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Abstract
Meta-heuristic algorithms have been proposed to solve several optimization problems in different research areas due to

their unique attractive features. Traditionally, heuristic approaches are designed separately for discrete and continuous

problems. This paper leverages the meta-heuristic algorithm for solving NP-hard problems in both continuous and discrete

optimization fields, such as nonlinear and multi-level programming problems through extensive simulations of volcano

eruption process. In particular, a new optimization solution named volcano eruption algorithm is proposed in this paper,

which is inspired from the nature of volcano eruption. The feasibility and efficiency of the algorithm are evaluated using

numerical results obtained through several test problems reported in the state-of-the-art literature. Based on the solutions

and number of required iterations, we observed that the proposed meta-heuristic algorithm performs remarkably well to

solve NP-hard problem. Furthermore, the proposed algorithm is applied to solve some large-size benchmarking LP and

Internet of vehicles problems efficiently.

Keywords Optimization � Meta-heuristics � Constrained optimization � Volcano eruption algorithm (VEA) �
Bi-level optimization

1 Introduction

We have witnessed fast developments in the field of nature-

inspired algorithms in the past few years. The popularity of

nature-inspired algorithms has been possible as a result of

their promising applications in solving engineering prob-

lems. In particular, these algorithms enable gradient-free
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mechanism and avoid local optima. The first advantage of

meta-heuristic is that it does not require the derivative of

the search space and leads to finding many good solutions.

Properties of guided random search technique as well as

exploration and exploitation make meta-heuristic algo-

rithms avoid getting trapped in local optima. As a result,

there are several applications of such algorithm in many

engineering applications [1].

Meta-heuristic algorithms can be used to train neural

network in solving real-life problems, though every

approach has its own limitations. Some of the prominent

meta-heuristic algorithms include particle swarm opti-

mization (PSO) [1] and autonomous groups particles for

PSO (AGPSO) [2], [3], bat algorithm (BA) [4] and its

recent application in optimizing beamforming for

mmWave in 5G communication [5] and firefly (FF) [6]. On

the other hand, nature creature-inspired algorithms have

also been proposed to solve optimization problems, such as

whale optimization algorithm (WOA) [7], ions motion

optimization (IMO) [8] and grey wolf optimizer (GWO)

[9], while together with those inspired by nature phenom-

ena, such as chaotic gravitational search algorithm (CGSA)

[10] and the recent application of multi-verse algorithm in

optimizing the accuracy of fraud detections in smart

e-commerce ecosystem [11]. However, no heuristic algo-

rithm is best suited to solve all optimization problems.

Moreover, the limitations of high computational cost and

premature convergence, the difficulties of selecting best

tunable parameters such as the mutation/crossover rate and

cutoff time all raise the needs of designing more advanced

approaches.

In machine learning, classification in a supervised

learning process refers to the process of computer learning

to which class of data a new set of observation belongs.

This is based on a prior learning conducted on a labeled

training dataset. Evolutionary or nature-inspired meta-

heuristic algorithms can be a good option in the process of

designing/training a classification system. As an example,

support vector machine (SVM) is an efficient supervised

learning algorithm that can be applied for classification

[12]. The optimization of SVM parameters is possible

through algorithms like PSO or FF. Feature selection plays

a vital role in the process of classification. It turns out that

feature selection can be achieved through parameter opti-

mization of SVM using a meta-heuristic algorithm [12].

Feature selection through this process is another example

of an application area where a meta-heuristic approach

could be effective. It should be noted, however, that there

are certain challenges with SVM such as high algorithmic

complexity which leads to higher computational cost,

extensive memory requirements and selection of appro-

priate kernel parameters which may be tricky [6].

As a result, success of a meta-heuristic approach in one

instance may not guarantee a similar success in another.

Researchers have proposed meta-heuristic approaches

designed for solving specific problems (e.g., see [1, 13, 14]

and references cited therein). They have tried to solve

optimization problems by simulating several algorithms

based on behavior of animals and insects, natural phe-

nomena or scientific theories [4, 6, 12, 15–22]. Some of

these proposed algorithms are artificial bee colony algo-

rithm [16], krill herd algorithm [17], social spider opti-

mization [12], chicken swarm optimization (CSO) [18], big

bang algorithm (BBA) [19], laying chicken algorithm

(LCA) [20, 23], modified genetic algorithm [21, 24],

combined meta-heuristic and classic algorithm [22].

Almost all previous meta-heuristics have been inspired

from behavior of animals or insects, and only one of them

has been simulated from a scientific theory [19].

