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Abstract
In recent years, significant attentions have been devoted to design of metaheuristic optimization algorithms in order to

solve optimization problems. Metaheuristic optimizers are methods which are inspired by observing the phenomena

occurring in nature. In this paper, a comprehensive and exhaustive review has been carried out on water cycle algorithm

(WCA) and its applications in a wide variety of study fields. The WCA is one of the novel metaheuristic optimization

algorithms which is inspired by water cycle process in nature and how streams and rivers flow into the sea. Good

exploitation and exploration capabilities have made the WCA a good alternative for solving large-scale optimization

problems. Due to its capabilities and strengths, the WCA has been utilized in many and various majors including

mechanical engineering, electrical and electronic engineering, civil engineering, industrial engineering, water resources

and hydropower engineering, computer engineering, mathematics, and so forth. A variety of articles based on WCA have

been published in different international journals such as Elsevier, Springer, IEEE Transactions, Wiley, Taylor & Francis,

and in the proceedings of international conferences as well, since 2012 to the present. Thus, it is highly believed that this

paper can be appropriate, beneficial and practical for students, academic researchers, professionals, and engineers. Also, it

can be an innovative and comprehensive reference for subsequent academic papers and books relevant to the WCA,

optimization methods, and metaheuristic optimization algorithms.
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1 Introduction

Optimization is a search process for a specific problem

according to special conditions of that problem. In fact,

optimization refers to finding process of optimal values for

a given network parameter using all feasible values for the

minimization or maximization of network output. The goal

of optimization is to discover the best feasible response

with the consideration of the problem constraints. The

presence of complex scientific and engineering problems

leads to using optimization methods to solve the desired

problem.

As exact (analytical) methods use orders of derivatives

for finding optimum solutions, for high nonlinear problems,

complexity of calculating derivatives of objective function

is a major problem, while metaheuristics do not need to

calculate any order of objective function’s derivatives.

Besides, if we wish to find global optimum solution for a

highly nonlinear optimization problem having hundreds/

thousands design variables (or more, i.e., large-scale opti-

mization) within a desired time span, exact approaches
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may not find an acceptable quality solution; however, using

metaheuristic optimization methods gives a near-global

optimum solution (an acceptable quality solution) within

the predefined time span. Of course, even giving more time

to metaheuristic optimization methods better quality solu-

tion will be achieved, while using exact methods depending

on the location of initial solution and other conditions

finding an acceptable optimum solution within the prede-

fined time span may be not attained.

For optimization of many complex scientific problems

which require solutions with accurate computations and

appropriate time, classical methodologies cannot be used.

In this regard, nature can be considered as a rich source

which, like a powerful mechanism, provides principles and

concepts in order to design artificial computational meth-

ods for solving such complex optimization problems.

Metaheuristic optimization algorithms, which are also

called intelligent optimization algorithms, are a kind of

random algorithms that are employed for finding optimal

solution. The word ‘‘metaheuristic’’ was first adopted by

Glover [1, 2] when introducing tabu search (TS) algorithm

as a novel heuristic method. Heuristic optimization meth-

ods are a set of algorithms for optimization problems which

search in problem search space to find optimal response

randomly but purposeful and simple [3].

After developing heuristic optimization algorithm, for

instance TS, researchers found out some natural phenom-

ena, despite being random, are interestingly moving toward

near-optimal states. These optimization algorithms are

usually inspired by nature. The metaheuristic optimization

algorithms have outsourced approaches from local opti-

mum and are capable of finding optimum solutions in wide

range of optimization problems [4, 5].

In the last decades, researchers have developed various

types of metaheuristic optimization algorithms [6]. These

methods have been expanded by mimicry of some well-

known processes, primarily in biology, physics, chemistry,

math, society, and nature in general [7]. There are different

categorizations of metaheuristic optimization algorithms

proposed in the literature [8–10]. Generally, and in brief,

algorithms inspired by nature can be divided into four main

categories including evolutionary algorithms (EA), swarm

intelligence (SI) algorithms, physics-chemistry-math based

(PCMB) algorithms, and finally human based (HB) algo-

rithms [11].

The EAs are a subset of evolutionary computations and

are categorized in artificial intelligence (AI) group. The

evolutionary algorithms are inspired by the evolutionary

and genetic behaviors of creatures. These algorithms con-

sist of genetic algorithms (GAs), differential evolution

(DE) [12, 13], biogeography-based optimization (BBO)

algorithm [14, 18], and evolution strategy (ES) [15]. Other

well-known algorithms of EAs include population-based

incremental learning (PBIL) [16], genetic programming

(GP) [17] and virus colony search (VCS) [19].

The second group of metaheuristic optimization algo-

rithms is SI algorithms which are usually inspired by

intelligent behaviors of creatures in nature. The majority of

algorithms used in the SI category, unlike the EAs class,

only utilize genetic laws, and they always take full

advantages of each solution in the search space to provide

better solutions for optimal solving of a given problem

[20]. The swarm-based techniques are presented in

Table 1.

