — 2rejp — 2(w — r)ell},

AN

3(r) =

E(r,s

) =

+

+

Jr

+

+
+

(@ —2r)eyg + rer

(@ —r)e1s — @(@ — r)en — exq,
sym{41(r) X1 45(r)" + A3 (r)Me{g }

r(( = oty + sym{T 27T - T327]}

DY 19QY o + T Fu T, + YuF i,

s + TBHTU) (@—7) ( — lls

DY QYN + T15010Y T + Yo Fau 10,
Mo+ Mo+ T1aFnXl, + T|3f23T1T3)

rs [sym{leXzY'g + 732577, ]

s[T1 07T + sym{Y 10,77 + 134575}
Y3575 ] — (1 =) (U —Ua)T ],
sym{T\ X1 + X350} + 1) + 1T,
@Y1 QY| + 4 + I + I, + I,
Tlh YT, — Tl Yl + 115G T
— T16G1T 15 + T16G2 T (s — T17G T 1,

s+ Y s + T3 (V2 + V) 0

Q1+ D Tng]
— |75, T .
T T | Ql+QgHT§O
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Next we derive the following synchronism result for sys-
tem (7).

Theorem 1 (The proof is put in “Appendix 3”). Under
Assumption 1 is satisfied. Given scalars & > 0, w1, w;, the
system (7) is globally robustly synchronized for
0<w(t) <o, w <wa(t) <w,, if there exist positive defi-
nite matrices X,,Q,0,(1=1,8,9,10), positive diagonal

U, W, F,,R, (y=1,2,3),H =
-y}, symmetric matrices G,(1 = 1,2), real

matrices
dlag{hl s hz, ..
matrices Q,,M,Y,(p =1,2,...,8) of appropriate dimen-
sions such that
Q1+ Qg+ Qo + @9y o) S
* Q1+ 9|~

aj = ¢; + U — O, + 2k[|E|[, (||L1 ], + ||L2[1,)
<0, i=1,2,....m—1;jEN,

0, (8)

©)

and one of the following two groups of inequalities holds:

) Ex<0,p=1231=12%

Q) Eu<0,p=1241=12

where

~ g2, 1

B,= | T s
* =0y

and

~ g, 1T

ER S P
* -

with Elt = E(Oa CO,), EZZ = E((I),CU;), 531 = Ell _(DzHlZa

Ey = =0 + By

Remark 5 For continuous networks, there are a lots of
skills to get less conservative result, for instance delay
partitioning technique, triple integrals term, quadruple
integrals term, and multiple integrals terms. All these skills
can also be applied for delayed memristive neural networks
to cut down conservatism. To present a concise result, we
utilize a simple Lyapunov—Krasovskii functional in this

paper.

Remark 6 Noting that stochastic disturbances, impulsive
perturbations, bounded and unbounded distributed delays
can be embedded into MNNs. To emphasize our new
analysis technique, this paper considers networks (3) such
that the obtained results are not too intricate.

4 lllustrative example

This section proposes an example to reveal the effective-
ness of Theorem 1.

Example 1 Consider with  following

parameters:
o(t) = 0.4+ 0.4cos(2t), A =8, v(t) =0,
Ka(s) = (s 1] = s = 1)/2, g = 1,2,

system (3)

0.38,  signky (1) <0,
b (1)) = g .11()
0.77, signky; () > 0,
0.98, signki, (1) <0,
bi2(1)) = entia(l)
1.45, signky, (1) > 0,
2.05, signky; (1) <0,
ba (31 (1)) = et (1)
1.62, signky; (1) > 0,
3.53, signkoy ( <0,
baa32(1)) = gnfaz(l)
4.07, signkx () > 0,
d
—-0.29, s1gn&k“(t — () <0,
cn(i(s)) = d
—0.55, 51gn&k11(t — (1) >0,
d
—-3.07, sign&klz(t —a(t)) <0,
ci2(y2(s)) = d
—3.76, signaklg(t — (1) >0,
d
2.31, sign&kﬂ(t —a(t)) <0,
e (yi(s)) = { d
1.78, signakgl (t—o(t)) >0,
d
—1.79, signakzz(t —w(1)) <0,
en(y2(s)) = d
—2.04, signakzz(t —o(t)) >0,

