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Abstract
Spectral efficiency (SE) optimization in massive multiple input multiple output (MIMO) antenna cognitive systems is a

challenge originated from the coexistence restrictions. Traditional power allocation can optimize the SE; however,

involving deep learning can meet real-time and fairness processing requirements. In unfair allocation problem, all power is

possibly assigned to one or few antennas of a particular user. In this paper, we build a mathematical optimization model

considering the fairness problem such that SE is optimized for all users. To implement the model, we propose an attention-

based convolutional neural network (Att-CNN), where h0 and hk (i.e., cross-interference and direct channels) attention

mechanisms are used to improve the SE. The convolutional neural network is applied to decrease the floating point

operations (FLOPs) and number of network parameters. We conducted experiments from these aspects: Fair antenna power

allocation, power allocation performance and computational performance. Heat maps with different interference thresholds

show the fair allocation for all users. Analyses of SE validate the superiority of the Att-CNN compared with the equal

power allocation and fully connected neural network (FNN) schemes. The analyses of the FLOPs and number of

parameters show the superiority of the Att-CNN over the FNN.

Keywords Attention mechanism � Cognitive radio � Convolutional neural network � Massive MIMO system �
Spectral efficiency optimization

1 Introduction

Big data communications in high connection density net-

works are ever-growing because of the increasing demands

in social networks [1, 2], augmented reality [3], etc., under

the background of the Internet of Things. Spectral effi-

ciency optimization can enhance the throughput to ease this

problem. This motivates novel resource allocation designs

in multiple input multiple output (MIMO) cognitive radio

(CR) to address such high data rate applications. Cognitive

radio has been known as a technology for reutilizing the

spectrum licensed for a primary radio (PR) [4]. In the

underlay CR mode, both PR and CR can concurrently

transmit without inducing harmful interference by CR

transmitters at PR receivers in that the CR interference

power at PR is restricted below a predefined threshold

[5, 6].

At the heart of today’s wireless networks, e.g., IEEE-

based [7] and 3GPP-based [8], the combination of

orthogonal frequency division multiplexing with the mul-

tiple input multiple output technologies is a feature for

addressing physical (PHY) and medium access control

(MAC) layers challenges. Consequently, the communica-

tion system possesses large number of radio resources and

degrees of freedom for which the management processing

demands low complexity algorithms to fulfill requirements

of emerged applications and use cases. This is a chal-

lenging aspect in the conventional algorithms especially for

the CR networks. For convenience, minimum mean square

error (MMSE) algorithm [9] demands complex operations

such as matrix inversion in every iteration. Interior point

algorithm based on barrier method [10] employs centric

iterations in which complex Newton step is executed.
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Iterative waterfilling algorithm [11] involves singular value

decomposition at each iteration. Lagrange algorithms

[12, 13] solve closed-form expressions in terms of iterative

dual variables associated with the optimization constraints.

Generally speaking, the aforementioned iterative opti-

mization algorithms are by nature computationally expen-

sive. That makes their real-time implementation

challenging especially for large-scale wireless communi-

cation system whose algorithm execution is periodically

required in time frames of milliseconds (due to the very

dynamic system parameters such as channel conditions,

number of users, etc.).

On the other hand, machine learning has been a research

trend in several processings fields of wireless communi-

cations such as resource and interference management

[14, 15], channel state information feedback and estimation

[16, 17], antenna selection and beamforming design

[18, 19] and others. The reason behind is the potential

computational efficiency of deep learning solvers in opti-

mization problems.

Hence, this paper proposes an attention-based deep

learning algorithm to address a novel power allocation

design in CR MIMO systems. Our contributions are sum-

marized as follows.

1. We developed a fair per-antenna power allocation

scheme in CR MIMO systems. The proposed

scheme addresses the issue of opportunistic unfair

power allocation in that all users can have the basic

quality of service (QoS)1 by setting lower bounds

during the configuration.

2. We propose an attention-based convolutional neural

network (Att-CNN) method to implement the fair

power allocation over antennas and users. We design

two types of attention mechanisms: Cross-channel h0
based and direct channel hk based, which support the

whole neural network to focus on the relationships

between h0 and hk, and inside hk, respectively. In

addition, the CNN effectively reduces the floating point

operations (FLOPs) and number of network

parameters.