Figure 1 shows numbers of studies on some of these

well-known algorithms. Many of these algorithms have

been used for optimization purposes. In references given in

Table 1, the original versions of the algorithms, the

improved versions or the hybridization with other algo-

rithms have been used for a variety of applications. In this

review paper, search syntax (search term) method with

several syntaxes for the sake of searching researches rela-

ted has been used for plotting figures. Collected database

was based on validated reports on Web of Science and

Google Scholars. Several syntaxes such as ‘‘intitle’’,

‘‘allintitle’’, ‘‘intext’’, ‘‘allintext’’, ‘‘inanchor’’, and ‘‘alli-

nanchor’’ have been utilized to extract the desired results.

In general, swarm-based algorithms store search space

information in subsequent iterations, while evolution-based

algorithms lose all information as soon as they form a new

population. Meanwhile, swarm-based optimizers often

include fewer operators compared to evolutionary approa-

ches [53]. However, depending on the problem/application,

each strategy may perform better. Metaheuristics (swarm-

based and evolution-based algorithms) are problem

dependent, and once the problem is changed, algorithms’

performance may vary.

The third group of metaheuristic optimizer is physics-

chemistry-math-based (PCMB) algorithm which imitate

physical laws in the world. The most well-known algo-

rithms of this group consist of simulated annealing (SA)

[59, 60], gravitational local search algorithm (GLSA) [61],

big bang big crunch (BBBC) [62], gravitational search

algorithm (GSA) [63], charged search system (CSS) [64],

central force optimization (CFO) [65], artificial chemical

reaction optimization algorithm (ACROA) [66], black hole

(BH) [67], ray optimization (RO) [68], small world opti-

mization algorithm (SWOA) [69], galaxy-based search

algorithm (GBSA) [70], curved space optimization (CSO)

[71], sine cosine algorithm (SCA) [11], and so forth.

The last group of metaheuristic optimization algorithms

is human based (HB) optimization algorithms which are

inspired by human behaviors. Some of the most popular

human behavior-based algorithms include tabu search (TS)

[1, 2], league championship algorithm (LCA) [72], teach-

ing–learning based optimization (TLBO) [73], harmony
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search (HS) algorithm [74], firework algorithm (FA) [75],

group search optimization (GSO) [76, 77], imperial com-

petitive algorithm (ICA) [78], colliding bodies optimiza-

tion (CBO) [79–81], interior search algorithm (ISA) [82],

mine blast algorithm (MBA) [83], soccer league competi-

tion (SLC) [84, 85], searcher optimization algorithm (SOA)

[86], social-based algorithm (SBA) [87], exchange mar-

ket algorithm (EMA) [88], group counseling optimization

(GCO) [89, 90], learning backtracking search algorithm

(LBSA) [91], human mental search (HMS) [92], neural

network algorithm (NNA) [93], and so forth.