where kj, (1) = ky(yq(1)) — yi(1), kig(t — (1)) = kq(yy(t —
(1)) —yi(t), j,q = 1,2. The parameter uncertainties are
supposed as AB,(t) = 0.1sin(t)1>, AC,(1) =
0.1cos(t)h,p=1,2,...,9. Set E=DL,L, =0.1,N;, =
sin(z), Nop = cos(t), then 4B,(t), AC,(f) can be expressed
as (4). Therefore, we have ||E||, = 1,||L]|; =0.1, and
[INpll; <1,0=1,2;p=1,2,...,9. Then condition (5) is
satisfied. The inner coupling gains are given by
/1, :Ig,l = 1,2,@ = 912

Calculation yields that @ =0.8,w; =—-0.8,w, =
08,0, =172,0, =1.94,9, =1.9,9, =1.56,
B 0.77 1.45 . —-0.29 —3.07

1205 407 7 | 231 -1.79 |
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and Assumption 1 is satisfied with k, =0,k = 1,k =

17l = 1,2. ThllS, Kl = O,Kz = 0.512,K = Iz,k =2.
Furthermore, outer coupling matrices are taken as

-2 1 1 0 0 0 0 0 07
1 -3 1 1 0 0 0 0 0
1 1 —4 1 1 0 0 0 0
0 1 1 -5 1 1 1 0 0
D=|0 0 1 1 -5 1 1 1 0
0 0 1 1 1 -5 1 1 0
0 0 0 0 1 1 —4 1 1
0 0 0 0 0 1 1 -3 1
L0 0 0 0 0 0 1 1 -2
1=1,2,
ro 137 01 01 01 01 01 01 017
0.1 0 12 01 01 01 01 01 01
01 01 0 103 01 01 01 01 01
01 01 01 0 86 01 01 01 0.1
Z=1]01 o1 01 01 0 69 01 01 01].
01 o1 01 01 0l 0 52 01 0l
01 01 01 01 01 01 0 35 0l
01 01 01 01 01 01 01 0 18
lor o1 01 o1 01 01 01 01 0]
Computation gives that pu; =0.5,0; =—0.08, op =

—0.20,i = 1,2,...,8. Therefore, condition (9) holds. Seek-
ing the solutions of the inequalities in Theorem 1 by utilizing
the Matlab LMI Toolbox, we can get a feasible solution.
Portion of the decision matrices are made a list as follows:

H = diag{0.3712,0.1254},

Uy = diag{0.2702, 1.2704,0.4493,0.2419,
1.5288,1.5583,1.3358,4.3973,5.2856, 5.1382,
4.3175,4.1147,3.1181,0.3483,0.5947, 0.3250},

U, = diag{2.8234,0.7107, 1.4356,2.8723,
1.3831,1.7874,0.3616,0.2420, 1.1100, 1.9953,
0.7582, 1.3567,0.5577,0.5509,0.4005, 0.3457},

W, = diag{0.3053,0.3431,0.2927,2.7834,
1.2356,2.8723,9.9873,5.7513,5.0724, 6.0720,
4.5918,6.2468,8.8097, 1.8041,2.0695, 5.0804},

W, = diag{0.4695,10.0951,0.5100,0.3440,
0.4195,0.4248,0.5998, 0.5539,0.3463,0.2232,
1.2769,0.3351, 1.6033,0.1860,0.9534,0.9816},

Fy, = diag{0.6231,0.2336,0.3824,0.5015,
0.1137,0.9230,0.5988,0.5785, 0.8674, 1.8495,
0.4480, 1.2405, 0.9220, 0.2360, 2.0413,0.7994},

Fyy = diag{0.4373,0.3224,0.1311,2.6117,
0.8428,0.4852, 1.2352,0.3253,0.2474, 1.1734,
0.3394,0.5325,0.9164,0.3788,0.5179,0.2775}.