This paper proposes, for the first time, an algorithm

which is inspired from a natural event, that is, volcano

eruption. The algorithm is a novel optimizer for solving

various types of continuous and discrete optimization

problems. The main contribution of this paper is the

translation of natural process of volcano eruption that

formulated our proposed volcano eruption algorithm

(VEA) to be used as an optimizer. VEA optimizer has

gained its robustness from the nature concept of volcano in

generating the initial population, movement of solutions,

explosion and eruption in the space. Furthermore, the

proposed VEA optimizer could achieve an accept-

able computational complexity in comparison with the

state of the art. The reason was that the proposed algorithm

originates from a scientific process and involves simple

steps and implementation. However, the algorithm requires

a high number of solutions in some iteration as its inherent

behavior in changing all feasible solutions in different

directions, though VEA provides acceptable best solution

in comparison with other meta-heuristics algorithms. This

is because it uses different exploration directions, (due to

explosions and eruptions) and large region of feasible

space. Eventually, our proposed VEA could contribute in

solving wide range of linear, nonlinear, multi-level, multi-

objective and transportation based on IoV complex opti-

mization problems.

The rest of this paper is organized as follows. Section 2

provides the motivation behind the proposed VEA. Sec-

tion 3 provides the literature review on recent advances of

developed meta-heuristic algorithms. This is followed by

presenting an overview of the proposed approach and

details of the designed algorithm in Sect. 4. Section 5

presents the experiments and computational results which

are conducted in the paper. Finally, Sect. 6 concludes the

paper.
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2 Inspiration

The nature of volcano has motivated the development of

our new optimization algorithm called VEA. VEA opti-

mizer mimics volcano eruption, which is an opening or a

hole on the earth’s surface that acts as a vent for release of

pressurized gases, ashes and molten rock or magma deep

beneath the surface of earth. Deep underground, pressur-

ized magma is passed through a passageway or a conduit,

called the volcanic pipe. Magma is referred to as lava when

it reaches the hole on the surface of earth and erupts out of

it [25]. There are a number of stages leading to formation

of a volcano that can be summarized as follows:

1. Rise of magma through cracks in the earth.

2. Buildup of pressure.

3. Volcanic eruption and rise of magma to earth’s surface.

4. Formation of a crust as a result of lava’s cooling down.

5. Repetition of this process over time leading to several

layers of rock that builds up over time resulting in a

volcano.

Taking into account the aforementioned volcano eruption

stages, a new meta-heuristic VEA algorithm is introduced.

In the process of volcano eruption, mass of magma is

needed at the first step of this process, so VEA starts with

some solutions as initial population. In the volcano erup-

tion process, magma rises through pipes; hence, similar

idea is used to move some of solutions in different direc-

tions for certain determined distances. In the next step, all

solutions will come down and move again in different

directions just like the process of volcano eruption.

Finally, some of the solutions in the ‘‘pipes’’, and points

near the surface of earth, are exploded in the region of

optimization programming problem. This step comes from

eruption of volcano at the top of the mountain into the

space. Best solution of all populations will be found, and

the algorithm will be using it as an initial solution for the

next iteration. As VEA optimizer progresses, it changes

and modifies the population and set of solutions, in each

iteration. To sum up, the movement of magma from inside

the ground to the top of mountain and its explosion have

motivated in formulating the main concept for simulation

of our proposed VEA optimizer.

3 Related work

There are two main classes of optimization algorithms. The

first class is known as deterministic, while the second

named stochastic method. When an optimization algorithm

works over a deterministic method, it could be whichever

gradient-based or non-gradient-based type. The gradient-

based method that deployed to locate global solution is a

method where mathematical programming is used. Gradi-

ent method is incorporating linear and nonlinear pro-

gramming [26]. In contrast, using a condition-based

method, another type of optimization algorithms could be

formulated to find the global solution of a given problem

[27]. One of the main issues facing mathematical pro-

gramming approaches is that the trapping within the local

optima solutions while searching for a feasible solution in a

nonlinear problem.

Hence, many research studies have recently been carried

out as a way to overcome this issue by developing some of

the existing optimization approaches or hybrid them with

different types of algorithms. In some instances, an opti-

mization algorithm has been developed to uniquely address

a specified problem, while makes it limited and not gen-

eralized to a wide range of optimization problems [28]. The

other challenge that could be experienced while developing

a non-gradient (deterministic method) is that their imple-

mentation required a sophisticated mathematical modeling

[29]. Therefore, the use of meta-heuristic algorithms has

emerged to overcome such kind of challenges, as they are

much easier to understand and adopt, though such kind of

algorithms is classified as a stochastic optimization that

requires random operators. These operators and other ran-

dom variables will help meta-heuristics during their global

search and avoid them from trapping into a local solution

of a given problem.

Meta-heuristic algorithms are inspired from either the

behavior of animals, insects or certain natural events.

Chemical pheromone of ants is the fundamental concept

used for ant colony optimization [30] and [31]. However,

the direction and global best have inspired the foundation

of particle swarm optimization (PSO) [1]. In contrast, fire

fly algorithm [32] has simulated the light indication of

fireflies. Similarly, laying chicken algorithm [20] is simu-

lated based on warming of eggs (heat distribution between

eggs), as the main concept in formulating the exploration

and exploitation strategies.