The principal characteristics and features of meta-

heuristic optimization algorithms are fast search of large

solution spaces, capability to discover global solutions, and

avoid trapping in local optimum. Thus, these major

advantages have led to the significant use of the meta-

heuristic techniques compared to other methodologies for

optimization in many and various engineering areas. It is

obvious that every algorithm has its own unique attributes,

performances, and strengths. Nonetheless, none of the

algorithms can solve all optimization problems solely and

completely. Thus, novel algorithms with high capabilities

Table 1 Swarm-based optimization algorithms

Algorithms Abbreviation Inspiration Year of proposal

Particle swarm optimization [21] PSO Birds swarm 1995

Marriage in honey bees optimization [22] MBO Honey bees 2001

Fish swarm algorithm [23] AFSA Fishes swarm 2003

Ant colony optimization [24, 25] ACO Ants colony 2006

Artificial bee colony [26, 27] ABC Honey bees 2006

Invasive weed optimization [28] IWO Colonizing weeds 2006

Wasp swarm algorithm [29] WSO Wasp behavior 2007

Monkey search [30] MS Monkey behavior 2007

Wolf pack search [31] WPS Wolf pack 2007

Bee collecting pollen algorithm [32] BCPA Honey bees behavior 2008

Cuckoo Search [33] CS Cuckoo behavior 2009

Dolphin partner optimization [34] DPO Dolphin behavior 2009

Bat algorithm [35] BA Bat behavior 2010

Firefly algorithm [36] FA Firefly behavior 2010

Hunting search [37] HS Group hunting of animals 2010

Termite colony optimization [38] TCO Termite colony 2010

Wind-driven optimization [39] WDO Wind 2010

Bird mating optimizer [40] BMO Bird mating 2012

Krill Herd [41] KH Krill herd 2012

Fruit fly optimization algorithm [42] FOA Fruit fly behavior 2012

Water cycle algorithm [43] WCA Water cycle process in nature 2012

Dolphin echolocation [44] DE Dolphin 2013

Animal migration optimization [45] AMO Animals migration 2014

Gray wolf optimizer [46] GWO Hunting of gray wolf 2014

Flower pollination algorithm [47] FPA Flower pollination behavior 2014

Ant lion optimizer [48] ALO Hunting mechanism of antlions 2015

Social spider algorithm [49] SSA Social spider behavior 2015

Runner-root algorithm [50] RRA Plants propagated through runners 2015

Water wave optimization [51] WWO Water wave mechanism 2015

Crow Search algorithm [52] CSA Intelligent behaviors of crows 2016

Whale optimization algorithm [53] WOA Humpback whales 2016

Lion optimization algorithm [54] LOA Lifestyle of lions 2016

Grasshopper optimization algorithm [55] GOA Grasshopper swarms 2017

Squirrel search algorithm [56] SSA Squirrel search behavior 2019

Harris hawks optimizer [57] HHO Behavior of Harris’ hawks 2019

Sailfish optimizer [58] SFO Group of hunting sailfish 2019
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are being adopted for solving specific optimization

problems.

In this review paper, a metaheuristic optimization

algorithm based on water cycle process in nature so called

water cycle algorithm (WCA) is presented and discussed in

details about different variants of WCA for optimal solving

of a wide range of applications in various field of studies.

Also, its modifications, hybridizations, and applications

have been explained in order to evaluate studies conducted

in the literature. The WCA is inspired by the water cycle

process in nature and how streams and rivers directly or

indirectly flow into the rivers and sea.

Good exploitation and good exploration strategies make

the WCA an appropriate alternative for solving large-scale

optimization problems. Besides, its convergence rate is fast

and mature as demonstrated in the literature. Simplicity in

concept and coding are the other strengths of WCA which

makes it interesting for optimization community, pro-

grammer, and researcher. Due to its abilities and advan-

tages, the WCA has been employed in many fields of

studies. Figure 2 shows the number of published papers

relevant to the WCA in different international journals

database by searching for ‘‘WCA’’ and ‘‘Water Cycle

Algorithm’’ syntaxes. Also, journal contribution of pub-

lished papers has been shown in Fig. 3.

By observing Figs. 2 and 3, the number of papers pub-

lished in Springer publication is more than other publica-

tions. Furthermore, Figs. 4 and 5 indicate the distribution

of presented articles relevant to the WCA from 2012 to the

present per year. According to the results shown in Figs. 4

and 5, the number of published papers has been signifi-

cantly increasing per year from 2012 to present. However,

it is obvious that the number of articles published in the
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2019 is remarkably higher than that of other years. The

reported results show that utilizing the WCA in diverse

researches and studies is considerably increasing year by

year.

The rest of this review paper is organized as follows.

Section 2 reviews water-based optimization algorithms in

the literature and briefly discusses about each optimizer for

both discrete and continuous search space. Section 3 starts

with complete explanations of WCA, its concept, searching

operators, and step by step pseudo-code. Overall perfor-

mance and view of WCA in the literature is given in

Sect. 4 with concise explanations of its applications and

contributions. Afterward, improved/modified versions of

WCA (i.e., WCA’s variants) proposed in the literature have

been provided in Sect. 5 giving brief descriptions about

each modified version. Afterward, unconstrained and con-

strained optimization problems and also multi-objective

WCA along with its explanations and applications is dis-

cussed in Sect. 6. Hybridizations of WCA with other

optimization algorithms and their utilizations in solving

optimization problems are given in Sect. 7. A wide range

of applications in various fields of studies using WCA and

its variants has been covered in Sect. 8. Then, WCA Per-

formance over well-known benchmarks is examined in

Sect. 9 along with WCA computational complexity. Dis-

cussions about performance, advantage, drawbacks of

WCA comparing with other optimizers in the literature

along with statistical results of WCA contributions in dif-

ferent continents are provided in Sect. 10. Finally, Sect. 11

concludes the findings and purpose of this review paper

along with some future directions regarding the future of

WCA in optimization society.

2 Water-based metaheuristic optimization
algorithms

In recent years, many and various metaheuristic opti-

mization algorithms based on water concept have been

proposed for solving diverse optimization problems. These

optimization methods have been well-known to water-

based metaheuristic optimization algorithms since almost

all of them are inspired by water behavior in nature.

Nonetheless, in spite of numerous similarities among these

optimizers, in general the water-based optimization algo-

rithms are quite different in terms of their searching

approaches or their solutions strategy. Figure 6 shows

different branches of water-based metaheuristic optimiza-

tion algorithms. These algorithms are categorized based on

the type of the proposed method in their original papers to

solve discrete or continuous optimization problems.

Since the studied optimizer in this review paper is

considered as an optimization algorithm based on water, in

this section water-based optimizers that are observed in the

literature are introduced and explained in brief. Table 2

represents the main characteristics of the water-based

optimizers. In addition, Figs. 7 and 8 depict the citations

number of papers contained water-based algorithms.

