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Abstract
Deep learning has transformed the field of data analysis by dramatically improving the state of the art in various

classification and prediction tasks, especially in the area of computer vision. In biomedical engineering, a lot of new work

is directed toward surface electromyography (sEMG)-based gesture recognition, often addressed as an image classification

problem using convolutional neural networks (CNNs). In this paper, we utilize the Hilbert space-filling curve for the

generation of image representations of sEMG signals, which allows the application of typical image processing pipelines

such as CNNs on sequence data. The proposed method is evaluated on different state-of-the-art network architectures and

yields a significant classification improvement over the approach without the Hilbert curve. Additionally, we develop a

new network architecture (MSHilbNet) that takes advantage of multiple scales of an initial Hilbert curve representation and

achieves equal performance with fewer convolutional layers.

Keywords Hilbert curve � Hand gesture recognition � sEMG � Electromyography � Classification � CNN �
Deep learning � Multi-scale

1 Introduction

The problem of gesture recognition is encountered in many

applications including human computer interaction [38],

sign language recognition [10], prosthesis control [9] and

rehabilitation gaming [8, 34]. Signals generated from the

electrical activity of the forearm muscles, which can be

recorded with surface electromyography (sEMG) sensors,

contain useful information for decoding muscle activity

and hand motion [16].

Machine learning (ML) classifiers have been used

extensively for determining the type of hand motion from

sEMG data. A complete pattern recognition system based

on ML consists of data acquisition, feature extraction,

classifier definition and inference from new data. For the

classification of gestures from sEMG data, electrodes

attached to the arm and/or forearm acquire the sEMG

signals, and features such as mean absolute value (MAV),

root mean square (RMS), variance, zero crossings and

frequency coefficients are extracted and then fed as input to

classifiers like k-nearest neighbors (k-NNs), support vector

machine (SVM), multilayer perceptron (MLP) or random

forests [40].

Over the past years, deep learning (DL) models have

been applied with great success in sEMG-based gesture

recognition. In these approaches, sEMG data are repre-

sented as images and a convolutional neural network

(CNN) is used to determine the type of gesture. A typical

CNN architecture consists of a stack of convolutional and

pooling layers followed by fully connected (i.e., dense)
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layers and a softmax output. In this way, CNNs transform

the input image layer by layer, from the pixel values to the

final classification label.

The application of DL methods can also favor the per-

formance of sEMG interfaces used in rehabilitation. There

is a large body of literature about the utilization of sEMG

devices in rehabilitation and myoelectric control

[17, 28, 36, 37]. A common limitation presented is the lack

of classification robustness. To address this, recent studies

provide evidence for significant performance improvement

(with respect to classification accuracy and latency)

achieved with DL approaches [6, 41, 47].

CNNs have made breakthroughs in feature extraction

and image classification tasks in 2D problems. Yet,

choosing a proper method to convert time-series into

images that can be used as inputs to CNN models is not

obvious. Among the methods proposed in the literature are

the segmentation of multi-channel signals using windows

and the application of 1D transformations such as the

Fourier and wavelet transforms.

In this work, we extend our previous research [49] about

the application of the Hilbert space-filling curve to repre-

sent sEMG signals as images. This type of curve is useful

because it provides a mapping between 1D and d-dimen-

sional spaces while preserving locality. This approach

enables the application of image processing techniques on

sequence data such as biomedical signals. In this case,

CNN models are used to classify Hilbert curve images of

sEMG signals for the problem of hand gesture recognition.

The overview of the current work is given in Fig. 1. The

main contributions presented in this paper are:

• a detailed performance comparison of the proposed

locality-preserving Hilbert curve representation over

well-known CNN models

• a comparison with the state-of-the-art (WeiNet [53])) in

hand gesture recognition

• the development of a new lightweight model (MSHilb-

Net) based on multiple scale Hilbert curves.

The remaining of the paper is organized as follows. Sec-

tion 2 provides a literature review on gesture recognition

approaches, as well as on applications of the Hilbert curve

to classification tasks. In Sect. 3, the details of the proposed

method and of the CNN architectures used for experi-

mentation are given. Section 4 describes the experiments

performed for the evaluation of the models, while the

results followed by a discussion are presented in Sect. 5–6.

Finally, a summary of the outcomes is given in Sect. 7 and

Appendix 1 contains additional figures and tables.

2 Related work

Both typical ML approaches and DL practices have been

employed to study the problem of sEMG-based hand ges-

ture recognition. The first ML approach is presented in

[25], where for the classification of four gestures a set of

time-domain features is extracted from sEMG signals

recorded with two electrodes. The authors of [7] achieve

97% accuracy in classifying three types of grasps using the

RMS feature extracted from seven electrodes as input to an

SVM classifier. A comparison of different types of EMG

features and classifiers for the classification of 52 gestures

from the Ninapro reference dataset [3, 4] is provided by

Fig. 1 The flowchart of the current work. sEMG data are prepro-

cessed as in previous studies, and then the Hilbert curve mapping

(Figs. 3, 4) is applied. During the training session (1), a set of hyper-

parameters (Tables 3, 4, 5) is selected based on the performance on

the validation set, before optimizing (2) the weights of the CNN

model (Figs. 6, 8, 9, 10, 11, 12), which is evaluated (3) on the testing

data (Figs. 7, 12, 13, 14, Tables 6, 7, 8, 9, 10)
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[3, 19, 30]. A random forest classifier and a combination of

statistical and frequency domain features, i.e., MAV, his-

togram, wavelet and Fourier transform features, yield the

best performance, an accuracy of 75%.

The literature for DL methods related to sEMG gesture

recognition has been continuously increasing over the last

years. In [39], the authors evaluate different configurations

of RNNs and their results show that a classifier with a

bidirectional recurrent layer composed of long short-term

memory (LSTM) units followed by attention mechanism

performs best in an application classifying 18 gestures

from the Ninapro database. The authors of [46] use an

unsupervised generative flow model to learn comprehen-

sible features classified by a softmax layer that achieves

about 64% accuracy on classifying 53 gestures. RNNs are

important for sequence problems where successive inputs

are dependent on each other. However, this is not totally

true for EMG signals since they are inherently stochastic.

CNN models are the most commonly used DL approach

for the task of gesture recognition based on sEMG. In [35],

the authors develop a CNN for the categorization of six

common gestures that improves the classification accuracy

compared to SVM. The model of [2] consisting of con-

volutional and average pooling layers results in comparable

performance to what was achieved using typical ML

approaches. The results of our previous work [48] indicate

that the use of max pooling rather than average pooling and

the addition of dropout [44] layers between the convolu-

tions can produce a 3% increase in accuracy (from 67 to

70%). The works of [18, 53] propose a few novelties

compared to previous works not only in network structure

but also in the way EMG signals are acquired. This is based

on a high-density electrode array, which is considered an

effective approach in myoelectric control [27, 33, 45].