3. Beside the implementation of Att-CNN model, we also

implement the proposed per-antenna power allocation

paradigm using fully connected neural network and

equal power allocation methods. Main findings show

that the Att-CNN outperforms those baselines.

Throughout the paper, ð:ÞT and ð:ÞH are the transpose and

conjugate transpose, respectively. k:k denotes the 2-norm.

½X�i denotes the ith column of the matrix X. For real value

x, ½x�þ ¼ maxðx; 0Þ. Rm�n denotes the space of real m� n

matrices, respectively.

The sequel of this paper is organized as follows: Sect. 2

exhibits the system model and the problem statement.

Section 3 derives the proposed fair per-antenna power

allocation by means of the Att-CNN. Section 4 presents the

experimental results. Section 5 introduces the related work.

Finally, Sect. 6 concludes the paper.

2 Problem statement

We consider a CR network including a CR base station

(CR-BS) and coexisting with a PR base station (PR-BS).

The CR-BS is equipped with Nt antennas communicating

with K single-antenna CR users (CUs) where Nt;K 2 Rþ.
The PR-BS is a single antenna system serving a primary

user. The antenna system of the CR-BS is a massive

MIMO. Mutual interference is assumed according to the

underlay CR setting in which CR induces interference at

the primary user but below a predefined threshold, while

the PR-BS introduces interference at the CR users without

restrictions. The channels between the CR-BS antenna i

and CR user k, the CR-BS antenna i and the PR user, the

PR-BS and the CR user k and the PR-BS and PR user are

denoted as hk;i, h0;i, gk and g0, respectively, where

1� k�K and 1� i�Nt. The total power of PR-BS and

CR-BS are denoted as PPR and Pt, respectively. The noise

power and interference threshold caused by the CR-BS at

the PR user are defined as r and Ith. System model is

illustrated in Fig. 1, and all parameters are listed and

explained in Table 1.

In this paper, we intend to optimize the spectral effi-

ciency of CR user k in the proposed underlay CR network,

which can be written as follows:

SEk
CR¼ log2 1þ

k
PNt

i¼1 hk;iP
1=2
k;i k2

r2þ
P

l 6¼k

k
PNt

i¼1 hk;iP
1=2
l;i k2þn

0

B
B
@

1

C
C
A; ð1Þ

where n ¼k gk k2 PPR is the interference from the PR-BS.

Intuitively, the optimization problem of antennas power

allocation can be stated as follows:

1 Basic Qos in this sense means the ability to get the communication

service with a data rate proportional to channel conditions. Satisfac-

tory QoS via securing a minimum data rate goes along with the CR

spectral efficiency enhancement goal only when good channel

conditions are witnessed.
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SECR ¼ max
fPk;i � 0g

XK

k¼1

SEk
CR;

s:t: :

C1 :
XK

k¼1

XNt

i¼1

Pk;i �Pt;

C2 : ICR ¼
XK

k¼1

k
XNt

i¼1

h0;iP
1=2
k;i k2 � Ith:

ð2Þ

Here, the optimizing target is to maximize the SE of all

cognitive users SECR in the CR network, under the con-

straints of total power Pt and interference threshold Ith.

However, when we addressed this optimization problem

with tuned deep neural networks, we met a new problem.

Figure 2 shows a heat map example for unfair power

allocation. The horizontal and vertical axes are users and

antennas indices, respectively. It is clear that a single CU or

even several antennas of that user are allocated almost all

the power. This is unfair to other users, because all have the

same priority. The fair scheme involves more spatial

degrees of freedom in the MIMO system via serving more

users, i.e., multiuser MIMO. However, the unfair schemes

engage single user underutilizing the spatial degrees of

freedom, i.e., single-user MIMO, given that the antenna

condition Nt �K holds [9, 12]. Thus, the benefit is mani-

fold: better QoS and higher spectral efficiency perfor-

mance. It is worth noting that the global maximum solution

can only be found by an exhaustive search, which is based

on trial-and-error method whose computational complexity

is inevitably intractable for real-time communications.