To simulate numerically, we select nine values at random
in (—=0.2,0.2)" and (—0.5,0.2)", respectively, as the initial
states. The state curves y(f) are drawn in Fig. 2 and the
synchronism error ¢ (z),&,(f) are drawn in Figs. 3 and 4,
respectively, where
g(1) = (1) = y(1), p=2,...,9, j=1,2.

It has been verified that none of the conditions in
[1, 3, 7, 43, 51] can testify whether system (3) is syn-
chronized or not for this example.

@ Springer

However, the conditions of
[2, 10, 11, 33, 35, 37, 39-41, 46, 47] were all established
under the following representative hypotheses:

B, Blk(x(1)) — [B, Blk(y(1))
< [B, B (k(x(1)) — k(y(t))),
[C, Clk(x(1)) = [C, Clk(y(1))

( )
C [C, Cl(k(x(2)) — k(¥(1)))-

It is easy to verify that the above hypotheses are not sat-

isfied by this model. That is, none of these conditions can

be applied to justify the synchronism of this example.
Therefore we may say that the result of this paper is less

conservative than the conditions in

[1-3,7, 10, 11, 33, 35, 37, 39-41, 43, 46, 47, 51].

5 Conclusion

This paper inquires into the synchronism of a class of
CMNNSs with linear diffusive and discontinuous sign terms.
The proposed conditions are expressed in terms of linear
matrix inequalities (LMIs) which can be checked numeri-
cally very efficiently by using the interior-point algorithms,
such as the Matlab LMI Control Toolbox. In the future,
there are some issues that deserve further investigation,
such as (1) the adaptive synchronization control of MNNs
because adaptive control can avoid high control gains
effectively, (2) synchronization of the MNNs with mis-
match features since nonidentical characteristics often exist
between the drive and response systems, (3) investigations
other control schemes, such as pinning control, event-
triggered control, sample-data control, intermittent control,
quantized control and event-based control.

0.2F

0.1 ]

0 5 10 15 20 25 30

Fig. 2 The state curves t — y(t).
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0.1
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-0.05 |

-0.1

0 10 20 30 40 50
Fig. 3 The synchronism error of ¢ — &(1).

0.1

0.05

-0.05

20 30 40 50

Fig. 4 The synchronism error of ¢ — &/(¢).

6 Appendix 1: Proof of Lemma 4

Take the first four Legendre orthogonal polynomials on

o, B] ([29]):
Io(®) = 1,1,(0) = ﬁ(zl) = ), b(v)

_ ﬁ (60> — 6(st + B)v + (o + dauf + B2)], 15(v)

= ﬁ [200° — 30(a + B)v?

+12(0% + 30+ v — (o7 + 992 + 9af + f°)].
Simple calculation derives

0, i#j

B
/ Li(v)];(v)dv = { B—o . .
o 2it+1’ =17

i,j=0,1,2,....

For continuous function x(v) and continuous differentiable
function f(v), calculation on the basis of integration by
parts gives

B
JRCEOT
=f(x) /fx(v)dv + /ff'(v) /Uﬁx(s)dsdu,

/ ) / " (s)dsa
= f(a) /O(/f /Uﬁx(s)dsdv
+ /aﬂf(l)) /Uﬁ /uﬁx(s)dsdudv,
and

/ ) / " (s)dso
=f(«) /aﬁ /Uﬁ /Mﬁx(s)dsdudn
+ / ") / ' / ' /W " x(s)dsdwedo.

Then the following equalities are derived
B
/ L (o) u(v)dy = 1 — m,
o
B B
/ L(v)u(v)dv = 7y, / I3 (v)u(v)dv = —7,.