As it can be seen in Figs. 7 and 8, the citations number

of article contained WCA is considerably higher than that

of other articles. The reported results show that utilizing

the WCA among the water-based optimization methods in

diverse researches and studies is significantly increasing

year by year. In the following, water-based optimizers for

solving discrete and continuous optimization problems are

described in brief.

2.1 RFD: river formation dynamics

River formation dynamics (RFD) optimization algorithm

was the first water-based metaheuristic algorithm that was

introduced and published in 2007 [94]. The RFD is based

on river formation dynamics, and it is inspired by the way

rivers are created in nature. The RFD simulates how col-

laborative water falls form rivers to the sea. Drops are more

likely to travel through steeper paths, and soil is extracted

from the floor while they fall through steep slopes. It is

worth mentioning that The ACO RFD is a gradient-ori-

ented version, given that the probabilistic choice of where

the components are moving next is not related to the

characteristics attached to available edges (the amounts of

pheromone trail in the ACO) [102].

2.2 IWD: intelligent water drops

Intelligent water drops (IWD) metaheuristic algorithm was

introduced in 2007 [95]. The IWD is based on the obser-

vation on the behavior of water drops in rivers. It seems

that the IWD method is a modified version of ACO to

simulate how high altitudes water flows into the sea.

However, the IWD has not been considered as a novel

algorithm [103]. Indeed, since in this paper all main

algorithmic components of IWD are considered as
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simplifications or special cases of ACO, the IWD is con-

sidered as simply a particular instantiation of ACO.

In the IWD algorithm, water drop has two considerable

features including the velocity that it moves and the

amount of the soil it carries. Water drops from a source to a

destination prefer less soil routes. They also move quicker

on roads with less soil and the quicker the more soil they

remove. These drops can find shortest paths from the

source to a destination, following this self-reinforced

system.

Fig. 6 Water-based

metaheuristic optimization

algorithms

Table 2 The main characteristics of the water-based optimizers

Algorithm Abbr. Inspiration Solution Initial solution Problem in

original paper

Initial pop. Year of

proposal

Citations

Single Pop.a Random Local Cont.b Disc.c

River formation

dynamics [94]

RFD Creating rivers 9 4 4 9 9 4 Drops 2007 [129]

Intelligent water

drops [95]

IWD Behavior of water

drops

9 4 4 9 9 4 Water

drops

2007 [317]

Water flow-like

algorithm [96]

WFA Behavior of fluid

flows

9 4 4 9 9 4 Water flow 2007 [58]

Water cycle

algorithm [43]

WCA Water cycle in nature 9 4 4 9 4 9 Streams 2012 [559]

Simulated raindrop

[97]

SRD Principles of raindrops 4 9 4 9 4 9 Raindrops 2014 [14]

Water wave

Optimization [52]

WWO Movement of water

waves in shallow

water

9 4 4 9 4 9 Water

waves

2015 [236]

Water evaporation

optimization [98]

WEO Water molecules 9 4 4 9 4 9 Water

molecules

2016 [94]

Rainfall

optimization [99]

RFO Behavior of raindrops 9 4 4 9 4 9 Raindrops 2017 [77]

Hydrological cycle

algorithm [100]

HCA Water movement in

nature

9 4 4 9 9 4 Water

drops

2017 [16]

Droplet

optimization

algorithm [101]

DOA Droplet generation in

clouds

9 4 4 9 4 9 Drops 2018 [4]

aPopulation
bContinuous
cDiscrete
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2.3 WFA: water flow-like algorithm

Water flow-like algorithm (WFA) was introduced in 2007

[96]. The WFA optimizer is inspired by behaviors of fluid

flows. Initially, a single water flow is created, as well as

with a given initial mass and velocity so that the fluid

dynamics can be calculated. The water then flows to lower

heights. The WFA is consisted of four primary water flow

operations including flow splitting and moving, flow

merging, water evaporation, and precipitation. Parameters

included in the WFA execution are the limit of iteration,

initial mass, original flow velocity, base impulse, the limit

of sub-flows divided by flow, adjacent step size, precipi-

tation offset of each coordination, and the amount of

periodic precipitation iterations maximum.

2.4 HCA: hydrological cycle algorithm

The hydrological cycle algorithm (HCA) [100] was intro-

duced in 2017. Based on the motion of the water in nature,

this optimization algorithm is influenced by the nature. In

the HCA, a set of water drops as the initial population

moves among various hydrological water cycle stages,

such as flow (runoff), evaporation, condensation, and pre-

cipitation to generate a solution. In this cycle, the flow

stage includes the velocity of the water drops, amount of

soil on the path and the depth of that path, the amount of

soil a water drop carries, and water drop temperature. The

flow stage is very similar to IWD algorithm. It is obvious

that in the WCA, the initial population is presented by a set

of streams. These streams keep moving from one point to

another, which simulates the flow process of the water

cycle. Therefore, the HCA has an artificial water drop

population which continues to move from one point to

another, which is the flow phase.