Therefore, we anchor the optimization problem to fair

antennas power allocation and add a new constraint (i.e.,

user minimum power kk) as follows:

SECR ¼ max
fPk;i � 0g

XK

k¼1

SEk
CR;

s:t: :

C1 :
XNt

i¼1

Pk;i � kk;

C2 :
XK

k¼1

XNt

i¼1

Pk;i �Pt;

C3 : ICR ¼
XK

k¼1

k
XNt

i¼1

h0;iP
1=2
k;i k2 � Ith;

ð3Þ

where kk is configurable. Note that if kk ¼ 0; 8k 2 ½1;K�,
then it becomes the previous unfair antennas power allo-

cation problem.

. . .

h1=[h1,1 ,…, h1,Nt]
CR user 

1

CR user 
K

. . . .CR-BS

1

Nt

hK=[hK,1 ,… , hK,Nt]

PR user 
g0

h0=[h0,1 ,…, h0,K]

g 1

gKPR-BS

Fig. 1 System Model: MIMO CR network coexists with a PR network

Table 1 Definitions of system

model parameters
Parameter Definition

SEk
CR

Spectral efficiency of CR user k

SEPR Spectral efficiency of PR user

hk;i Channel gain between CR-BS antenna i and CR user k

h0;i Channel gain between CR-BS antenna i and primary user k

gk Channel gain between the PR-BS and cognitive user k

g0 Channel gain between the PR-BS and primary user

Pk;i Allocated power to antenna i for user k

r2 Noise power

PPR Total power of PR-BS

Pt Total power of CR-BS

ICR Interference from the CR network to the PR user

Ith Interference threshold at the primary user

Nt Number of CR-BS antennas

K Number of CR users
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3 Attention-based deep neural network

3.1 Network structure

We use an attention-based convolutional neural network,

i.e., Att-CNN, to address the above-mentioned problem.

Because the channel gains obtained from our channel

model are extremely small, we use the following equation

to normalize the dataset.

ĥi;j,
log10ðhi;jÞ � E½log10ðhi;jÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½ðlog10ðhi;jÞ � E½log10ðhi;jÞ�Þ
2�

q : ð4Þ

To process the complex numbers of channel gains, a data

initialization network is used, see Fig. 3. We define the

block channel matrix as H, hT1 ; � � � ; hTK
� �T

. The normalized

channel gains of H are input of Ni full connected layers

(FCLs) with Li cells to memorize the relationship between

real and imaginary parts. Then a cross-channel h0 attention

network accepts the data and outputs a new matrix called

Ĥ, which is mixed real and imaginary parts of channel

gains and adjusted by cross-channel h0. The cross-channel

h0 attention network is introduced in Sect. 3.2.1.

Then the integrated matrix is input into three networks,

see Fig. 3. At the former of every network is a direct

channel hk attention network (HKAN), which is used to

reevaluate every row in the integrated matrix, see

Sect. 3.2.2.

In Network 1, the output of the HKAN is input into Nc

CNN layers. The CNN can decrease the number of neural

network parameters because of parameter sharing. Pooling

layers are not considered since all data should be used. Nc

is limited by the receptive field that the receptive field of

the top most layer should be no larger than the input image

region [20], which can be calculated as follows.

rn¼rn�1 � ln � ln � 1ð Þ � rn�1 �
Yn�1

i¼1

si

 !

; s:t:; n�2; ð5Þ

where ln sn rn are kernel size, stride and receptive field of

nth layer, respectively; r0 ¼ 1; and r1 ¼ l1. Figure 4 is an

example that the input image size is 10*10 pixels; and the

kernel size and stride of the first and second layer both are

4*4 pixels and 1*1 pixel, then the receptive field of second

layer is 7*7 pixels. At last, the receptive field of the third

layer reaches 10*10 pixels, which covers the whole image.

The output of the CNN layers is sent into Nf1 FCLs with

Lf1 cells, and with a softmax layer, we obtain the final

output of Network 1 which is seen as
Pk;i

Pk
, because it has the

same mathematical characteristic with softmax as follows.
P

Pk;i

Pk
¼ 1: ð6Þ

In Network 2, the output of the HKAN is directly input into

Nf2 FCLs with Lf2 cells. Then a FCL with sigmod activa-

tion functions is used to produce the final output of Net-

work 2, and this output is denoted as Pk

P0
k
, where P0

k is the

upper bound of Pk, and
Pk

P0
k
has the same range with sigmod

as follows.