On the other hand, the authors in [33] have proposed a

novel optimization method that inspired from one of the

theories of the evolution of the universe, called the big

bang and big crunch (BB–BC). In the BB–BC, two phases

are formulated. At the first phase of BB, random points are

generated, while in the second phase of BC, these gener-

ated points are shrunk to a single demonstrative point. This

was achieved using an approach called a center of mass or

minimal cost. The authors in [34] have examined the

exploration–exploitation strategies related to multi-armed

bandit settings. They have introduced an adaptive cluster-

ing technique for content recommendation. The algorithm

considers the collaborative effects that occur due to the

interaction of the users with the items.
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As another attempt, the authors in [35] have introduced

a distributed clustering for solving linear bandits in peer-to-

peer networks with the presence of controlled communi-

cation facilities. On the other hand, mining k-maximal

cliques from a fuzzy graph was introduced in [36], and the

stochastic optimization techniques are deployed for quan-

tification performance measures by the authors in [26, 37].

In spite of all the aforementioned related work, we could

observe that different natures of problems require various

optimization methods to support efficient and cost-effec-

tive approaches. To this end, in this paper we have pre-

sented a new optimization algorithm that is inspired from

the nature of volcano to formulate volcano eruption algo-

rithm (VEA), which is detailed out in the next section.

4 The proposed volcano eruption algorithm
(VEA)

In this section, we present the details of the proposed VEA.

More particularly, we discussed mathematical equations,

details of VEA simulation and various steps to find the

optimal solution in several types of optimization problem.

4.1 The solutions and populations of VEA

VEA starts with initial solution that is created randomly,

and initial population is generated as magma in the volcano

eruption process. In fact, initial population in VEA repre-

sents the mass of magma below the surface of earth. In

volcano eruption process, after the formation of magma, it

is distributed in different directions through pipes (points

near surface of the earth) and rises toward the surface of

earth. Similar to this natural phenomenon, the solution of

initial population is distributed in different directions. In

the initial population, each possible solution xi is created

randomly in proximity to the initial solution x0. To form

possible solutions, one of the following probability distri-

bution functions is used: (a) probability function of the

binomial distribution; (b) probability function of the geo-

metric distribution; (c) probability function of the

hypergeometric distribution; (d) probability function of the

Poisson distribution, and according to the following

formula:

jjxi � x0jj � � ð1Þ

where in Rn, i ¼ 1; 2; n, � is a small positive number.

Figure 1 shows the movement of initial population and

generation of the possible next population by varying the

value of � from 0.01 to 0.4. We can observe feasible

solutions in the initial population (small blue points) and

their movement in different directions for a given problem.

More importantly, the point with red color in the figure is

the optimal solution. Further, in Fig. 1, the next population

is represented as black points and distributed in random

directions based on the following equation:

xjþ1 ¼ xj þ k � drj ð2Þ

where drj is the jth random direction to reach the solution.

Algorithm 1 shows the procedure of generating initial

solution and population. The pseudocode starts with a set

of random initial feasible solutions and then generates

initial population near initial solution according to For-

mula 1. Thereafter, at each iteration, the algorithm gener-

ates a solution of population based on Formula 2.

4.2 Explosion and eruption of VEA

In this section, we present the solutions of the current

population represented as black points in Fig. 2. These

black points are then exploded (represented as green

points) and erupted (shown as red points) in feasible search

space. This mimics the explosion and eruption of volcano

at the top of the mountain. In fact, solutions are changed in

the direction of the vector, which connects solutions and

the center solution of the population. These movements are

according to Eqs. 3 and 4:

xjþ1 ¼ xj þ adcj ð3Þ

xjþ1 ¼ xj � bdcj ð4Þ

where dcj is the vector to connect xc; xj, a and b. It is worth
mentioning that a and b are positive constants and xc is the

solution derived from initial solution in the previous
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direction to compose a population (center solution).

Moreover, Eq. 3 represents the formulation of the explo-

sion phenomenon, and Eq. 4 represents the eruption

process.

In the process of explosion and eruption phenomenon,

the proposed VEA finds the best solutions in all popula-

tions. The populations include initial population, second

population which is created after movement of initial

population in different directions (black points), third

population which is generated after explosion using Eq. 3

(green points), and finally the fourth population which is

constructed after eruption and using Eq. 4 (red points).

Then, the best solution can be found and is shown by large

blue point in Fig. 2. The VEA continuously searches for

the optimal point using the best solution as initial solution

for the next iteration. The process of explosion and erup-

tion in the first iteration is shown in Fig. 2 with �=0.1,

�=0.25. Algorithm 2 shows the pseudocode for explosion

and eruption.