Denote I(v) = col{lp(v), 1, (v), 1 (v), 5 (v)}, T =
col{Ty, T, T5, T4}, the following equality is derived

AFTNR P
= [ )" sty

4
1 T —1pT
- e Tv)
+ (B “);ZC_I)C(;U o)X
+ sym{XT[Tlnl + Th(mp, — my) + Tamy — T4ﬁ2]}.

Due to U >0, by Schur Complement, the following
inequality holds

{TUITT T]
* U

thus

+ Sym{XT Tim + To(m — m) + Tamy — Tyl },

which completes the proof.
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7 Appendix 2: Proof of Lemma 5

The group of conditions (i), (ii) and (iii) is Lemma 4 ([45]).
Now we prove the group of conditions (i), (ii) and (iii)’. For
a; >0, f(x)is convex. So, (i) and (ii) ensure f(x) <0,Vx €
[or, f]. Otherwise, a, <0, f(x) is concave. f(x) = 2arx +
ay, f(o) = 2a04 ay, f(x) = 2a; <0. By Maclaurin for-
mula, there exists real scalar 0 between x and o such that

F0) = () + Flo) = 2) + 2 F(O)x — 27
< () + () — )
= ap — a0* + (2aro + ay )x = g(x).

Notice that g(x) is convex about x. Thus g(a) = f(a) <0

follows from (i) and g(f) = —(f — @)*az +f(f) <O from
(iii)’. Thus we have g(x) <0,Vx € [o, f]. From f(x) < g(x),
this completes the proof of Lemma 5.

8 Appendix 3: Proof of Theorem 1
Based on Assumption 1, the following inequality is correct
for any j € N and ¢,{ € R with ¢ # {
02 [k(e) = k(0) —k; (s = 0]

< [le) = k(0 ~ k57 = 0]
Thus, for any positive scalar u), (z =1,2;p=1,2,. —
1; j € N) the following 1nequahtles hold

0= - ”;ijj_k;r b’PJ(I) - yp+1,j(t)]2

ki (i (1)) = K 1 ()] + (7 + &)

i (1) = Yo 1 (DK (i (1)) = ki (p41,(2))-
Denoting U, = diag{uy,;, uyy, . ..., }(1 = p=
1,2,....,m— 1), the following inequalities are derlved
0< = [k(yp(1) = k(pr1 (1))

X U [k(yp(1)) = k(yps1(1))] = [yp (1)

= Wpt (O] UK [ (1) = yp1 ()] + 20y (1)

= Wp1 (O] UpKa k(3 (1)) = k(yp1 (1)))]-

Summing both ends of the aforementioned inequalities
fromp =1tom—1 gives

(1) == —(Jk(y,) UJKk(y,) — Jy,) UKy, (10)
Z(Jy,)TU,Kka(y,) >0,
where U, = diag{U},U},...,U,_,}(1=1,2). Similarly

the following inequality is true
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wi(t) : (JYt) WKy, — (Jk(Yt))TWle(Yt)
(11)
>0,
with W, = diag{W}, W},... ., W! _ 1} W, = diag{w' Whis
W;ﬁ,..,pn}>0(l—12p—12 m—1).

Stimulated by [14] and [31], we conmder the following
Lyapunov functional

3
V(ty,) ng 1Y),
g=1
where
Vi(t,y,) =9 X17,
+ w(t)”zTXZ”Iz +

Vi) = [ 5= 1+ @)@+ 0000

[@— w(t)]v,TX3v,,

+ w/t(s 1+ @) () Oyl s)ds

1 t
5 et o)) s

l t
+ 5/ (u—t+ 6))3(*)TQ10Jy‘yds,
@

Biew) = [ )+

t—o(t)

+ [142

t—m

t t—ao(t)
= / STU,5,ds + / 01U, 5,ds,
t—o(r) —@®

(5) + wa(s)]ds

with

t
Ve =001{Jy,,/ Jy,ds,
11—

/ l (25204 a))JyA.ds},
n = Ctoi){Jmeywafl},
v, = col{Jy,,Jys, 12},
£(t,5) = col{Jy's,Jys, / tJyvdv},
5, = col Iy, Jk(y,)}.