0\
Pk

P0
k

\1: ð7Þ

Similar with Network 2, the output of the HKAN in

Network 3 is input into Nf3 FCLs with Lf3. Then the output

is fed into a softmax and a sigmod layer, respectively. The

softmax and sigmod layers output
P0
kP
P0
k

and

P
P0
k

Pt
, respec-

tively, because they have the same ranges with softmax and

sigmod as follows.

X ~Pk
P

~Pk

¼ 1; ð8Þ

0\
P

~Pk

PT �
P

kk
\1; ð9Þ

where ~Pk is the up bound power which can allocate to user

k beside kk. Namely, P0
k ¼ kk þ ~Pk.

Then we can calculate Pk;i as follows:

Pt=1e-2 Ith=1e-4

1e5
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Fig. 2 Heat map of antennas power allocation. It shows an example

for unfair power allocation scheme that assigns all the power to a

single CR user (8th index)
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Pk;i¼
Pk;i

Pk

Pk

P0
k

kkþ
~Pk

P
~Pk

P
~Pk

PT�
P

kk
PT�

X
kk

� �� �

: ð10Þ

Thus, we obtain Pk;i which complies with the constraints of

C1 and C2. Then, regarding our fair antennas power allo-

cation problem, loss function is designed as follows:

Loss,�
XK

k¼1

log2 1þ
k
PNt

i¼1

hk;iP̂
1=2

k;i k2

r2þ
P

l 6¼k

k
PNt

i¼1

hk;iP̂
1=2

l;i k2þn

0

B
B
B
@

1

C
C
C
A
; ð11Þ

where P̂k;i is calculated by Algorithm 1. Note that P̂k;i ¼
Pk;i=ð1þ ½ICR=Ith � 1�þÞ which makes a penalty to Pk;i

when the constraint C3 is violated. However, apparently,

P̂k;i must not be bigger than Pk;i which may not meet the

constraint C1 in some cases. Thus, in order to find the

equilibrium between constraint C1, C2 and C3, we propose

the iterative Algorithm 1.

3.2 Applications of attention mechanism

Attention mechanism is a technique imitating human

beings to address problem which focuses on important

information from big data. In our problem, on account of

the diversity of channel gains H, the networks may get

wrong rules, which should be nonexistent, learning from

the limited training sets. The proposed attention mecha-

nism is specific and makes the networks more sensitive to

channel gains H from its unique structure compared to

fully connected networks. We define two kind of attention

mechanism: h0 and hk, which are represented as two neural

Fig. 3 Structure of the proposed attention-based convolutional neural network

Fig. 4 Receptive field
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networks. The cross-channel h0 attention network takes

into account the relationship between the h0 and hk, and the

direct channel hk attention network represents the internal

relationship of hk. The details are reported as follows.

3.2.1 The cross-channel h0 attention network

As shown in Eq. (3), the channel gain between CR antenna

i and the PR user h0 can influence the value of ICR, which is

included in constraint C3. Hence, the cross-channel h0
attention mechanism is involved in the initialization net-

work. In other words, we reevaluate the weights of CR

channel gains in terms of h0. Figure 5a shows the cross-

channel h0 attention network. Here, h0 is used to produce a

matrix q 2 R
�K�Nt , �K ¼ K=2 as follows:

q ¼ r Wqh0ð Þ; ð12Þ

where Wq is a �K � 1 weight vector from training, and r is

an activation function. Note that �K ¼ K=2 is proposed for

reducing computation. In addition, matrix f 2 R
�K�Nt is

taken from CR channel gain matrix H as follows:

f ¼ r W fH
	 


; ð13Þ

where W f is the �K � K parameter matrix. Then, matrix

a 2 RNt�Nt is defined as the extent to which the network

attends to q when adjusting f . ai;j can be obtained as

follows:

ai;j,
exp scoreij
	 


PNt

i¼1 exp scoreij
	 
 ; ð14Þ

where score ¼ qTf 2 RNt�Nt . Then, we can obtain a new

channel gain matrix with the cross-channel h0 attention

mechanism written as Ĥ, ĥ
T

1 ; ĥ
T

2 ; � � � ; ĥ
T

j ; � � � ; ĥ
T

K

h iT

2 RK�Nt , where

ĥj ¼ hja: ð15Þ

3.2.2 The direct channel hk attention network

Equation (1) indicates that its value is relevant to hk;iP
1=2
k;i

and hl;iP
1=2
k;i . This means the channel gain relationship

(a)