4.3 Analysis of VEA convergence behavior

In the previous section, we have shown that VEA intelli-

gently explores the promising regions of the search space

and targets the best one. The VEA promptly replaces initial

solutions with the best ones and then progressively con-

verges. To achieve this goal, the procedure of the proposed

algorithm is summarized as follows:

1. Initial solution is generated randomly. It will be the

origin for constrained problems.

2. Initial population is generated near to the initial

solution. Here, � is a given positive small number

and j = 1. The VEA finishes the search process when

meets the termination condition.

3. Solutions are moved into different directions for a

specific distance (until reaching the pipes).

4. New solutions near pipes are generated.

5. Explosion of the solutions is performed near pipes.

6. Falling of solutions near pipes from different

directions.

7. Find the best solution of the population. If j\2, (let j =

j ? 1) go to the step 2 with the best solution serving as

the initial solution to the next population. For instance,

Fig. 3 shows the process of convergence for Examples

4 to 7.

8. VEA is terminated by reaching the termination condi-

tion dðf ðxjþ1Þ; f ðxjÞÞ\� and converges xjþ1 as the best
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solution whereas xj is the best solution in the jth

iteration. If the termination criteria are not satisfied, set

the value of j to j?1 and go to step 2. In Fig. 4, the

aforementioned steps and the progress of the algorithm

to find optimal solution R2 are illustrated. Furthermore,

we defined d in Eq. 5:

max
i

jf ðxi
jþ1Þ � f ðxi

jÞj ¼ dðf ðxjþ1Þ; f ðxjÞÞ ð5Þ

Convergence behavior and property of any meta-

heuristic algorithm are very significant. To achieve this

goal, the following theorem proves that the proposed VEA

algorithm is convergent.

Theorem 1 The sequence of Fk, which is proposed in the

procedure of VEA, is convergent to the optimal solution.

Note that Fk is defined as an objective function at point x(k).

Proof Let ðFvÞ ¼ ðFðtvÞÞ ¼ ðFðtv
1Þ;Fðtv

2Þ; . . .;Fðtv
nÞÞ ¼

ðFðvÞ
1 ;F

ðvÞ
2 ; . . .;F

ðvÞ
n Þ According to step 6 in the procedure of

the proposed algorithm (Sect. 4.3)

max jf ðxi
jþ1Þ � f ðxi

jÞj ¼ dðf ðxjþ1Þ; f ðxjÞÞ ¼ dðFjþ1;FjÞ\�1:

Therefore, jf ðxi
jþ1Þ � f ðxi

jÞj for each i. There is a large

number such as N which k þ 1[ k[N and j ¼ 1; 2; . . .; n:

. Now, we have:

jFðkþ1Þ
j ;F

ðkÞ
j j\�1

Now, let m = k ? 1, r = k then we have:

jFðmÞ
j ;F

ðrÞ
j j\�1 For m[ r [ n

This shows that for each fixed j, 1� j� n, the sequence

ðFð1Þ
j ;F

ð2Þ
j ; . . .Þ is Cauchy of real numbers, then it con-

verges, say to Fk. Using these n times, we define

ðF1;F2; . . .;FnÞ and if m = k ? 1, r = k,

dðFm;FrÞ\�1

Now if Fk we have

dðFm;FrÞ� �1
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This shows that F is the limit of Fm and the sequence is

convergent. Thus, this is considered a proof of the theorem.

h

4.4 Mathematical nature of the algorithm

This section presents the mathematical background of the

VEA and summarized in the following points:

1. Generation of feasible initial solution and population.

2. Movement of solutions to improve population and

reach better solutions.

3. Termination of the algorithm when it reaches the best

solution.

4. Convergent of the algorithm.

Firstly, a feasible solution is created randomly in the

feasible region. Then to produce feasible initial

population, it is generated near enough to the initial

solution based on the following formula:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi1 � x01Þ2 þþðxi2 � x02Þ2 þ . . .þ ðxin � x0nÞ2
q

� �: In

this phase, the algorithm tries to move solutions of initial

population in different random directions to increase the

chances for finding better solutions. This movement is

based on Eq. 2. In the second phase, explosion and erup-

tion of volcano are simulated by going up and then coming

down based on Eqs. 3 and 4. The third phase satisfies the

termination of the algorithm based on the following

condition:

If dðf ðxjþ1Þ; f ðxjÞÞ ¼ Maxjf ðxi
jþ1Þ � f ðxi

jÞj\�, then the

algorithm will be finished and xjþ1 is the best solution by

VEA and xj is the best solution in jth iteration.

Finally, convergence feature of VEA has been proven by

the aforesaid condition and Theorem 1.

5 Computational results

To show the numerical efficiency of the proposed VEA,

several mathematical optimization problems are addressed

and solved using our proposed VEA optimizer. In partic-

ular, two classes of optimization problems are considered

and solved: a) continuous problems with small size and b)

discrete and practical problems with large size. Then, VEA

is used to solve complex routing optimization NP-hard

problem in harsh IoV scenarios.