Using instantaneous EMG images, the CNN model of [18]

correctly classifies a set of eight hand movements with a

rate of 89%, whereas the multi-stream CNN described in

[53] achieves 85% accuracy on the Ninapro database. In

their later works [22, 52], the authors of [53] propose a

multi-view approach combining various sEMG represen-

tations, including FFT and traditional feature vectors, that

achieves a classification improvement of about 3%.

Methods that deal with the adaptation of a pretrained

network to new users have been developed as well. The

work of [14] utilizes adaptive batch normalization

(AdaBN) [31] to distinguish between subject-specific

knowledge (normalization layers) and gesture-specific

knowledge (convolutional layer’s weights), whereas in [12]

a method based on weighted connections between a net-

work trained on one subject (source domain) and a network

trained on a different subject (candidate target network) is

presented. In addition, [12] compares methods of data

augmentation for sEMG signals.

The properties of the Hilbert curve are well known and

have been exploited in the past for diverse applications.

The authors of [13, 29] employ the Hilbert curve to rep-

resent mammographic images as 1D vectors from which a

combination of features is extracted in order to detect

breast cancer. Similarly, the work of [11] transforms vol-

umetric data into 2D and 1D representations, which are

then processed efficiently by typical CNNs. Compared to

processing the raw data directly, the method described in

[11] reduces training time and can be used on data with an

arbitrary number of channels. The performance of recurrent

models, such as long short-term memory (LSTM) net-

works, in the detection of image forgeries depends on the

sequence of the extracted image patches. In [5], the order

by which image patches are fed into an LSTM is deter-

mined by the Hilbert curve in order to better preserve their

spatial locality. In our work, the Hilbert curve is not

applied for dimensionality reduction, rather it is utilized for

representing 1D sEMG signals as 2D images in a way

similar to what is done in a few other studies. In the work

of [54] that deals with the problem of DNA sequence

classification, it was determined that long-term interactions

between regions of the sequence are important for high

classification accuracy. Instead of using very deep net-

works or larger filters, the Hilbert curve was used to map

the DNA sequence into an image such that proximal ele-

ments stay close, while the distance between distant ele-

ments is reduced. In addition, the authors of [1] employ the

same representation to improve the performance of a deep

neural network that detects regions in the DNA sequence

that are important for gene transcription.

3 Methods

3.1 Hilbert curve

A Hilbert curve (also known as a Hilbert space-filling

curve), first described by the German mathematician David

Hilbert in 1891, is a continuous fractal space-filling curve,

i.e., a curve that passes through all the points of a d-di-

mensional space sequentially. Space-filling curves have

been widely applied to tasks in data organization and

compression. The Hilbert curve is known for being supe-

rior in preserving locality compared to alternatives

[20, 32], such as the z-order and Peano curves. This means

when two points that lie on a 1D line at a specific distance

are mapped into 2D space with a space-filling curve, their

new distance will be smaller if the Hilbert curve is used.

Following the notation found in [20], a discrete d-di-

mensional Hilbert curve of order k, denoted as Hd
k of length

Ld, where L ¼ 2k, is a bijective mapping:
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Hd
k : ½Ld� ! ½L�d ð1Þ

where ½L� ¼ f0; . . .; L� 1g. For the 2D case (d ¼ 2), a

sequence x of length L2, fxg ¼ fx0; x1; . . .; xL2�1g, is

mapped into a 2D image y with dimensions L� L, such

that yi;j ¼ xl; 8l 2 f0; . . .; L2 � 1g, where ði; jÞ ¼ H2
k ðlÞ.

For the rest of the paper, we simply denote H2
k as Hk.

The Hilbert curve can be easily constructed in a recur-

sive manner. Initially, the 2D plane is divided into four

quadrants traversed according to a fundamental pattern, as

shown in Fig. 2, that constitutes the first-order represen-

tation H1. Higher-order curves are produced by dividing

existing sub-squares into four smaller ones that are con-

nected by a pattern obtained by rotation and/or reflection of

the fundamental pattern. A visualization of Hilbert curve

traversals of the 2D space for orders k ¼ f1; 2; 3g is shown

in Fig. 2, where the numbers correspond to the index

within the sequence that is mapped to a specific pixel.

3.2 sEMG representation

In this work, the Hilbert curve is employed to transform

multi-channel sEMG signals into 2D image representa-

tions. Firstly, the sEMG data of a hand gesture recorded by

M electrodes are organized into small segments of length

N. Therefore, the dimensions of the data are N �M. Then,

the mapping can be used in two ways: (1) across the time

dimension, i.e., for each sEMG channel, map the time

sequence into a 2D image, or (2) across the sEMG chan-

nels, i.e., for each time instant, map the values of the

channels into a 2D image. Examples of these representa-

tions are shown in Fig. 3.

Usually in image applications, the input of a CNN is

either an image with one channel (grayscale) or an image

with three channels (RGB). In our approach, the image

depth corresponds to either the number of sEMG electrodes

or the duration of the sEMG segment.

What our approach actually does, is to reshuffle the

spatiotemporal samples of a 1D image (Fig. 3d) in a multi-

channel image with lower dimensions (Fig. 3e, f). The

result of constructing each channel through the Hilbert

scanning is to extend either the time neighborhoods (e) or

the electrode neighborhoods (f). So, only one of the

domains benefits from the Hilbert curve: the time domain

in (e) where the Hilbert curve is applied on the rows of (d),

and the electrode (spatial) domain in (f) where the Hilbert

curve is applied on the columns of (d).

The computation of the proposed representations using

the Hilbert space-filling curve requires only bitwise oper-

ations performed in constant time [21]. Then, the algorithm

that computes the mapping between 1D and 2D takes

Oðlog2KÞ, where K ¼ N (Sect. 3.2.1) or K ¼ M

(Sect. 3.2.2) is the length of the projected sequence. In

addition, since the mapping from 1D to 2D is the same for

all the generated images, it is computed only once and then

used as a look-up table. Thus, considering that K is limited

to Kmax ¼ 64, the computational overhead is negligible

compared to training the CNN.

We evaluate the Hilbert curve representations of sEMG

signals across five CNNs and compare their performance to

the baseline approach (i.e., Hilbert mapping is not applied).