(b)

Fig. 5 a The cross-channel h0
attention network. b The direct

channel hk attention network
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among users can influence the result of SE. Therefore, we

design the direct channel hk attention network. Note that

because of the different functions of Network 1, 2 and 3,

they do not share the same direct channel hk attention

network. In addition, for Network 1, individually using

CNN ignores the relationships between non-adjacent rows

in the H, the direct channel hk attention network can sup-

port CNN to provide a better performance. The network

structure of hk attention network is similar h0 attention

network. Noted that, the input of the network is Ĥ (which

gets off h0 attention network) and matrix q̂ is produced

from Ĥ itself instead of h0. In addition, we introduce a new

matrix v̂. The matrices q̂ 2 RK�Nt , f̂ 2 RK�Nt , v̂ 2 RK�Nt

can be described as follow:

q̂ ¼ rðŴq
ĤÞ;

f̂ ¼ rðŴ f
ĤÞ;

v̂ ¼ rðŴv
ĤÞ;

8
>>><

>>>:

ð16Þ

where Ŵ
q
, Ŵ

f
, Ŵ

v
are K � K weight matrices. Similar to

Equation (14), bi;j can be obtained by the inner product of

extracted vectors (16) as follows:

bi;j,
exp ½q̂�Ti ½f̂ �j
� �

PNt

i¼1 exp ½q̂�Ti ½f̂ �j
� � : ð17Þ

where ½q̂�i and ½f̂ �j are the ith and jth columns of q̂ and f̂ ,

respectively. We define ~H, ~hT1 ;
~hT2 ; � � � ; ~hTj ; � � � ; ~hTK

h iT
2

RK�Nt as the output of the direct channel hk attention

network, where

~hj ¼ vTj b: ð18Þ

4 Experiment

We built a channel model in terms of [21] to produce

channel gains, which takes path loss and multi-path fading

effects into account. The following configuration is used.

Path loss exponent is set 2.5, distance between CUs/PU and

CR/PR base stations is a uniformly distributed random

variable in the range 10; 200½ �. Using this channel model,

we produced a data set which has 1000 10� 100 matrices

for the following Sects. 4.1 and 4.2. We assumed Nt ¼ 99

antennas and K ¼ 9 CR users, and in every 10� 100

matrix, the hk;i elements occupy the first 9 rows and 99

columns; the h0;i elements occupy the last row index

(column index 1 to 99); the gk elements occupy the last

column index (row indices 1 to 99) and the element of g0

occupies the last column index and last row index. 90% of

the data set was used for training, 10% for testing. Such

training/testing is well used in data mining and machine

learning domains [22–24]. The noise was generated as

circular symmetric complex Gaussian random variable

with zero-mean and unit variance. Table 2 lists the

parameters of our Att-CNN. In addition, we assume Nd,

epoch, batch size and learning rate of 20, 100, 100 and

0.005, respectively. The following experiments are con-

ducted in a PC which has a 3.8 GHz AMD-R5-2600 CPU, a

GeForce RTX 2060 with a 6 GB frame buffer and 16 GB

RAM.

4.1 Fair antenna power allocation

To validate our fair antennas power allocation method, we

conducted experiments to compare the results of fair and

unfair antennas power allocation. We assume that Pt ¼
1e� 2 and kk ¼ 1e� 4, and Ith varies from 1e� 6 to

1e� 8. Figure 6 shows comparisons of fair and unfair

power allocation over users and antenna elements. Three

sub-boxes (sub-plots) are exhibited. Each sub-plot repre-

sents one experiment/comparison for a different configu-

ration. The fair scheme (left) heat map is compared to the

unfair scheme (right) in every sub-plot. Horizontal and

vertical axes are the users and antennas, respectively. One

pixel means allocated specific power on an antenna to a CR

user. Color depth represents the allocated power value such

that the closer to the dark blue is the bigger. It is obvious

that the fair model assigns power to all users without

focusing all power on particular indices. However, the

unfair model focuses the power assignment on a single CU

index.