It follows from the assumptions and inequalities (10)—(11)
that V (¢, w,) >0 for any >0 with 0 < w(t) < @.

The time derivative of V(¢,y,) along the system (7) can
be calculated as

3
V(ty,) ZVg LY, (12)

g=1

where
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Vie,y,) = & (sym{ A1) X1 x(o(r))")
+ sym{T 1 X205 + T3X37% }
+ o(f)sym{Y 1 X,0% — T3X37¢ }
+ o(a()sym{ -1 X1 + T3X37])}
+ @) [sym{T1 0,77 + 13575 }

+ 1107 — T3X3T3T])€,,

(13)
Va(ty,) = & (0T QY Y, + I,
- [ e+ eoias
— /Hﬁ(s —t+ a’))(*)TQ.;Jyxds (14)
- / (s — 1+ @)’ ()" Q10Jy,ds
~o [ () outrsas
Vi(t,y,) = & {Tlh 1], — TisUa Y1, (15)

—[1 = oM s = Un)T7, }Er

Based on the fact that fff(s)ds = f(b) — f(a), the equality

b
| 55 197 Go(s))as = p(0) Gotb) - pla) Gota)

holds for any symmetric matrix G, where p(s) is a vector
function (see [23]). Thus, the following equality is also true

0= f?(TlsGLT{S - TIGGIT&)&;

_ /tt 9 1)G (1, )] ds

—a(r) ds
(16)
=& (Y1561 s — T16GiYT6) &
! T
- [ G as
t—o(t)
0=¢ (T16GaY s — T1nGaX )¢
t—o(t) d -
- / I [(x)Ga¥(1,5)" |ds
—m (17)

=& (116G Y1 — T1GT ;) &,

t—o(t) r
= [ 0t as,

—@

W(t,s) = col{Jym / Jy'vdv}7

0 G, -G,
G = |j" 0 0 a1=1,2
* * 0

For O<w(f)<®m, applying Wirtinger-based integral
inequality (see [30]) to Q— and G;— dependent integral
terms gives

- / ()(@Q + G)x(r,s)Tds
t—(t)

1
< — m (*)T((Z)Q + gl)COI{JYz = Iy, 0(t)T1,

o(t)Jy, — )} - % ()7 (@Q + G )eol{ 22,

— Iy, = Iy, 0(t) (11 — 13), 0(1)(r3 — 1)}

o}
= {1

— @(t)(T19QaT |y + H3)}5t-
(18)

Similarly, for 0 <w(t) <®, we get

t—ao(r)
- / ()(@Q + Ga)x(t,5)"ds
< - ﬁ@f(@g + Gy)col{Jy, — J¥e

(@ — ()], [@ — o(1)]Jy, — )}
3

— J)——CL)(I) (*)T((DQ + gz)C()l{ZTZ —J¥o — I¥as

[& — o(1)](t2 — ), [® — 0()](1s — 12) } =

. 0)
x1tT{ -

@ — ot)

— &d — o)) (T Q7 + I15) }5,.

Y2091 5 + 14

(19)

Utilizing Lemma 4 and the Leibniz-Newton formula to
Q07— dependent integral term gives
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t
- / ()7 Qrdy ds
t—o(t)

—w(t

<ETh {yl + V] + o) (20)

4

1 _
X 221 1 Y1Q7 IYZT}TISéta

=1

i
t—o(t)

/t—(b

< ;Trgo{yz I 4 (6 - () (21)

(+)" 07y, ds

8
1
§ —y,0;'Y i
X 2 21-9 lQ7 l} 208&s,

For 0 <w(t) <@, utilizing Lemma 3 to Qs— dependent
integral term derives

t
o[ s
t—o(r)

0 (22)

< - o) Tt Qs8¢

t—ao(r)
()" QsJy,ds
t—@ (23)

— ®

)
< - m éngo QT 0.