3.2.1 Hilbert in time

The application of the Hilbert mapping across the time

dimension (HilbTime) consists of the following steps

(Fig. 4). Given a single electrode sEMG sequence of length

N, a 2D Hilbert representation is achieved with maximum

dimensions L� L, where N� L2 and L is a power of two,

i.e., L ¼ 2k. If there are M sEMG electrodes, this process is

repeated for every electrode, and the outputs are stacked

into a M-channel image, i.e., an image with dimensions

L� L�M. For example, an sEMG segment of 10 elec-

trodes with 64 samples is mapped into an 8� 8� 10

image. The output image, y, is initialized with zeros, and

then for every electrode m and every timestep n, image

coordinates (i, j) are generated from the timestep n such

that the image value at position (i, j, m) equals the signal

value at timestep n of electrode m. It is important to note

that when sequence segments of length smaller than L2 are

used, the final image can be cropped in order to remove

rows and columns with only zeros.

(c)(b)(a)Fig. 2 The first three iterations

of the Hilbert curve
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3.2.2 Hilbert in electrodes

The Hilbert mapping is applied across the sEMG electrodes

(HilbElect) (Fig. 4). Specifically, if the number of sEMG

electrodes is M, then M� L2, where L ¼ 2k. The Hilbert

mapping is applied at every time instant of the sequence

resulting in an image with dimensions L� L� N. For

example, an sEMG segment of 16 electrodes with 20

samples is mapped into a 4� 4� 20 image. The output

image, y, is initialized with zeros, and then for every

electrode m and every timestep n, image coordinates (i, j)

are generated from the electrode index m such that the

(a) (b) (c)

(d) (e) (f)

Fig. 3 The application of the Hilbert curve mapping to sEMG data. a
A 64-samples segment of sEMG signal, b the ‘HilbTime’ (Hilbert

across time) representation of electrodes m ¼ f1; 2; 6; 9g (image size

8� 8), c the ‘HilbElect’ (Hilbert across electrodes) representation at

time instants n ¼ f0; 15; 45; 60g (image size 4� 4), d the ‘Baseline’

image representation (image size 64� 10), e the ‘HilbTime’ 3D

sEMG representation (image size 8� 8� 10) and f the ‘HilbElect’

3D sEMG representation (image size 4� 4� 64). In (c, f), there are

less electrodes than pixel dimensions; thus, the last six pixels on the

right of the images are zeros

Algorithm: Time dimension (HilbTime)

Input: x, 2D array of size N × M , where N ≤ L2

Output: y, 3D array of size L × L × M
hc ← Hlog2L;
y ← zeros(L,L,M);
for m ← 0 to M − 1 do

for n ← 0 to N − 1 do
i, j ← hc(n);
y[i, j,m] ← x[n,m];

end
end

Algorithm: Electrode dimension (HilbElect)

Input: x, 2D array of size N × M , where M ≤ L2

Output: y, 3D array of size L × L × N
hc ← Hlog2L;
y ← zeros(L,L,N);
for n ← 0 to N − 1 do

for m ← 0 to M − 1 do
i, j ← hc(m);
y[i, j, n] ← x[n,m];

end
end

(b)(a)

Fig. 4 The steps of the two approaches: a Hilbert in time and b Hilbert in electrodes
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image value at position (i, j, n) equals the sEMG value at

timestep n of electrode m. As in the previous case, if the

number of electrodes is less than L2 the final image can be

cropped.

3.3 Network architectures

In this work, we evaluate our method on the state-of-the-art

CNN architecture for the problem of hand gesture recog-

nition (WeiNet [53]), as well as models based on archi-

tectures typically found in image tasks, such as VGGNet

[42], DenseNet [24] and SqueezeNet [26]. Since these

models were defined for image tasks where the dimen-

sionality of the data is bigger, modifications were needed to

adapt these architectures to sEMG data. In addition,

inspired by the multi-scale dense networks (MSDNet) [23],

we propose the application of a similar architecture, which

we name multi-scale Hilbert network (MSHilbNet), where

the generation of Hilbert curve representations of multiple

orders is an inherent feature of the topology. The number

of parameters for the model architectures is presented in

Table 1, while details of each architecture are given next.

3.3.1 WeiNet [53]

In [53], the state-of-the-art model in hand gesture recog-

nition, the authors propose a shallow network that consists

of two convolutional and two locally connected layers that

do not decrease the spatial resolution of the input. This

architecture is applied for every EMG channel, and the

corresponding feature maps are merged into a single fea-

ture vector via concatenation. Then, this feature vector

passes through a series of fully connected layers followed

by a softmax classifier. We include this CNN model in our

investigation since it achieves the highest accuracy among

the works presented in Sect. 2 on the benchmark dataset

(i.e., Ninapro [3]). A graphical representation of the model

is shown in Fig. 8.

3.3.2 VGGNet [42]

The initial VGGNet [42], invented by VGG (Visual

Geometry Group) from University of Oxford, won the

localization task in ILSVRC 2014. It consists of 16

convolutional layers and follows a very uniform architec-

ture: It uses 3� 3 convolutions only, while every third

convolutional layer is followed by a pooling operation. In

this work, we use convolutional blocks (d) that consist of

two 3� 3 convolutional layers with rectified linear unit

(ReLU) activations and a pooling layer (pl). The output

class label is obtained through a global pooling operation

followed by a dense layer with softmax activation. A

graphical representation of the model is shown in Fig. 9.

3.3.3 DenseNet [24]

The DenseNet [24] was invented by Cornwell University,

Tsinghua University and Facebook AI Research. The

architecture is based on the idea of creating short paths

from early layers to later layers, thus ensuring maximum

information flow between the network layers. An advan-

tage of this is that the network can be compact with less

parameters, since each layer receives feature maps from all

preceding layers. In this work, the building block (d) of the

architecture contains three densely connected groups of

batch normalization (BN), ReLU and 3� 3 convolutional

layer, while a transition layer made of BN, ReLU, 1� 1

convolution and 2� 2 pooling (pl) connects two successive

dense blocks. The classifier contains a 1� 1 convolution,

ReLU, global pooling layer and a softmax activation. A

graphical representation of the model is shown in Fig. 10.

3.3.4 SqueezeNet [26]

The SqueezeNet [26] was invented by UC Berkeley and

Stanford University in an effort to achieve equivalent

accuracy with smaller CNN architectures. The main com-

ponent of this model is the ‘fire module.’ This is based on

1� 1 convolutions (squeeze layer) to reduce the depth of

the feature maps before the application of 3� 3 convolu-

tions (expand layer) that increase the feature depth. In this

work, three fire modules followed by a 2� 2 pooling layer

(pl) comprise the main building block (d) of the architec-

ture, while the classifier contains a 1� 1 convolution,

ReLU, global pooling layer and a softmax activation. A

graphical representation of the model is shown in Fig. 11.