5.1 VEA solving continuous problems

This section presents almost all kinds of continuous opti-

mization problems: Constrained, unconstrained, linear,

nonlinear, multi-level and multi-objective will be solved by

the proposed VEA.

Example 1 [38](Constrained—Nonlinear) The initial and

optimal solutions as well as different populations of the

algorithm for Example 1 are shown in Fig. 5. The large

blue point in Fig. 5 is the optimal solution, which has been

found by solutions after two iterations.

In order to compare the proposed VEA with classical

methods, we consider the following nonlinear program-

ming problem, as shown in Eq. 6:

min �ðx1 � 4Þ2 � ðx2 � 4Þ2

s.t. x1 � 3� 0

� x1 þ x2 � 2� 0

x1 þ x2 � 4� 0

x1; x2 � 0

ð6Þ

Example 2 [40] (Multi-level) Consider the following lin-

ear bi-level programming problem:

min x � 4y

subject to

min y

subject to

x þ y� 3

� 2x þ y� 0

2x þ y� 12

3x � 2y� 4

x; y� 0

ð7Þ

Using Karush–Kuhn–Tucker (KKT) conditions, the prob-

lem will be converted into the following problem:
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y
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(a) Solutions near(1.5,-2) and optimal solu- (b) Generation 1 (c)Generation 2

Fig. 5 Finding optimal solution

by VEA—Example 1
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min x � 4y

subject to

� k1 þ k2 þ k3 � 2k4 ¼ �1

k1ð�x � y þ 3Þ ¼ 0

k2ð�2x þ yÞ ¼ 0

k3ð2x þ y � 12Þ ¼ 0

k4ð3x � 2y � 4Þ ¼ 0

� x � y þ 3� 0

� 2x þ y� 0

2x þ y � 12� 0

3x � 2y � 4� 0

x; y; k1; k2; k3; k4 � 0

ð8Þ

The bi-level programming problem is NP-hard because

of its two objective functions. In fact, these two objective

functions should be optimized in two different levels at the

same time. Therefore, proposing a solution for this problem

is significant. The proposed VEA optimizer could find

optimal solution in a fast pace (within two iterations as

shown in Table 1), which is the exact solution found by

algorithms with relatively small number of agents. By

solving such problems presented in Examples 1 and 2,

VEA shows its high performance with less complexity.

Behavior of solutions, constraints of the problem and

optimal solution are shown in Fig. 6.

Example 3 [41] (Multi-objective) In this example, VEA is

used for solving DTLZ benchmark problems [42]. Behav-

ior of the algorithm in finding the pareto optimal for

DTLZ1 problem is shown in Fig. 7. It is clear that some of

the solutions in the population have reached pareto optimal

solution; this illustrates the feasibility of the algorithm as

shown in Fig. 7c, d, which also indicates the initial popu-

lation. Moreover, efficiency of the algorithm is obvious by

comparing Fig. 7a, f. At the beginning of applying the

algorithm, most of the solutions are completely far from

pareto optimal. However, during the searching process, the

algorithm solutions achieve pareto optimal. Figure 7f

shows that the last population has surrounded pareto opti-

mal solutions.

Table 2 shows the comparison of best solutions to get

pareto optimal of DTLZ problems by VEA and the best

method in [42].

Example 4 In this example, we apply our proposed VEA

on non-convex optimization problem named Rastrigin

function (RF). Figure 8 shows the process of finding

optimal solution using VEA for Example 4.

min 20þ ðx2 � 10cosð2pxÞÞ þ ðy2 � 10cosð2pyÞÞ ð9Þ

Table 1 Comparison of VEA with nonlinear algorithms—Examples 1 and 2

Algorithms No. of agents No. of iterations Optimal solution F Min � Initial solution

Example 1—VEA 16 1 (0.4, 0.09) - 28.17 1 (1.5, - 2)

VEA 16 2 (0.2, 0.09) - 29.65 1 (1.5, - 2)

Exact method [38] None None (0, 0) - 32 None None

Example 2—VEA 24 1 (3.4, 3.1) - 9 1 (2, 1)

VEA 24 2 (4, 4) - 12 1 (2, 1)

Exact method [39] None None (4, 4) - 12 None None

Other methods [40] None None (3.9, 4) - 12.1 None None
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(a) Solutions near (2,1) and op- (b) Generation 1 (c) Generation 2 (d) Generation 2

Fig. 6 Process of finding optimal solution by VEA—Example 2
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Example 5 In this example, we consider Holder

Table Function (HTF) because it has many local minima,

with four global minima. We have evaluated the function

using the input domain of xi 2 [�10, 10]. It is worth

mentioning that the HTF is not convex, multimodal and

defined in two-dimensional space. HTF is shown in Eq. 10:

min�jsinðxÞcosðyÞexpðj1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 þ y2Þ
p

=pjÞj ð10Þ

We have applied our proposed VEA to solve HTF. The

process of the algorithm, initial population, optimal solu-

tion of generations and constraints of the problems have

been shown for two iterations in Fig. 9.