It is easy to verify the following equations
t
/ (s —t + @) (%) QoJy,ds
t—a(r)
t
— [ et o)e) o
t—o(t)
t
sl [ @
1—w(t

t—o(t)
+ / (s — 1+ @) (%) QoJy,ds,
t

—

/l 7(u —t+ d))z(*)TQlonxds
=2|® — w(1)]

X / ( )[s —t+ w(t)](*)TQIOJySds

o 4 (P Qo ds (23)
t—o(r) s o

+ / (s —t+ @) (%) Q10Jy,ds

+lo—o)f [

—o(t)

()" Q10Jy,ds.

For 0<w(t)<®,, applying Lemma 3 to Qy— and Qjo—
dependent integral terms gives
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N / Is — 1+ (1)) (%) Qody,ds
t—o(t)

(26)
S étTnﬁén
— [@— o) / 4 0o ds
0 — of1) o (27)
w—w
: _WélegggT&én
o) o
_ /Hﬁ (s —t+®@)(*) QoJy,ds o)
S étTH7 f[,
t ) . .
- o * ds
/r—m(,)[Y t+ o(1)]"(x)" QioJy,ds )

<w()& Mg,

~ 20— o] [ o= 00 Qs

-

< [0 — o] M,

(30)
— [o— a)(t)]2 /tt (t)(*)TQmJysds
<{lo- o) - 02220 (1)

x E 150107 5Er
t—o(t)
_ / (s — 1+ )2 ()" Qrody,ds
t

> (32)
<[ — o(0)]ET e,

Denote € = 29| for 0<w(t) <@, the following inequality

@

holds based on condition (8) ([25])

o] VIO |
T LT = /ers,
[Q1+Q8+Q9+wQ1o o) ]

X (%).

* Q1+ 9s

Therefore, for 0 <w(r) <®, we get

T
f,T(*)T{Ql + O D } {T;B
* Ql + QS TZO

& {E%KQI +Qs) + (1 = )(Q + 0Qu)|T

o

1
+ eTzo(Q1 + QB)T;O}@-

1 —

Also from
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/t (25— 2 + @)Jy,ds TJTHJB( Jk(y:)
, = > [0 = 5en 0] H[BO(0)k(i(1))
_ / [2[s — t + (1)) +2[6 — (1)) — &}y ds =)
e = Biw1(1)k(yis1(r))]
t—o(t) m—1
+ / [2(s = 1+ ©) — oLy ds =3 [i0) = Yo (0] H{BICu(1) = k(i (1)
i=1
= o()[o = 20()]n + [BOi(t) — Blk(yi(t)) + [B = B(yi1(1))]
— @lo — o))t + (01 + [0 — o), X k(yir1(2)) + E[Nui(1)Lik(yi(1))
for any matrix M with proper dimension we get = N (OLik(yi (1))] }’
0 = 2¢7 A3 (oo (1) el (34) (37)
Similar to (10)—(11), we propose and
m—1
£ 0 [_Fgf:)m F_ggﬂ((; } 52 0. > [0) = (O] BB ) KO )]
- tJ (Im 1®HB_)Jk( z)
ro(s,1) == 87 (s) [Rg((?K _12 (t)]é(s) >0, . ' !
with Fy(1) = 00y + [0 - o] Fa R0 = ol 2 O I OFHUEO) = 8]
[ — o(1)|Ryg, g = 1,2,3. 3 ,
Thus the 2following inequalities are acquired :ilf():(t)) - [B Bl ))}k(ylﬂ( ))}
0<fi(t,0) +falt — 0(2),1) + f3(1 — @, 1) = (1) = Yiy1, 0]y
i=1 j=1
+rl(tvt)+r2(t_w(t)at)+r3(t_(bat) n _
> { usi0) = Balkia () (39)

ES étT{w(t)(Tu}"”Tsz +T]4f12T1T4 (35)