3.3.5 Multi-scale Hilbert network (MSHilbNet)

Inspired by the MSDNet [23], we propose the multi-scale

Hilbert network (MSHilbNet), a new multi-scale Hilbert

curve approach for the problem of gesture recognition.

With this model, we investigate the utilization of Hilbert

curve representations of multiple scales (i.e., multiple

orders of the Hilbert curve), where coarser scales can be

constructed via downsampling. We show here that down-

sampling with a pooling layer of non-overlapping 2� 2

Table 1 Number of parameters

for the model architectures
Model Parameters

WeiNet [53] 7,277,625

VGGNet [42] 302,389

DenseNet [24] 126,618

SqueezeNet [26] 58,853

MSHilbNet 62,453
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kernels (kernelsize ¼ stride ¼ 2� 2) retains the pattern of

the Hilbert curve (Fig. 5), i.e., the output of this operation

is the Hilbert curve representation of the subsampled

signal.

Given an image y that is the Hilbert representation of

order k of the 1D sequence x of length L2 (i.e., yi;j ¼ xl,

where fxg ¼ fx0; x1; . . .; xL2�1g, and

ði; jÞ ¼ HkðlÞ; 8l 2 f0; . . .; L2 � 1g), then the following

holds for the subsampled representation z ¼ pool22ðyÞ:
x0 ¼ pool14ðxÞ ð2Þ

zi0;j0 ¼ x0l ð3Þ

ði0; j0Þ ¼ Hk�1ðlÞ;8l 2 f0; . . .; L2=4� 1g ð4Þ

where pool22ðÞ is the 2D pooling operation with kernel size

and stride equal to 2� 2, pool14ðÞ is the 1D pooling with

kernel size and stride equal to 4,

fx0g ¼ fx00; x01; . . .; x0L2=4�1
g.

With this tool, we can create a network architecture,

shown in Fig. 6, that exploits multiple resolutions of the

Hilbert representation obtained via a pooling (pl) operation.

As in MSDNet, regular convolutions increase the depth (d)

of the architecture along a resolution, while we adopt

strided convolutions to carry information from a higher

resolution to a lower resolution (s). Regular convolutions

consist of 3� 3 convolutions and ReLU activations,

whereas the strided convolutions use 2� 2 filters. Finally,

a single output label is obtained by merging the outputs (o)

of the intermediate classifiers that consist of 1� 1 convo-

lution, ReLU, global pooling layer and a softmax activa-

tion. The implementation code will be available at https://

github.com/DSIP-UPatras/sEMG-hilbert-curve.

4 Experiments

4.1 Dataset

The evaluation of the models was performed on the first

dataset of the Ninapro database [3]. This consists of sEMG

recordings of 27 healthy subjects that repeat all 52 gestures

10 times with a relax period between repetitions. The hand

movements, which cover the majority of movements found

in activities of daily living and rehabilitation exercises, can

be grouped into three categories: (1) basic finger move-

ments, (2) isometric, isotonic hand configurations and wrist

movements and (3) grasps and functional movements.

EMG signals are measured using 10 electrodes, of which

eight are equally spaced around the forearm and the

remaining are attached on main activity spots of the large

flexor and extensor muscles of the forearm [3].

The sEMG signals are preprocessed with a low-pass

filter as in previous studies that involve the Ninapro

database [2, 18, 48]. Then, training data are augmented by

adding Gaussian noise with a signal-to-noise ratio (SNR)

equal to 25 dB. In addition, sEMG signals are augmented

with the magnitude-warping method described in [50, 51].

As a last step, sEMG signals from the 10 channels are

segmented into overlapping windows of length N with a

step of 10ms (1 sample) and organized into N � 10

arrays.

In the following experiments, window segments of 16,

32 and 64 samples (160 ms, 320 ms and 640 ms,

respectively) were used. A validation experiment showed

that a window size of 64 samples performs the best, while

we included the results for shorter segments considering

the guidelines for real-time myoelectric control applica-

tions [15, 43]. In the case of N ¼ 16, the training set

(Fig. 1 path (2)) contains on average 266K instances with

a standard deviation of 17K, while the corresponding

testing set (Fig. 1 path (3)) is 3:6K � 250. We attribute

this variance across the subjects to the fact that in the

Ninapro dataset the duration of the gesture repetitions is

not the same among the subjects. The train and test sizes

for the remaining input configurations are shown in

Table 2. Similar to other classification problems, the

gesture labels are encoded with one-hot vectors of

dimension equal to 53, i.e., the 52 hand gestures and the

relax periods.

z[0, 1] = pool22(y[0 : 1, 2 : 3]) = pool14(x[4 : 7])

z[0, 0] = pool22(y[0 : 1, 0 : 1]) = pool14(x[0 : 3])

(a) (b)

Fig. 5 Application of pooling operator to obtain lower-order Hilbert curve representations. In b, z is a first-order representation generated from a

second-order representation y, shown in a
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4.2 Evaluation of methods

The evaluation of the models is identical to existing works

that have used the Ninapro dataset [2, 18, 48, 53].

Specifically, a new model is randomly initialized for each

subject and trained (Fig. 1 path (2)) on data from seven

repetitions (1, 3, 4, 6, 8, 9 and 10) and tested (Fig. 1

path (3)) on the remaining three (2, 5 and 7). As perfor-

mance metrics, we use the accuracy, precision and recall

averaged over all the subjects. An exception was made for

the WeiNet which was trained and evaluated as in the

original paper [53].

Prior to performing the evaluation, a model selection

step (Fig. 1 path (1)) is required to determine the appro-

priate hyper-parameter values of the models. In the case of

VGGNet, DenseNet, SqueezeNet and MSHilbNet, a vali-

dation set determined the depth (d) of the network and the

type of pooling (pl), as well as the number of Hilbert scales

(s) and output layers (o) of the MSHilbNet. The exact

parameter space and the selected values are reported in

Table 3. A set of ten randomly selected subjects was used.

From the training set of each subject (Fig. 1 path (2)),

repetition number 6 is held out as a validation set (Fig. 1

path (1)). Then, a grid search is performed for the hyper-

parameters in Table 3 where models are trained for every

subject using six repetitions and evaluated on the validation

data. The models with the best performance (i.e., highest

accuracy for the validation set) are selected for further

evaluation. At this stage, we consider input sEMG seg-

ments of length N ¼ 16 (i.e., input dimensions 16� 10) for

the VGGNet, DenseNet and SqueezeNet, while for the

MSHilbNet we use input segments of N ¼ 64 (i.e., input

dimensions 8� 8� 10) since it allows to evaluate the

performance of 1–3 scales.