4.2 Power allocation performance

As a typical benchmark, we implemented an equal power

method (EPM), in which Pk;i can be calculated by

Table 2 Att-CNN parameters
Name Value

Ni 1

Li 99

Nc 3

Nf1 2

Lf1 891

Nf2 2

Lf2 9

Nf3 2

Lf3 9
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Pk;i ¼ Pt=NtK=Id. Note that the division over Id is meant

for meeting the constraint C3 in Eq. (3). Then, we imple-

mented a FNN to validate the novelty of the proposed

attention-based CNN, i.e., Att-CNN, from the perspective

of neural network structures. Figure 7 shows the structure

of the FNN. The data initialization network and results

calculation network keep the same with the Att-CNN, and

three ReLU layers with 891 neurons are used to replace the

attention networks and convolutional layers.

To compare the performance of antennas power allo-

cation methods, we defined two signal-to-noise ratios as

follows.

SNRP,
Pt

r2
;

INR,
Ith
r2

:

8
><

>:
ð19Þ

Then we conducted two experiments using the EPM, Att-

CNN and FNN, where we changed the SNRP and INR from 0

to 50 dB to observe changes of SE. We assumed that

r2 ¼ 1e� 9, PPR ¼ 1e� 4 and kk ¼ 0 in these two

experiments.

Figure 8 compares training effect between the Att-CNN

and FNN. Around 10 epoch, both methods can get a good

results. The FNN has a more serious overfitting than the

Att-CNN. More parameters from FNN and limited training

sets may cause this issue. After we added the attention

mechanism and CNN into the network structure, the Att-

CNN got better SE and reduced overfitting significantly.

Figure 9 shows the SE against SNRP, when Ith ¼ 1e� 6.

The gain gap between Att-CNN and FNN is larger when

the SNRP increases, up to 0.588 b/s/Hz. The EPM is the

worst which is even smaller than FNN by a gain gap up to

0.934 b/s/Hz.

Figure 10 shows the SE versus INR, when Pt ¼ 1e� 4. It

is clear that our proposed Att-CNN always outperforms

than FNN and EPM when INR varies from 0 to 50 dB. The

Att-CNN has a superiority over FNN and EPM, up to 0.596

and 1.586 b/s/Hz, respectively.

4.3 Computational performance

The proposed Att-CNN not only has better power alloca-

tion performance, but also has better computational

(a) Pt=1e-2  Ith=1e-6 (b) Pt=1e-2  Ith=1e-7 (c) Pt=1e-2  Ith=1e-8
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Fig. 6 Comparison of fair and unfair antennas power allocation with different parameters

Fig. 7 A fully connected neural network which only replaces the

attention and convolutional parts with three ReLU layers in Att-CNN
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performance than the FNN. We use floating point opera-

tions, i.e., FLOPs, and number of parameters to evaluate

computational performance.

Figure 11a shows FLOPs versus the number of users in

the range between 2 and 9, and the number of antennas is

fixed to 99. Only one case (i.e., the number of users is less

than 3) is that the FNN has less FLOPs than Att-CNN.

When there are more than three users, the FLOPs of the

FNN increase sharply, while Att-CNN increases slowly.

Figure 11b shows FLOPs against the number of antennas

with 9 users. The Att-CNN has less neural network

parameters than the FNN when the number of antennas is

more than 49, which also increase slowly. Note that we

assume our system as a massive MIMO system, hence

cases with more antennas are more reasonable.

Figure 11c, d shows number of parameters against the

number of users, and the number of antennas, respectively.

They almost have the same trends with above FLOPs

analysis.

5 Related work

5.1 Convolutional neural network

Deep learning has dramatically improved the novelties in

many fields, such as speech recognition, visual object

recognition, object detection [25, 26]. Deep learning can be

represented in different structures, e.g., fully connected

neural network (FNN), recurrent neural network (RNN)

and convolutional neural network (CNN). Among them,

CNN have been widely studied in many fields.

Fukushima [27] provided a pioneering research on CNN

in 1980, wherein he proposed a neocognitron model con-

cluded convolution and pooling layers. Lecun et al. [28]

applied back propagation in their LeNet-5 which became

the prototype of CNN. In 2012, Hinton et al. [29] improved

the performance of CNN in image recognition with Alex-

net which used deep structure and dropout method. Based

on the previous researches, Lecun et al. [30] improved

error rate to 11% by their Dropconnect. Later on, the error

rate increased to 6.7% by Yan et al. [31] where they pro-

posed a flexible CNN structure, called Network in Net-

work. Besides image classification, examples on

applications applied for CNN are: object detection [32],

fault prediction [33], natural language processing [34] and

so on. However, none of CNN researches about antennas

power allocation are found.