+ T13~7:13T1T3) + [CD CO(I)] (Tn]:z]T{Z

+ T147'—22T1T4 + T13-7:23T1T3) }fz-

Noticing networks (5), the following zero equality holds
for any positive matrix H

=2y/J"HI{ — Ay, + B(y)k(y,) + C(y)k(y,,)

: (36)
+ Dly; +D2yw + V( ) +e— yl}

By Lemmas 1 and 2, we have: JA=A'J

=J®A, Jv(t) =0

As Dy,D, € T(R,0), applying Lemma 2 yields that
JD, = (JD,P)J,1 = 1,2. On the basis of Lemmas 1 and 2,
the following equalities are correct:

D, = (J®1,)(D, ® A,) = (JD,) ® A, = [(JD,P)J]
® (Ad,) = [(JD,P) ® A)(J ®1,) = D.J.

Note that

3
L
B

h; Z 2]€ll;jl|y'zj(t) - }}i+l=/‘(t)|

1 =1 =1

= hjoilyyi(t) = Yisr,; ()],

X E[Ny(t)Lik(yi(t)) — Niiv1(6)Lik(yis1(2))]

=
5

k
Sl -

Similarly we obtain

Yirr (1)
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T1T T 61627809) and the Research Foundation of Department of Education
Yi J HJC(y)k(y"’) of Liaoning Province (No. JDL2017031).
m—1 n
<y'J'(1 . . .
Y1 (-1 © HO)JK(y,,) + 21: by (41) Compliance with ethical standards
i=1 j=1
X (ﬁj + 2k| |E||1 | |L2||1)|yl](t) - yi+l,/‘(t)|' Conflict of interest The authors declared that they have no conflict of

In addition

y'J HJe
m—1 n n

= Zzhfgj Yy (1) = Yier (0] Z {%‘/Sig“

=1 j=1 =1

[.Y:l,’(f) *Yij(f)} — Giy1,8ign [Y/,'(f) - };i+u(f)}}

= '"Z: Zh./oj{ = (Siier + S Y (0) = Vi1 ()]

i=1 j=1 (42)
B0 0] (Y susenliy)

I=11Zi+1
7.)}ij(tﬂ - Z €1+1,[Sign[)}/j(f) 7};i+l.j<t)}>}

=1

m=1 n

< 72}:2"‘10//”)’;/ z+1/( [

F J

Applying inequalities (9) and (37)-(42) to equality (36)
yields

0< eI ¢, (43)
Combining (12)-(35) and (43) gives
V(t,y,) <& {E((1), o) + I'((1) }E,, (44)
where I'(r) = (& — r)T'y + rI'» with

4
1 ,
F2 = F4 :T{SZmYlQ7IYZTT]8,

1 _
ry=r 5 Y,07'Y Tap.

>
O\]
-
[\)
~

=5

From Lemma 3, it is easy to verify that inequality (44) still
holds for w(t) = 0 or w(t) = ®.

As E(w(t),d(t)) + I'(w(r)) is linear in (t), condition
B(w(t),o(r)) + I'(w(t)) <0 is equal to two boundary ones
Bw(t),m,) + T'w(t))<0 (1= 1,2), one for w(t) = w,
and the other for () = w,. Obviously, for fixed 1 = 1,2,
E(w(t), ;) + I'(w(r)) is a quadratic matrix function of
o(t), based on Lemma 5, condition Z(w(?),w,)+
I'(w(t)) <0 can be assured by any one of the two groups of
conditions: one is Z,, + I, <0 with p =1,2,3, and the
other one with p = 1,2,4.

From Schur complement Lemma, for allocated 1 = 1,2,
E, +T,<0 is equal to inequality Ep,<0, p=12734.
Thus, the criteria of Theorem 1 mean V(z,y,) <0 for all
t > 0. Therefore system (7) is globally robustly synchro-
nized. This finishes the proof of Theorem 1.
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