The depth hyper-parameter, d, corresponds to the num-

ber of basic blocks that the network consists of. Therefore,

in the case of VGGNet, the basic block is made of two

convolutions, whereas in the DenseNet block there are

three convolutions. The basic block of the SqueezeNet

contains three fire modules, each one with two levels of

convolutions. Finally, in MSHilbNet the number of con-

volutions depends on both the depth and the number of

scales (e.g., for a number of scales equal to 3, every depth

d[ 1 adds to the network graph three regular and two

strided convolutions).

Fig. 6 The MSHilbNet model. Horizontal arrows correspond to

regular convolutions between features of the same scale, while the

diagonal arrows are strided convolutions that convey information to

coarse scales. The initial scales are generated by a pooling operation

shown with vertical arrows. The dark shaded blocks correspond to a

model with s ¼ ½8� 8; 4� 4; 2� 2�, d ¼ 3, o ¼ ½3; 2; 1�. A detailed

description of the operations that correspond to each type of arrow is

given on the right of the figure
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Next, we describe the experimentation we followed to

compare the performance of the proposed Hilbert curve

mapping.

4.2.1 Baseline

As our baseline, we follow the approach where the Hilbert

mapping is not used. Therefore, the N � 10 arrays are fed

into the CNN models as single-channel images

(N � 10� 1). For the window length N, we experiment

with three values: 16, 32 and 64 samples using the models

in Table 1.

4.2.2 Hilbert in time

In the case of the Hilbert mapping across the time

dimension (HilbTime), the N � 10 segments are organized

into M �M � 10 images. For N values equal to 16, 32 and

64, the resulting image sizes are 4� 4� 10, 8� 4� 10

(8� 8 cropped into 8� 4 to remove zero columns) and

8� 8� 10, respectively. The models in Table 1 were used.

4.2.3 Hilbert in electrodes

The Hilbert mapping across the sEMG channel dimension

(HilbElect) is performed in a similar fashion. Given the

number of channels M ¼ 10, the N � 10 segments are

organized into 4� 4� N images. The pixels correspond-

ing to the last six positions that the Hilbert curve traverses

are set to zero. In this approach, we retain the spatial res-

olution constant due to the small number of available

electrodes. For the window length, we experimented with

N ¼ 16, N ¼ 32, and N ¼ 64. As in the previous case, the

models in Table 1 were used.

4.3 Model optimization

In the hyper-parameter selection step (Fig. 1 path (1)), the

networks were trained using stochastic gradient descent

(SGD) for 30 epochs with an initial learning rate of 0.1,

halved every 10 epochs and a batch size of 1024. Due to

convergence problems of the SqueezeNet with this learning

schedule, it was trained with SGD optimizer and an initial

learning rate of 0.1 that was reduced when the validation

loss stopped decreasing. To avoid overfitting the networks

due to the small training set, dropout layers were appended

after convolutional layers with a forget rate of 0.3. In

addition, weight decay regularization with a value of l2 ¼
0:0005 was applied to all convolutional layers.

The final models were trained (Fig. 1 path (2)) with

SGD for 60 epochs as in [49]. The WeiNet model was

trained following the procedure described in the original

paper [53].

The WeiNet was trained on a workstation with an Intel

Xeon, 2.40 GHz (E5-2630v3) processor, 16 GB RAM and

a Nvidia GTX1080, 8GB GPU using the MxNet tools for

Python. The rest of the models were trained on a work-

station with an Intel i9-7920X, 2.90 GHz processor, 128

GB RAM and a Nvidia RTX2080 Ti, 12GB GPU using the

Keras and Tensorflow libraries for Python.

5 Results

The optimal hyper-parameter selection (Fig. 1 path (1)) for

the different CNN models is based on the evaluations

shown in Tables 4 and 5. The search space along with the

selected values for each of the network architectures is

presented in Table 3. The number of scales (s) and the

output layers (o) hyper-parameters are used only by the

MSHilbNet model. In Tables 4 and 5, we show the average

accuracy and the standard deviation on the validation set

(i.e., repetition 6) of 10 random subjects for every

parameter combination across the four architectures, while

a bold font denotes the best (i.e., higher accuracy) com-

bination of parameters.

With the optimal values for the hyper-parameters, the

networks and the Hilbert representations are evaluated next

(Fig. 1 path (3)). The evaluation results of the models and

the proposed Hilbert representations are presented in

Tables 6, 7, 8, 9 and 10 for different window lengths,

N. The metrics’ values are given by the average and the

standard deviation over all subjects in the dataset evaluated

on the test set (i.e., repetitions 2, 5, and 7). For the

VGGNet, DenseNet, SqueezeNet and MSHilbNet, the

accuracy, precision and recall are calculated, whereas for

the WeiNet, only the accuracy is shown since the code

provided by the authors of [53] does not compute the other

metrics. The columns correspond to the combination of a

representation method (Baseline, HilbTime, HilbElect) and

a window length N(16, 32, 64). It should be noted that for

the WeiNet, the ‘HilbElect’ representation is not evaluated

since this model architecture assumes that the last dimen-

sion of the input equals the sEMG electrode dimension.

The accuracy curves during training and testing (Fig. 1

paths (2–3)) are shown in Fig. 12. Further, a radar chart in

Fig. 7 evaluates other aspects of the investigated archi-

tectures when the Hilbert scanning is used.

Comparisons between the models and representation

methods are statistically evaluated. A repeated measures

analysis of variance (ANOVA) with the Greenhouse–

Geisser correction to account for the violation of sphericity

(Mauchly’s Test of Sphericity indicated that the assump-

tion of sphericity had been violated) is performed. This is

followed by post hoc pairwise tests using the Bonferroni

correction for multiple comparisons. Significance level was
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set to a ¼ 0:05 for all tests (Tables 11, 12, 13, 14, 15,

reftable:rmanovaspsmshilbnet and 17). In Tables 11 and

12, the results are analyzed across three variables, i.e.,

classification model, representation method and window

length. Differences in the classifier and the input method

were significant (p � 0:05), which was not the case for the

window length (Table 11). Pairwise comparisons revealed

meaningful differences; thus, the combination with the

higher performance is a DenseNet model with the ‘Hil-

bElect’ approach (Table 8). When the DenseNet, VGGNet,

SqueezeNet and MSHilbNet are compared for the ‘Hilb-

Time’ representation (Tables 13 and 14), considerable

differences are found between the MSHilbNet and the

other models (p � 0:05), while DenseNet and VGGNet

have almost similar performance (p ¼ 0:059). Regarding

the window length, there is no difference between N ¼ 16

and N ¼ 32 (p ¼ 1:0), while any variation between N ¼ 16

and N ¼ 64 is significant (p ¼ 0:002). Consequently, for

the HilbTime representation the MSHilbNet at window

length N ¼ 64 performs the best (Table 10).