In the WCA, the removal of soil from trails that is a

critically important operation in the creation of streams and

rivers is not taken into account. The HCA evaporates when

the temperature reaches a particular value after certain

iterations. According to water drops, the temperature is

updated. There is no temperature at the WCA, and the rate

of evaporation is based on a proportion of solution quality.

Finally, both the WCA and HCA algorithms vary in their

parameters, operations and exploration methods, formal-

ization of each phase and solutions design.

2.5 WCA: water cycle algorithm

As it will be introduced in details in Sect. 3, the WCA [43]

was introduced as a novel metaheuristic optimization

algorithm in 2012 by Eskandar et al. [43] to deal with

constrained and unconstrained continuous optimization

problems. The WCA is inspired by surface runoff model

existed in water cycle process happened in nature.

Water flows in the form of streams and rivers from the

top of the mountains to the sea. On the way down, rivers

and streams collect water from rain and other streams.

Water in rivers and streams will be evaporated when plants

return water during the evaporation process. When the

steaming water rises in the atmosphere, clouds are formed.

These clouds are compressed in a colder atmosphere,

returning the water in the form of rain or precipitation,

creating new streams [15]. Similar to any other optimizers,

the WCA starts with an initial population so called ‘‘pop-

ulation of streams,’’ which comes from rain. The finest

stream is chosen as the sea; several excellent streams are

selected as rivers and the rest are chosen as streams which

move into the rivers or straight into the sea [18].

2.6 SRD: simulated raindrop

The simulated raindrop (SRD) algorithm was introduced in

2014 [97]. When rain drops toward the earth, the gravity

generally flows from above to below, selecting the ideal

route to the reduced point of the landscape. The SRD starts

randomly by creating an initial solution called raindrop.

Thus, splashes that take place when a raindrop hits the

ground are randomly generated around it.

For each sprinkling, the process is repeated, which

means fresh sprinkling is produced around the original drop
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place. In this situation, some of the water can reach

neighboring positions after hitting the surface and then it

can sprinkle in other locations again. The terrain is the

objective function of the SRD algorithm. Water flows from

the higher to the lower altitude is similar to the local

rainfall sprinkler search, and the optimal solution is the

lowest point in this landscape.

2.7 WWO: water wave optimization

The water wave optimization (WWO) algorithm was

introduced in 2015 [52]. The WWO is motivated by the

observation of water waves in shallow and deep waters.

The WWO is an optimization technique based on popula-

tion. The original height and the wavelength of all the

populations including water waves are the same. Water

waves’ original positions are altered randomly through the

search area.

Three stages of activities on water waves in each iter-

ation consist of propagation, breakage, and breakage. In

particular, the propagation operator searches high fitness

waves for limit fields and low fitness waves exploring wide

regions. The refraction operator assists the waves break

away from the stagnation of their pursuit, thus improving

the population’s diversity and reducing premature conver-

gence; finally, an extensive search around promising field

is possible by the breaking operator. The algorithm offers a

nice equilibrium between exploration and exploitation by

the mixture of the three operators. The control parameters

in the WWO algorithm involve the maximum wave height,

the wave length reduction coefficient, the breaking coeffi-

cient, and the maximum number of breaking directions.

2.8 WEO: water evaporation optimization

The water evaporation optimization (WEO) algorithm was

introduced in 2016 [98]. The WEO algorithm is a multiple

population-based algorithm where individuals are water

molecules. In the search space, the original positions of

water molecules are produced randomly. This meta-

heuristic technique is based on a very small quantity of

water molecules that are deposited on the solid surface.

The general algorithm is divided into two stages with the

same amount of iterations in each stage, inspired by a

transformation stage achieved during a surface weather

change names as the monolayer evaporation and the dro-

plet evaporation.

The first stage reflects hydrophility surfaces with greater

values than the transition stage value. The second stage

shows low-hydrophility surfaces. These two phases balance

intensification and diversification in the WEO. However,

the WEO parameters consist of water molecules number,

the algorithm iterations maximum, the monolayer

evaporation probability minimum and maximum, and the

droplet evaporation probability minimum and maximum.

2.9 RFO: rainfall optimization

The rainfall optimization (RFO) metaheuristic algorithm

was introduced in 2017 [99]. The RFO is based on behavior

of raindrops, and it starts with an initial population named

as population of raindrops. The RFO algorithm attempts to

implement how water flows from high places like moun-

tains to low places like slopes to simultaneously descend

the steeper slopes.

Each raindrop in each iteration selects some points in its

neighborhood. If better than the present situation is the best

part of those points, the raindrop will move to it. Other-

wise, in its neighborhood technique of assessing points is

considered. The drops are listed according to their rankings

after each iteration. The fitness of the drop situation and the

difference in its present fitness and first fitness are con-

sidered for each ranking. The major parameters in this

technique consist of the neighbor point numbers, the

neighborhood size, population size, and the neighbor point

numbers in explosion process.