Example 6 In this example, we consider Mishra’s bird

function (MBF), which is shown in Eq. 11. The problem

has been solved by VEA; the process of the algorithm,

initial population, optimal solution of generations and

constraints of the problems have been shown for two

iterations in Fig. 10.

min sinðxÞexpðð1� cosðyÞÞ2Þ þ cosðyÞexpðð1� sinðxÞÞ2Þ

þ ðx � yÞ2

ð11Þ

OS solution

−100
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0
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−100
0

100
−100

−50

0

50

z

xy

(a) Solutions near (1,-1) and (b) Generation 2 (c) Generation 2 and optimal

(d) Generation 2 (e) Generation 2 (f) Iteration 2 Optimal Solution

Fig. 7 Generations of VEA to

find optimal solution—

Example 3

Table 2 Comparison of VEA and other methods for DTLZ problems

Problems k ParEGO VEA

Min Mean Max Min Mean Max

DTLZ1 3 13.42 52.47 112.7 9.13 31.24 78.18

DTLZ1 4 18.63 45.45 87.76 11.57 32.21 59.32

DTLZ1 10 NA NA NA 1.12 1.78 2.95

DTLZ2 3 0.151 0.191 0.243 0.093 0.105 0.164

DTLZ2 4 0.289 0.337 0.408 0.099 0.187 0.275

DTLZ2 10 NA NA NA 0.081 0.123 0.187

DTLZ3 3 81.15 145.5 261.6 52.56 123.26 213.77

DTLZ3 4 66.93 138.1 209.4 43.32 107.41 186.24

DTLZ3 10 NA NA NA 0.85 1.14 1.96

Fig. 8 Process of finding optimal solution by VEA—Example 4
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Further, more benchmark examples are required to test

and evaluate the proposed VEA. Accordingly, we consider

functions such as unimodal, multimodal, fixed dimension

and multimodal. Table 3 shows the Examples from 7 to 10

with equations and details. Table 4 and Fig. 11 show the

results of VEA for Examples 7 to 10, where optimal

solutions are found in 1 to 3 iterations.

Fig. 9 Process of finding optimal solution by VEA—Example 5

Fig. 10 Process of finding optimal solution by MV—Example 6
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5.2 VEA solving large-size practical problems

To show efficiency of the algorithm for real-life/size

problems, in this section three kinds of practical problems

have been solved: large-size real linear programming

problems and IoV problems. In MATLAB, we used

‘‘Linprog’’ as an exact method based on simplex to solve

linear programming problems. Table 5 shows the superi-

ority of VEA in solving large-size problems as compared

with several benchmark linear programming functions.

Further, absolute error of ‘‘Linprog’’ and VEA in terms of

the optimal solution, in Table 6, indicates that the classic

method is impractical and inefficient as compared to the

proposed VEA. Moreover, finding a suitable feasible

solution of transportation problem is very significant; thus,

VEA was applied to some random transportation problems

[14]. Table 7 shows the results of applying VEA in intel-

ligent transportation problems.

Table 8 shows the comparison of our proposed VEA

with Vogel algorithm, which is the best algorithm in

finding feasible solutions of transportation problem. As can

be seen, we have shown the superiority of the proposed

VEA.

5.3 VEA solving route optimization in IoV
scenario

The objective of this problem is to maximize the con-

nectivity probability and link quality of the available routes

from source to destination as illustrated in Fig. 12 [23, 43].

The probability of connectivity can be found by real-time

estimation of traffic density from source to destination [44].

Further, the maximization process is subject to signal to

interference and noise ratio threshold (SINRth) in order to

find more reliable and connected route in urban SDN-based

vehicular scenarios. The city road networks in vehicular

scenario are represented as graph model G(i,e) where i is

an intersection and e is the road segment between two

intersections [45, 46]. Therefore, each optimal route f
consists of a set of intersections ði1; i2; i3; i4; i5; i6; . . .; imÞ
and a set of streets ðe1; e2; e3; e4; e5; e6; . . .; enÞ, where

Table 4 Results of VEA for

Examples 7–10
Examples No. of agents No. of iterations Optimal solution F Min � Initial solution

Example 7 24 1 (0, 0) 0 1 (- 2, - 3)

Example 8 24 3 (1.39, 0) 0.67 1 (5, 5)

Example 9 24 1 (0, 0) 0 1 (- 1, - 1)

Example 10 24 2 (1.34, 1.34) - 2.06 1 (0, 0)