Finally, a further analysis of the MSHilbNet is shown in

Figs. 13 and 14 and Tables 15, 16 and 17. In Fig. 13,

highly activated feature maps are shown for the single-

scale (Fig. 13c) and the multi-scale (Fig. 13d, e) approa-

ches when a ‘Thumb up’ gesture is performed. In addition,

the softmax distributions of the intermediate classifiers and

the final output calculated as their average are shown in

Fig. 14. Three types of output layers (o) and two model

depths (d) are evaluated on the validation set of 10 random

subjects (Fig. 1 path (1)). Significant differences were

found (Table 16) between the two variables (p ¼ 0:018 and

p � 0:05 for depth and output layer, respectively). Further,

the pairwise comparisons (Table 17) suggested that there is

a marginal difference between the two depths (i.e., d ¼ 3

and d ¼ 5), whereas for the output layer the performance

measured as the ‘weighted average’ of all the layers is

considered similar to that of the deepest layer (p ¼ 0:220).

6 Discussion

6.1 Hyper-parameter selection

For the hyper-parameter selection (Fig. 1 path (1),

Table 4), we see that finding good parameters for the

SqueezeNet is rather difficult, since the classification

accuracy is low, and the models for some of the subjects

did not converge. In the VGGNet and DenseNet, we

observe that the ‘max’ pooling operation is inferior to

‘average’ pooling, whereas ‘max’ pooling provides better

results for the SqueezeNet. Also, increasing the depth of

the model has a smaller effect (\1%) to the VGGNet

compared to the other models (e.g., 1% gain in DenseNet

from d ¼ 3 to d ¼ 5). This is probably due to the fact that

the VGGNet has many parameters even for shallower

models that makes the optimization difficult. The optimal

hyper-parameter values correspond to the highest achieved

classification accuracy. Thus, for the VGGNet we select

pooling pl ¼ ‘average0 and depth d ¼ 4, for the DenseNet

pl ¼ ‘average0 and d ¼ 5, and finally for the SqueezeNet

pl ¼ ‘max0 and d ¼ 3.

In the case of MSHilbNet (Table 5), we see that in

general adding more layers along the depth dimension

does not yield any performance improvements. On the

contrary, increasing the number of scales increases the

accuracy by up to 9% (e.g., in the case where depth d ¼ 5

and classifiers are attached to all depths o ¼ ½5; 4; . . .; 1� the
accuracy is improved from 0.6211 to 0.7127). In addition,

averaging the outputs of the intermediate classifiers does

not provide a higher classification accuracy (i.e., given the

depth, the accuracy decreases the more the intermediate

classifiers are). However, the performance of the interme-

diate classifiers improves when the network deepens, but it

still remains lower than the corresponding single classifier

case. Eventually, the best performance is achieved for

depth d ¼ 3, three scales s ¼ ½8� 8; 4� 4; 2� 2� and a

single classifier from the deepest layer o ¼ ½3�.

6.2 Main results

The main results of this work can be summarized in

Tables 6, 7, 8, 9 and 10 which show the performance on the

testing set (Fig. 1 path (3)). What we see across all net-

works is that the performance improves when the window

length N increases. This is expected since a wider window

Fig. 7 Radar chart for the comparison of WeiNet, VGGNet,

DenseNet, SqueezeNet and MSHilbNet with the Hilbert curve

mapping approach. The axes correspond to classification accuracies

for window lengths N ¼ 16, N ¼ 32 and N ¼ 64, the inverse of the

number of trainable layers and the inverse of the amount of

parameters. The first three constitute a metric of the performance,

while the last relate to the models’ complexity
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contains more temporal information which is useful for the

classification. In addition, generally the Hilbert represen-

tations improve (p\0:05) the classification accuracy

compared to the corresponding baseline, except for one

case, namely VGGNet and N ¼ 16. The reason for the

improvement is the locality preservation property of the

Hilbert curve [20, 32], which, given a model architecture,

allows learning correlations between distant points using

less convolutional layers. More specifically, for window

lengths N ¼ 64 there is a 3% classification gain for

‘HilbTime’ (Hilbert curve mapping across time) in the

VGGNet, 5% in the DenseNet and almost 8% for the

‘HilbElect’ (Hilbert curve mapping across electrodes) in

the SqueezeNet. Since for a CNN classifier the inference

time is negligible compared to the acquisition time, the size

of the window length N accounts for most of the latency, an

important aspect of real-time applications. Although the

use of a 640-ms window is not considered appropriate in

such cases [15, 43], shorter windows can be applied when a

long window inhibits real-time performance. However, that

results in a significant reduction of the accuracy gain

obtained by the Hilbert curve mapping, but without the

accuracy becoming worse than for the baseline case as

shown in Tables 6, 7, 8, 9 and 10.

Furthermore, we can infer from the results that a model

with many parameters benefits less from the Hilbert curve

representation compared to one with few parameters (e.g.,

there are \1% gain in the WeiNet and about 3% increase

in accuracy in the VGGNet). Comparing the performance

between the MSHilbNet and the VGGNet, DenseNet and

SqueezeNet for segments of size N ¼ 64 and the ‘HilbTime’

method, we can see that the MSHilbNet is always superior

(p\0:05). This can be attributed to the fact that at every

depth the model has access to both fine- and coarse-level

features, while in the other topologies coarser feature maps

can only be achieved after a sufficient depth.

Apart from the classification metrics, other aspects of

the investigated models can be compared. For example, the

radar chart in Fig. 7 shows the differences between the

models with respect to classification accuracy and model

complexity. What we observe is that the higher accuracy of

the WeiNet can be partly attributed to its huge model size.

On the other hand, although the rest of the models have

different sizes, they perform at the same but lower than the

WeiNet accuracy level. Yet, this is achieved with only a

fraction of the WeiNet’s size. Overall, we believe that the

proposed MSHilbNet achieves a good balance between

high accuracy and small model size.