2.10 DOA: droplet optimization algorithm

The droplet optimization algorithm (DOA) was introduced

in 2018 [101], and it is motivated by cloud droplet gen-

eration, droplet descent, and evaporation from clouds to the

surface. In the proposed DOA, there are two major struc-

tures including the list of current drops as candidate solu-

tions and a list of the best solutions found so far as big

drops (BD). An initial drop population is spread randomly

across the search space and the only original part of BD is

the one that is best fitness among them.

The mass center of the present population is calculated

at each DOA iteration. Then each individual’s fitness

function is assessed. The best of the two positions achieved

is used as the present major drop. Each drop in the popu-

lation is subsequently transferred to BD. Next, two BD

components are chosen for each candidate drop and the

candidate drop position is altered in the direction that

combines the direction of the candidate toward both BD

components. If the novel situation is worse than the former

situation, the motion is finished. The method is otherwise

repeated until a number of runs is conducted. The final

stage is to update BD in order to incorporate the finest

alternatives that have been discovered during the present

iteration.
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3 Water cycle algorithm

The WCA was introduced as a novel metaheuristic opti-

mization algorithm in 2012 by Eskandar and his col-

leagues. After introducing the WCA, After the introduction

of the WCA, studies have demonstrated the WCA’s

effectiveness and efficiency in computing effort (measured

as the number of function assessments) and function value

(accuracy) over other well-known optimizers. Since 2012,

as reported in the literature, many applications have been

benefited using the WCA. The WCA competing along with

other state-of-the-art optimizers have shown its superiority

for optimal solving of optimization problems.

3.1 Inspired idea

The WCA is inspired by existing water cycle process in

nature. Water flows in the form of streams and rivers from

the top of the mountains to the sea. On the way down,

rivers and streams collect water from rain and other

streams. Water in rivers and streams will be evaporated

when plants return water during the evaporation process.

When the steaming water rises in the atmosphere, clouds

are formed. These clouds are compressed in a colder

atmosphere, returning the water in the form of rain or

precipitation, creating new streams (see Fig. 9) [15].

Similar to any other metaheuristic algorithms, the WCA

starts with an initial population called ‘‘population of

streams,’’ which comes from rain or hail. The best streams

are selected as the sea, a number of streams with competent

fitness are selected as rivers, and the rest of the streams are

selected as streams moving into the rivers or directly into

the sea [18].

Figure 10 is a schematic diagram of how streams flow to

the rivers and rivers flow to the sea. In fact, Fig. 10

resembles a tree or roots of a tree. The smallest river

branches, (twigs of tree shaped figure in Fig. 10 shown in

bright green) are the small streams where the rivers begin

to form. These tiny streams are called first-order streams

(shown in Fig. 10 in green colors).

When two streams of the first order join together, they

create a strip of second order (shown in white colors in

Fig. 6). When two streams of second order are added, a

stream of third order is created (see Fig. 6 in blue colors)

until the rivers lastly flow down into the sea (the world’s

most downhill) [16].

In the WCA, after raining process, streams which are pro-

duced randomly start to flow.Each stream indicates a candidate

solution for an optimization problem. Streams are formed from

raining process and rivers are created by connecting streams

together. Some of the streams flow directly to the sea as well.

Finally, the streams and the rivers flow to the sea.

Among the formed streams, the best stream (i.e., solu-

tion with the lowest cost in the minimization problem) is

selected as the sea and then a number of good streams after

the sea are considered as rivers and the rest of streams only

flow into the rivers/sea. Indeed, in the WCA an indirect

movement toward the best obtained solution is planned. As

it happens in the nature, evaporation process will evaporate

the streams’ water and may destroy (eliminate) the streams.

Evaporated water then again back to the earth by raining

which forms new streams in the region. This phenomenon

is modeled by creating streams randomly in search space.

During the flowing strategy, once a stream flowing into a

river finds better situation (cost function), then the position

of the stream and the river will exchange and the same

condition will be applied for rivers flowing to the sea.

Table 3 gives definition of WCA characteristics in brief.

Fig. 9 A schematic view of the hydrologic cycle (water cycle

process) [1]

Fig. 10 Diagram of how streams flow to the rivers and also rivers

flow to the sea [1]
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3.2 Creating initial population

As explained in Sect. 3.1, the WCA starts with an initial

population of streams which is defined as follows for an N-

dimensional optimization problem:

A stream candidate ¼ ½x1; x2; x3; . . .; xN � ð1Þ

Considering all streams with the size of Npop, the total

population is developed as given follows including sea and

rivers:

Total population ¼

Sea

River1
River2
River3

..

.

StreamNsrþ1

StreamNsrþ2

StreamNsrþ3

..

.

StreamNpop

2
66666666666666664

3
77777777777777775

¼

x11 x12 x13 � � � x1N
x21 x22 x23 � � � x2N
..
. ..

. ..
. ..