Table 3 Details of Examples 7–10

Examples Equations Figures

Example 7—Salomon function

f ðxÞ ¼ f ðx1; . . .; xnÞ ¼ 1� cos 2p

ffiffiffiffiffiffiffiffiffiffiffiffi

X

D

i¼1

x2i

v

u

u

t

0

@

1

Aþ 0:1

ffiffiffiffiffiffiffiffiffiffiffiffi

X

D

i¼1

x2i

v

u

u

t

Example 8—Keane function
f ðx; yÞ ¼ � sin2ðx � yÞ sin2ðx þ yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

Example 9—Bohachevsky N. 2 function f ðx; yÞ ¼ x2 þ 2y2 � 0:3cosð3pxÞcosð4pyÞ þ 0:3

Example 10—Cross-in-tray function

f ðx; yÞ ¼ �0:0001 jsinðxÞsinðyÞexpðj100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

p
jÞj þ 1

 !0:1
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Fig. 11 Process of finding optimal solution by VEA—Examples 7–10

Table 5 Results of VEA for more test problems

Name Size Optimal Linprog VEA No. of iterations

Agg 489 163 - 3.5991767287E?07 - 3.9217e?16 - 3.59917e?07 10

qap8 913 1632 2.0350000000E?02 - 1.6987e?16 2.144e?02 20

SC50A 51 48 - 6.4575077059E?01 - 6.5313e?20 - 6.4879e?01 5

AFIRO 28 32 - 4.6475314286E?02 - 1.4505e?29 - 4.7361e?02 5

Random problem 1000 5000 NaN - 400.6831e?36 - 124.3891e?07 500

Table 6 Comparison errors of VEA and classic methods

Name Error of Linprog Error of VEA

Agg 3.9217e?16 67

qap8 1.6987e?16 11

SC50A 6.5313e?20 0.3

AFIRO 1.4505e?29 8.9

Table 7 Comparison among VEA and other algorithms for large-size

problems

Problems Size Northwest Vogel VEA

Transportation 1 80 20 132804 30123 22150

Transportation 2 100 25 177666 26462 24367

Transportation 3 160 40 185366 85456 62859

Transportation 4 200 50 297629 26566 21578

Transportation 5 210 70 322356 27619 23160

Transportation 6 261 87 245311 152930 119526

Transportation 7 10000 10000 12736903 10321697 5896123
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n ¼ m � 1. According to the aforementioned assumptions,

the objective function of the optimization problem can be

written as:

max
f

FðfÞ ¼ k1 � PCðfÞ þ k2 � SINRðfÞ ð12Þ

where PCðfÞ ¼
Y

n

i¼1

PCðeiÞ;

SINRðfÞ ¼
Pn

i¼1 SINRðeiÞ �
Pn

i¼1 SINRthðeiÞÞ
Pn

i¼1 SINRðeiÞ
;

ð13Þ

subject to SINRðfÞ� SINRthðfÞ; ð14Þ

Table 8 Improvement amount

of Vogel algorithm by VEA
Problems Size Vogel VEA Improvement by VEA

Transportation 1 80 20 30123 22150 0.26

Transportation 2 100 25 26462 24367 0.08

Transportation 3 160 40 85456 62859 0.26

Transportation 4 200 50 26566 21578 0.19

Transportation 5 210 70 27619 23160 0.16

Transportation 6 261 87 152930 119526 0.22

Fig. 12 Optimal routing process in IoV environment

Table 9 Comparison of LCA

and VEA for Internet of

vehicles

Problems Size Best solution by LCA Best solution by VEA

IoV 1 100 100 775.8550 917.3405

IoV 2 200 200 9.9319e?03 1.3014e?04

IoV 3 500 500 5.8147e?04 6.9372e?04

IoV 4 1000 1000 2.5991e?05 2.8461e?05

IoV 5 2000 2000 9.8622e?05 1.2831e?06

IoV 6 5000 5000 6.2266e?06 6.6281e?06

IoV 7 10000 10000 2.4950e?07 2.7145e?07

IoV 8 30000 30000 3.7632e?09 3.7916e?09
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where F(f) is defined as the objective function with a set of

routes f from source to destination. k1 and k2 are the

weights that empirically set in the simulation, and their

summation is equal to 1. PCðfÞ and SINRðfÞ represent

connectivity and reliability of routes, respectively. PCðeiÞ
and SINRðeiÞ represent the street’s connectivity and link

reliability. Figure 12 illustrates the routing process in

SDIoV [23].

This problem is addressed by both mathematical and

heuristic algorithms. Laying chicken algorithm (LCA) [20]

has been used to find optimal route from source to desti-

nation [23]. The comparison of results of LCA and VEA is

provided in Table 9.

For each problem, an initial solution has been generated

randomly and these initial solutions are different for both

LCA and VEA algorithms. Table 10 shows improvement

in their initial solutions after five iterations.