6.3 Evaluation of the MSHilbNet

Next, we further analyze the performance of the MSHilb-

Net. The main advantage of this model is the use of

multiple scales of the input image which allows to capture

both fine and coarse features at every depth. In Fig. 13, we

show the feature maps with the highest activation gener-

ated from models with depth d ¼ 3 and scales s ¼ f8� 8g
(Fig. 13c), s ¼ f8� 8; 4� 4g (Fig. 13d), s ¼ f8� 8; 4�
4; 2� 2g (Fig. 13e), when using as input the middle seg-

ment of ‘Thumb up’ gesture (Fig. 13a, b). Comparing the

corresponding features between the three models, we see

that when using only one scale the model needs more

layers to locate the region with useful information. In

contrast, more scales of the input allow the model to locate

significant features faster. For example, the feature map of

the first convolutional layer has high amplitude activations

in a larger area when one scale is used (Fig. 13c ‘b1_reg-

ular_0/5’), whereas in the case of three scales (Fig. 13e

‘b1_regular_0/28’) high values are limited to a smaller

region. In addition, there is a correspondence to the acti-

vation patterns between subsequent layers as well as coarse

scales (e.g., low right highly activated), while in the single-

scale case subsequent activation maps activate different

regions. Finally, the convolutions of the single-scale net-

work fail to extract other important features (e.g., low left

region) that more scales can identify (e.g., Fig. 13e

‘b2_strided_0/5’).

The second component of the MSHilbNet is the use of

multiple classifiers. Figure 14 shows the softmax output of

the intermediate and final classifier for two models with

depth d ¼ 3 (Fig. 14a) and d ¼ 5 (Fig. 14b) for the first 12

gestures of the Ninapro dataset (basic finger movements).

We can see that classifiers at the last layer are in general

more accurate (i.e., high confidence for the correct label),

while earlier classifiers tend to misclassify. To further

evaluate whether a multi-classifier approach is helpful, we

substituted the final average classifier with weighted clas-

sifier with learnable weights. In particular, the weights are

learned during training through an attention mechanism.

The classification results on the validation set (Fig. 1

path (1)) are shown in Table 15. Clearly, there is a great

improvement from using the ‘weighted average’ since the

classification accuracy is improved by 11% and 7% for

d ¼ 3 and d ¼ 5, respectively, compared to the case of the

‘average’ classifier. However, the performance is not sig-

nificantly better than a single classifier (p\0:05).

6.4 Future work

In the proposed methodology, the Hilbert curve provides a

better locality preserving representation in only a single

dimension, i.e., either the time (HilbTime) or the electrodes

(HilbElect) dimension. It would be in our interests to

investigate the application of higher-dimensional curves

that combine both dimensions for the generation of the

sEMG image. Particularly, this would be beneficial to the
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case of electrode grids, where the input of the corre-

sponding baseline approach is already a multi-channel

image. Another drawback of the current approach might be

the requirement for squared images with dimensions equal

to powers of two, which limits the duration of the sequence

to multiples of four. Though smaller sequences can be

zero-padded or interpolated to match the required sequence

length, experimentation is needed to evaluate the effect of

these modifications. Future work will also investigate the

generalization of the proposed Hilbert curve mapping to

datasets with different configuration of sensors and set of

gestures.

7 Conclusions

This paper investigated the generation of image represen-

tations of sEMG using the Hilbert fractal curve. The pro-

posed methodology offers an alternative for the

classification of sEMG patterns using image processing

methods, while using the Hilbert curve offers the advantage

of locality preservation. Two methods (HilbTime and

HilbElect) were evaluated and showed superior perfor-

mance across various networks compared to the window

segmentation method (baseline). However, the benefit was

smaller for models with many parameters. Then, we pre-

sented a model (MSHilbNet) with few trainable parameters

that utilizes multiple scales of the initial Hilbert curve

representation. The evaluation of this multi-scale topology

suggested that in every case it performed better than reg-

ular topologies based on VGGNet, DenseNet and Squee-

zeNet. Finally, an analysis provided insights into the

performance of the MSHilbNet architecture.
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A Appendix

See Figs. 8, 9, 10, 11, 12, 13 and 14.

Fig. 8 The WeiNet [53] model follows a multi-stream approach. The multi-stream blocks consist of two 1� 1 convolutions followed by two

locally connected layers. The outputs from each stream are merged and further processed by dense layers
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Fig. 9 A typical VGGNet [42]

model architecture. It consists

of successive blocks of

convolutional and pooling

layers. The classification label is

obtained via a dense layer

followed by softmax activation

Fig. 10 The DenseNet [24] model consists of blocks with dense connections. These dense blocks are followed by a transition layer that performs

a pooling operation

Fig. 11 The main block of the SqueezeNet [26] model uses the fire

module to compress the feature map’s dimensionality. The fire

module performs a squeezing convolution followed by two parallel

expanding convolutions the outputs of which are merged into a single

feature map. Between two successive blocks, a pooling operation is

applied
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(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

Fig. 12 Average accuracy curves for training (solid lines) and testing (dashed lines)
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(b)(a)

(c)

(e)(d)

Fig. 13 Feature maps of highest activations generated from models

with depth d ¼ 3 and scales s ¼ ½8� 8� (c), s ¼ ½8� 8; 4� 4� (d),
s ¼ ½8� 8; 4� 4; 2� 2� (e), when using as input the middle segment

of ‘Thumb up’ gesture (a, b). The naming convention of the feature

maps is ‘b{level}_{type}_{scale}/{feature map index}’, where

level={1,2,3} is the depth level, type={regular, strided} is the type

of convolution, and scale={0: 8� 8, 1: 4� 4, 2: 2� 2} is the

resolution used as input
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See Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

and 17.

(b)(a)

Fig. 14 Softmax distributions of intermediate and final classifiers for the cases of d ¼ 3 and d ¼ 5, using a simple average final classifier

Table 2 Average size of train and test sets. Standard deviations are

reported in parentheses

Configuration Train Test

N ¼ 16 266,916 (17,301) 3,667 (251)

N ¼ 32 256,671 (17,272) 1,795 (125)

N ¼ 64 231,300 (17,301) 857 (63)
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Table 3 Hyper-parameter

selection
Hyper-parameter Search space Optimal values

VGGNet DenseNet SqueezeNet MSHilbNet

Depth (d) {3, 4, 5} 4 5 3 3

Pool (pl) {‘max’, ‘average’} ‘average’ ‘average’ ‘max’ ‘max’

Scales* (s) f3; 2; 1g** – – – 3**

Output layers* (o) f½d�; ½d; d � 2�; ½d; d � 1; . . .; 1�g – – – [d]

*Parameters related to MSHilbNet only

**The values f3; 2; 1g for s correspond to f½8� 8; 4� 4; 2� 2�; ½8� 8; 4� 4�; ½8� 8�g, respectively

Table 4 Average accuracy of VGGNet, DenseNet and SqueezeNet

models for different hyper-parameters with input 16� 10� 1

(N ¼ 16, no Hilbert) using the validation set from 10 randomly

selected subjects. Standard deviations are reported in parentheses.