. ..
.

x
Npop

1 x
Npop

2 x
Npop

3 � � � x
Npop

N

2
6664

3
7775

ð2Þ

where Npop is population size and N is the number of design

variables. In a randomly formed initial population of

Npop 9 N streams, each of the values of the specified

design variable can be selected as either real values or a

predefined group for discrete sequence. Then, cost of each

row (i.e., stream) depending on the cost function is

obtained as given follows:

Ci ¼ Costi ¼ f ðxi1; xi2; . . .; xiNÞ i ¼ 1; 2; 3; . . .;Npop ð3Þ

After forming Npop stream, Nsr of the best individuals

are selected (having the maximum fitness or the minimum

cost) as the river and sea given in the following equations

(see Eq. (2)):

Nsr ¼ Number of riversþ 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Sea

ð4Þ

NStream ¼ Npop � Nsr ð5Þ

Looking at Eq. (5), population of streams with size of

Nstream which flow to the designated rivers and sea can be

considered in Eq. (6) which is a subset of Eq. (2):

Population of streams ¼

Stream1

Stream2

Stream3

..

.

StreamNStream

2
66666664

3
77777775

¼

x11 x12 x13 � � � x1N
x21 x22 x23 � � � x2N

..

. ..
. ..

. ..
. ..

.

xNStream

1 xNStream

2 xNStream

3 � � � xNStream

N

2
66664

3
77775
..
.

ð6Þ

Depending on the intensity of the water flow, the

number of streams flowing into the rivers and sea is cal-

culated through the following equation:

NSn ¼ round
CnPNsr

n¼1 Cn

�����

������ NStreams

( )
; n ¼ 1; 2; . . .;Nsr

ð7Þ
Cn ¼ Costn � CostNsrþ1

; n ¼ 1; 2; 3; . . .;Nsr ð8Þ

where NSn is the number of the streams, which flows into

the certain rivers or the sea. Indeed, it is expected the sea

absorbs more streams in the population as the intensity of

water flow (i.e., cost function) is the highest among other

candidates. Similar to the sea, the first river and second

river will collect more streams comparing to other orders of

rivers, respectively.

3.3 How does a stream flow into sea or rivers?

As it was mentioned in Sect. 3.1, the streams are formed

from raining process reach together to form a new river.

Some of these streams may flow directly to the sea as well.

Table 3 Characteristics of the

WCA
Characteristics Description

Decision variable Position of stream/river/sea in N dimension

Candidate solution (individual) Sea/rivers/streams

Best solution Sea

Fitness function Intensity of flow

Initial solution/population Random streams

Designation Categorizing streams to sea/rivers

Generating new solutions Streams flowing to rivers/sea and rivers flowing to sea
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Generally, all rivers and streams end up in sea (i.e., the best

optimal solution). Figure 11 depicts the schematic view of

stream flowing toward a specific river.

As illustrated in Fig. 11, the movement of a stream to a

given river along the connecting lines between them is

applied by a randomly selected distance as given follows:

X 2 ð0;C � dÞ; C[ 1 ð9Þ

where C is a constant value that is between 1 and 2, and d is

the distance between the river and the stream (it can be

between a stream and sea, or a river and sea). The value of

X is a number between zero and C 9 d with any dis-

tributive type. If the value of C is smaller than one, a

stream can approach to the river form one direction and it

does not pass its stream, while values greater than one,

allows the stream to move in both directions, whether

approaching or passing its river. Accordingly, the same

situation is applied for flowing a river to the sea. The best

reported value for C is chosen as 2. Therefore, new posi-

tions of a stream and river flowing into the sea can be

suggested using the given updating equations:

X~
i

Streamðt þ 1Þ ¼ X~
i

StreamðtÞ þ rand� C

� X~SeaðtÞ � X~
i

StreamðtÞ
� �

;

i ¼ 1; 2; 3; . . .;NStream

ð10Þ

X~
i

Streamðt þ 1Þ ¼ X~
i

StreamðtÞ þ rand� C

� X~
i

RiverðtÞ � X~
i

StreamðtÞ
� �

;

i ¼ 1; 2; 3; . . .;NStream

ð11Þ

X~
i

Riverðt þ 1Þ ¼ X~
i

RiverðtÞ þ rand� C

� X~SeaðtÞ � X~
i

RiverðtÞ
� �

;

i ¼ 1; 2; 3; . . .; ðNsr � 1Þ
ð12Þ

where rand is a uniformly distributed random number

between zero and one and t is iteration index. As can be

seen in Eqs. (10)–(12), three updating equations are

introduced showing three movement strategies: moving the

streams toward sea, moving stream toward the rivers, and

moving the rivers toward the sea, respectively. If the cal-

culated solution (i.e., cost function) of each stream is better

than its connected river, then their positions exchanges,

that is, in the next iteration of the algorithm, the stream is

considered as the river and its corresponding river is con-

sidered as the stream. Accordingly, if the stream or river

has a better cost than the sea, the stream or river will be

replaced by the sea and the sea will be the stream/river (see

Fig. 12).