5.4 Comparison of VEA with other optimization
techniques

In this section, VEA is compared with other techniques,

VEA is used to solve two different categories of test

functions: unimodal and multimodal. Unimodal test func-

tions have just a global optimum, but multimodal test

functions have a global optimum as well as multiple local

optima. Details of these benchmark functions are shown in

Table 11. For the verification of the results, the proposed

algorithm is compared with multi-verse optimizer (MVO)

[8], grey wolf optimizer (GWO) [9], PSO and GA.

Note that the number of agents is set on 50 and the

maximum number of iterations is equal to 100 and epsilon

is 0.1; also, the algorithm is run 50 times. The results

presented in Table 12 show that the proposed algorithm is

able to provide very competitive and efficient performance

on both the unimodal and multimodal test functions. Ave.

and Std. are average results and corresponding standard

deviations, respectively. Low standard deviation of VEA is

significant, which indicates that the values tend to be close

to the mean of the set.

6 Conclusion

A novel meta-heuristic optimization algorithm has been

proposed in this paper, which is inspired from a natural

event of volcano eruption. The proposed algorithm has

formulated a new optimizer for solving numerous sorts of

continuous and discrete optimization problems. Utilizing

the natural process of volcano eruption, our proposed

volcano eruption algorithm (VEA) has been formulated

and been used as an optimizer. The significance of our

proposed VEA lied in its robustness in producing a wide-

range set of the initial population, movement pattern across

the solutions space, explosion and eruption in the space.

This was achieved from the concept of the volcano erup-

tions nature, which has contributed significantly in

improving the optimization process. Therefore, the pro-

posed VEA optimizer could achieve an acceptable compu-

tational complexity with noticeable improved performance

in comparison with the state of the art. Numerical results

presented in this paper have shown that our proposed VEA

could significantly contribute in solving wide range of

linear, nonlinear, multi-level, multi-objective and trans-

portation based on IoV complex optimization problems.

The following briefly outlines some areas for future work

to be further studied:

1. Explore the possibility of solving some NP-hard

problems such as travelling salesman problem using

the proposed VEA.

2. VEA should be attempted in solving problems that

involve big data as it has appropriate complexity.

3. The algorithm should be extended for solving discrete

problems such as shortest path problem.

4. Combination of the proposed algorithm as an inspired

approach with exact methods, for example, finding an

approximate gradient vector by VEA for using meth-

ods such as simplex, which uses gradient directly.

5. Implementation of such similar ideas like floods,

hurricanes, earthquakes and others.

Table 10 Improvement in VEA

and LCA from their random

initial solutions (RIS) in five

iterations

Problems Size Improvement in RIS by LCA Improvement in RIS by VEA

IoV 1 100 100 0.031 0.221

IoV 2 200 200 0.005 0.318

IoV 3 500 500 0.008 0.202

IoV 4 1000 1000 0.002 0.097

IoV 5 2000 2000 0.002 0.303

IoV 6 5000 5000 0.001 0.064

IoV 7 10000 10000 0.0001 0.081

IoV 8 30000 30000 0.0001 0.069
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Table 11 Optimization test functions

Functions Equations Figures

F1 Sphere Function f ðxÞ ¼ f ðx1; . . .; xnÞ ¼ max
i¼1;...;n

jxij

F2 Schwefel 2.22

Function f ðxÞ ¼ f ðx1; . . .; xnÞ ¼
X

n

i¼1

jxij þ
Y

n

i¼1

jxij

F3 Schwefel 2.21

Function f ðxÞ ¼ f ðx1; x2; . . .; xnÞ ¼
X

n

i¼1

x2i

F4 Rosenbrock Function
f ðxÞ ¼ f ðx1; . . .; xnÞ ¼

X

n

i¼1

x2i þ ð
X

n

i¼1

xi þ n=4Þ

F5 Zakharov Function
f ðxÞ ¼ f ðx1; . . .; xnÞ ¼ �a � expð�b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

x2i

s

Þ � expð1
n

X

n

i¼1

cosðcxiÞÞ þ a þ expð1Þ

F6 Quartic Function f ðx; yÞ ¼ sin2ð3pxÞ þ ðx � 1Þ2ð1þ sin2ð3pyÞÞ þ ðy � 1Þ2ð1þ sin2ð2pyÞÞ

F7 Schwefel Function
f ðxÞ ¼ f ðx1; . . .; xnÞ ¼

X

n

i¼1

ix4i þ random½0; 1Þ

F8 Rastrigin Function
f ðx; yÞ ¼ 10n þ

X

n

i¼1

ðx2i � 10cosð2pxiÞÞ

F9 Ackley Function
f ðx; yÞ ¼

X

n

i¼1

½bðxiþ1 � x2i Þ
2 þ ða � xiÞ2�

F10 Levi N. 13 Function
f ðxÞ ¼ f ðx1; x2; . . .; xnÞ ¼ 418:9829d �

X

n

i¼1

xisinð
ffiffiffiffiffiffi

jxij
p

Þ
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