The best performing model is indicated in bold

d pl VGGNet DenseNet SqueezeNet

3 ‘max’ 0.6532 (0.0765) 0.4656 (0.0547) 0.5750 (0.0644)

‘average’ 0.6695 (0.0679) 0.6185 (0.0730) 0.5356 (0.0455)

4 ‘max’ 0.6510 (0.0735) 0.4142 (0.0716) 0.5383 (0.0676)

‘average’ 0.6720 (0.0673) 0.6215 (0.0862) 0.4787 (0.0491)

5 ‘max’ 0.6442 (0.0793) 0.4277 (0.0717) *

‘average’ 0.6640 (0.0699) 0.6285 (0.0739) *

	The network failed to converge

Table 5 Average accuracy of

MSHilbNet model for different

hyper-parameters with input

8� 8� 10 (N ¼ 64) using the

validation set from 10 randomly

selected subjects. Standard

deviations are reported in

parentheses. The best

performing model is indicated

in bold

s o d ¼ 3 d ¼ 4 d ¼ 5

½8� 8� [d] 0.7496 (0.0694) 0.7465 (0.0711) 0.7471 (0.0693)

½d; d � 2� 0.6779 (0.0579) 0.6890 (0.0689) 0.6999 (0.0645)

½d; d � 1; . . .; 1� 0.6061 (0.0416) 0.6121 (0.0610) 0.6211 (0.0631)

½8� 8; 4� 4� [d] 0.7692 (0.0716) 0.7683 (0.0680) 0.7639 (0.0661)

½d; d � 2� 0.7057 (0.0614) 0.7238 (0.0653) 0.7215 (0.0694)

½d; d � 1; . . .; 1� 0.6409 (0.0521) 0.6546 (0.0571) 0.6879 (0.0660)

½8� 8; 4� 4; 2� 2� [d] 0.7862 (0.0648) 0.7826 (0.0671) 0.7767 (0.0664)

½d; d � 2� 0.7335 (0.0576) 0.7382 (0.0599) 0.7502 (0.0713)

½d; d � 1; . . .; 1� 0.6718 (0.0494) 0.6864 (0.0669) 0.7127 (0.0619)

Table 6 Average values of evaluation metrics for optimal models using full dataset. Standard deviations are reported in parentheses

WeiNet

BASELINE(16) HILBTIME(16) BASELINE(32) HILBTIME(32) BASELINE(64) HILBTIME(64)

Accuracy 0.8427 (0.0496) 0.8498 (0.0475) 0.8487 (0.0477) 0.8536 (0.0462) 0.8937 (0.0374) 0.8963 (0.0376)
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Table 10 Average values of evaluation metrics for optimal models

using full dataset. Standard deviations are reported in parentheses.

The depth of the model is denoted by d, pl corresponds to the pooling

method, s is the number of scales, and o the location of the output

classifier

MSHilbNet

(s ¼ ½8� 8; 4� 4; 2� 2�, d ¼ 3, o ¼ ½3�)

HILBTIME(16) HILBTIME(32) HILBTIME(64)

Accuracy 0.7410 (0.0564) 0.7502 (0.0683) 0.8168 (0.0525)

Precision 0.7601 (0.0509) 0.7662 (0.0610) 0.8258 (0.0492)

Recall 0.7416 (0.0566) 0.7503 (0.0687) 0.8149 (0.0526)

Table 11 Repeated measures ANOVA for evaluating the significance

of differences between CNN model (Model:{DenseNet, VGGNet,

SqueezeNet}), representation method (Method:{Baseline, HilbTime,

HilbElect}) and window size (N : f16; 32; 64g). An ‘*’ denotes a

significant difference (a ¼ 0:05)

Source df F Sig.

Model 1.211 32.757 � 0.05*

Method 1.615 45.403 � 0.05*

N 1.799 2.408 0.106
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Table 12 Pairwise comparisons (Bonferonni correction) for the repeated measures ANOVA shown in Table 11. Values correspond to the p-value

of the comparison between the quantities on the corresponding row and column. An ‘*’ denotes a significant difference (a ¼ 0:05)

Model DenseNet VGGNet SqueezeNet Method Baseline HilbTime HilbElect N 16 32 64

DenseNet - 0.024* �0.05* Baseline - �0.05* �0.05* 16 - 1.000 0.191
VGGNet - �0.05* HilbTime - 0.001* 32 - 0.262
SqueezeNet - HilbElect - 64 -

Table 13 Repeated measures ANOVA for evaluating the significance

of differences between CNN model (Model:fDenseNet, VGGNet,

SqueezeNet, MSHilbNetg) and window size (N:f16, 32, 64g) for the
HilbTime representation method. An ‘*’ denotes a significant dif-

ference (a ¼ 0:05)

Source df F Sig.

Model 1.033 16.453 � 0.05*

N 1.462 7.222 0.005*

Table 14 Pairwise comparisons (Bonferonni correction) for the repeated measures ANOVA shown in Table 13. Values correspond to the p-value

of the comparison between the quantities on the corresponding row and column. An ‘*’ denotes a significant difference (a ¼ 0:05)

Model DenseNet VGGNet SqueezeNet MSHilbNet N 16 32 64

DenseNet - 0.059 0.012* �0.05* 16 - 1.000 0.002*
VGGNet - 0.023* �0.05* 32 - 0.051

SqueezeNet - �0.05* 64 -
MSHilbNet -

Table 15 Comparison of average accuracy between MSHilbNet classifiers at depths d ¼ 3 and d ¼ 5 (s ¼ ½8� 8; 4� 4; 2� 2� and N ¼ 64).

Standard deviations reported in parentheses

d ¼ 3 d ¼ 5

o ¼ ½3� o ¼ ½3; 2; 1�,
‘average’

o ¼ ½3; 2; 1�, ‘weighted
average’

o ¼ ½5� o ¼ ½5; 4; 3; 2; 1�,
‘average’

o ¼ ½5; 4; 3; 2; 1�, ‘weighted
average’

accuracy 0.7862

(0.0648)

0.6718 (0.0494) 0.7850 (0.0642) 0.7767

(0.0664)

0.7127 (0.0619) 0.7875 (0.0624)

Table 16 Repeated measures ANOVA for evaluating the significance

of differences between the depth (d : f3; 5g) and output

(o : f½d�; ½d; . . .; 1� ‘average,’ ½d; . . .; 1� ‘weighted average’g) hyper-

parameters of the MSHilbNet model. An ‘*’ denotes a significant

difference (a ¼ 0:05)

Source df F Sig.

d 1.000 8.345 0.018*

o 1.116 112.354 �0.05*
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