5.2 Attention mechanism

Sutskever et al. [35] proposed a sequence to sequence

model in 2014, which has two problems: 1) When sen-

tences are too long, the model performance will sharply

decrease; 2) Different words in every sentence have the

same priority. These problems are also mentioned in

computer vision by Mnih et al. [36]. To address these

issues, Bahdanau et al. [37] proposed attention mechanism,

which implemented soft attention and provided some

visual experimental figures. Later on, Xu et al. [38] applied

the attention mechanism into computer vision, where they

proposed two types of attention mechanisms: soft and hard

attentions. In 2015, Luong et al. [39] improved these two

attentions to the other two: local and global attentions. In

2017, Ahmed et al. [40] proposed a new network structure,

named transformer which included a self-attention mech-

anism. The attention mechanisms have many applications.

For instance, Li et al. [41] leveraged the attention mecha-

nism to focus on the objects clicked by users in recom-

mended systems based on session process; Liu et al. [42]

proposed a gated multilingual attention framework to

address the issue of data sparsity and monolingual ambi-

guity in event detection tasks; Du et al. [43] proposed a

new self-attention mechanism which leveraged the rela-

tionships between local features and applied in some

industrial video data. Min et al. [44] proposed bottom-up

and top-down attention mechanism can assign higher

weights to sensitive features, thereby limiting some

redundant information. Up to authors’ best knowledge,

none of the state-of-the-art has introduced the attention
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mechanism in the radio resource management context,

particularly the fair power assignment task. The novel use

of the attention mechanism in this work is motivated by its

ability that allows for input features to dynamically come

to the forefront as needed [38]. Such a characteristic is

inspired from the related literature above.

5.3 Resource allocation

From the resource allocation perspective, machine learning

methods have provided fast processing and can resolve

optimization problems for time sensitive tasks. Those tasks

are treated as a black box given that the relationship

between the input and output is learnable via deep neural

network [25]. Without loss of generality, deep neural net-

work can approximate and solve non-convex optimizations

known to be NP-hard [45]. In non-CR context, authors of

[46] have developed an approximation for a weighted

MMSE optimization by a deep neural network. The aim

was to provide less computational complexity and hence

real-time processing at almost similar performance. In the

CR context, Zhou et al. [47] have implemented a deep

neural network for resource allocation, namely spectral

efficiency and energy efficiency maximizations. The

training data have been obtained by specific conventional

strategies in the literature. Such dependency on conven-

tional algorithms raises the computational complexity. Liu

et al. [48] have employed weighted sum of CR interference

power as objective for a minimization function with quality

of service constraints for both CR and PR networks. Since

the problem is non-convex, a message-passing algorithm

based on deep learning has been utilized. A spectral effi-

ciency maximization problem for a set of transceiver pairs

has been solved by a FNN in [49]. Device-to-device

communication links were considered and the FNN was

trained by data set for which normalization has been con-

ducted for timely efficiency. This model doesn’t address

infrastructure-based networks nor fairness constraints

which are vital requirements in real networks.

6 Conclusion

The paper built a mathematical model for an unfair

antennas power allocation issue in MIMO systems. Then,

an attention-based convolutional neural network, i.e., Att-

CNN, was proposed to address the issue. There, an h0
attention network was used to reevaluate the weights of

channel gains in terms of h0; an hk attention network was

used to change the weights of the channel gains among
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users; and a CNN was applied to decrease floating point

operations (FLOPs) and number of network parameters.

We used heap maps to compare fair and unfair allocation

varying the interference thresholds, which verified the fair

effect. To validate power allocation performance of our

Att-CNN, we compared it with equal power allocation and

a fully connected neural network (FNN) from the aspects

of spectral efficiency against SNRP and INR. At last, we

analyzed the FLOPs and number of parameters of the Att-

CNN and the FNN, which indicated the superiority of our

Att-CNN.

In future research, we intend to further improve the

computational performance of our Att-CNN and apply it in

realistic industrial systems.
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28. LeCun Yann, Bottou Léon, Bengio Yoshua, Haffner Patrick et al

(1998) Gradient-based learning applied to document recognition.

Proc IEEE 86(11):2278–2324

29. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-

fication with deep convolutional neural networks. In: Advances in

neural information processing systems (pp 1097–1105)

30. Wan L, Zeiler M, Zhang S, Le Cun Y, Fergus R (2013) Regu-

larization of neural networks using dropconnect. In: International

conference on machine learning pp 1058–1066

31. Lin M, Chen Q, Yan S (2013) Network in network. arXiv preprint

arXiv:1312.4400

32. Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-

time object detection with region proposal networks. In:

Advances in neural information processing systems, pp. 91–99

33. Wen L, Li X, Gao L A transfer convolutional neural network for

fault diagnosis based on resnet-50. Neural Comput Appl

34. Li L, Goh TT, Jin D How textual quality of online reviews affect

classification performance: a case of deep learning sentiment

analysis. Neural Comput Appl

35. Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence

learning with neural networks. In Advances in NIPS, 2014

Neural Computing and Applications (2023) 35:12967–12978 12977

123

http://arxiv.org/abs/1312.4400


36. Mnih V, Heess N, Graves A et al (2014) Recurrent models of

visual attention. In: Advances in neural information processing

systems, pp 2204–2212

37. Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:

1409.0473

38. XuK,Ba J,KirosR,ChoK,CourvilleA, SalakhudinovR, ZemelR,

Bengio Y (2015) Show, attend and tell: Neural image caption

generation with visual attention. Computer Science, pp 2048–2057

39. Luong MT, Pham H, Manning CD (2015) Effective approaches to

attention-based neural machine translation. arXiv preprint arXiv:

1508.04025

40. Ahmed K, Keskar NS, Socher R (2017) Weighted transformer

network for machine translation. arXiv preprint arXiv:1711.

02132

41. Li J, Ren P, Chen Z, Ren Z, Lian T, Ma J (2017) Neural attentive

session-based recommendation. In: Proceedings of the 2017

ACM on conference on information and knowledge management,

pp 1419–1428. ACM

42. Liu Jian, Chen Yubo, Liu Kang, Zhao Jun (2018) Event detection

via gated multilingual attention mechanism. In Thirty-Second

AAAI Conference on Artificial Intelligence

43. Du Yang, Yuan Chunfeng, Li Bing, Zhao Lili, Li Yangxi, Hu

Weiming (2018) Interaction-aware spatio-temporal pyramid

attention networks for action classification. In Proceedings of the

European Conference on Computer Vision (ECCV), pages

373–389

44. Xia Min, Liu Wan’an, Xu Yiqing, Wang Ke, Zhang Xu (2019)

Dilated residual attention network for load disaggregation. Neural

Computing and Applications

45. Luo Z-Q, Zhang S (2008) Dynamic spectrum management:

Complexity and duality. IEEE Journal of Selected Topics in

Signal Processing 2(1):57–73

46. Sun H, Chen X, Shi Q, Hong M, Fu ND, Sidirioulos X Learning

to optimize: Training deep neural networks for interference

management. IEEE Transactions on Signal Processing,

66(20):5438–5453

47. Zhou F, Zhang X, Hu RQ, Papathanassiou W, Meng A (2018)

Resource allocation based on deep neural networks for cognitive

radio networks. In Proc. IEEE International Conference on

Communications in China, pages 40–45. IEEE, Aug

48. Liu Miao, Song Tiecheng, Jing Hu, Yang Jie, Gui Guan (2019)

Deep learning-inspired message passing algorithm for efficient

resource allocation in cognitive radio networks. IEEE Trans Veh

Technol 68(1):641–653

49. Lee Woongsup (2018) Resource allocation for multi-channel

underlay cognitive radio network based on deep neural network.

IEEE Communication Letters 22(9):1942–1945

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

12978 Neural Computing and Applications (2023) 35:12967–12978

123

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1711.02132
http://arxiv.org/abs/1711.02132

	Attention-based deep convolutional neural network for spectral efficiency optimization in MIMO systems
	Abstract
	Introduction
	Problem statement
	Attention-based deep neural network
	Network structure
	Applications of attention mechanism
	The cross-channel h_0 attention network
	The direct channel h_{k} attention network


	Experiment
	Fair antenna power allocation
	Power allocation performance
	Computational performance

	Related work
	Convolutional neural network
	Attention mechanism
	Resource allocation

	Conclusion
	Acknowledgements
	References