3.4 Evaporation conditions

The evaporation condition operator is essential for the

WCA, escaping trap in the local optima and preventing

sudden rapid convergence. It is assumed that, in this pro-

cess, some water of the streams or rivers evaporate. Then

from the evaporated water, clouds are formed, and the

water in rain returns to the ground, and therefore, new

streams are formed that flow back into the sea or rivers.

Evaporation condition in the WCA means when a stream or

a river is closed enough to the sea, evaporation condition is

satisfied, and we will have raining, and therefore, new

streams are formed. Pseudo codes given in relations (13)

and (14) determine whether the process of evaporation and

formation of rain occurs in a river or in a stream or not.

if X~SeaðtÞ � X~
j

RiverðtÞ
���

���\dmax

or rand\0:1 j ¼ 1; 2; 3; . . .;Nsr � 1

Perform raining process by Eq: ð16Þ
end

ð13Þ

Fig. 11 Schematic view of stream’s flow to its planned river

Stream

StreamRiver

River

Fig. 12 A schematic view of the exchange process between a stream

and its corresponding river
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if X~SeaðtÞ � X~
j

StreamðtÞ
���

���\ dmax j ¼ 1; 2; 3; . . .;Nsrð1Þ

Perform raining process by Eq: ð16Þ
end

ð14Þ

where dmax is a small value close to zero which controls the

depth of the search near the sea. When the large size of

dmax is selected, the search intensity decreases. However, if

its small value is selected, the search intensity increases.

Indeed, looking at relations (13) and (14), when the dis-

tance between the river and the sea is less than dmax, the

river is very close to the sea (depends on the level of

accuracy). Thus, there is no need to search more near to

sea, instead it will be better to search other regions rather

than areas close to sea. In this case, the condition of

evaporation is satisfied and then the raining process occurs

resulting forming new streams in the population. Also, at

the end of each iteration, the value of d adaptively

decreases based on the following equation:

dmaxðt þ 1Þ ¼ dmaxðtÞ �
dmaxðtÞ

Max Iteration
t ¼ 1; 2; 3; . . .;Max Iteration

ð15Þ

It is worth mentioning that dmax is not considered as user

parameters since its sensitivity regarding performance

efficiency is ignorable. Based on rules of thumb and sen-

sitivity analysis done, for unconstrained and constrained

optimization problems values of 1e-15 and 1e-05 are

suggested. Therefore, no need to tune this parameter while

doing the optimization task. In fact, the dmax shows the

accuracy level of the obtained solutions. Smaller values of

dmax mean high accuracy concerning the attained function

value, and on the other hand, larger values of dmax stand for

low accuracy.

In conclusion, talking about initial parameters used in

the WCA, as the WCA is population-based optimizer,

population size and the maximum number of NFEs are

considered as common user parameters existed in all

metaheuristic optimization methods. Thus, the Nsr as the

only user parameter should be taken into account and fine-

tuned during the optimization process.

3.5 Raining process

The process of raining is similar to the mutation operator in

the GAs. New streams are randomly created in different

regions. Accordingly, a stream with the best function value

among other new streams is considered as the river which

will be moved to the sea. The rest of them are considered as

new streams flowing into the river or directly to the sea.

New stream resulting from the evaporation condition is

obtained according to Eq. (16):

X~
i

Streamðt þ 1Þ ¼ LB~þ rand� ðUB~� LB~Þ ð16Þ

where LB and UB are lower and upper bounds of a given

optimization problem. For the streams flowing directly into

the sea, a new updating equation that increases the search

near the sea is used, which leads to a better convergence

rate and computational performance of the algorithm for

solving constrained optimization problems as given

follows:

XNew
Stream ¼ X þ ffiffiffi

l
p � rand nð1;NÞ ð17Þ

where l expresses the concept of variance. In fact, the

value of l shows the search range near the sea, and randn

is a random number with a normal distribution. The most

appropriate value for l is 0.1, while larger values increase

the probability of leaving the potential area, and smaller

values reduce the search and exploration space near the

sea. From a mathematical perspective, the term
ffiffiffi
l

p
in

Eq. (17) represents the standard deviation. Using these

concepts, the generated individuals with variance l are

distributed around the best obtained optimum solution

(sea).

Figure 13 shows a schematic view of the how of per-

formance of the WCA where circles, stars, and the dia-

mond correspond to streams, rivers, and sea, respectively.

From Fig. 12, the white (empty) shapes refer to the new

positions found by streams and rivers. In fact, Fig. 13 is an

extension version of Fig. 11.

3.6 Constraint handling used in WCA

In the search space, streams and rivers may violate either

the problem-specific constraints or the limits of the design

variables. A modified feasible-based mechanism can be

used to handle the problem-specific constraints based on

the following four rules [17]:

Fig. 13 A schematic view of updating equations (movements)

utilized in the WCA
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• Rule 1: Any feasible solution is preferred to any

infeasible solution.

• Rule 2: Infeasible solutions containing slight violation

of the constraints (from 0.01 in the first iteration to

0.001 in the last iteration) are considered as feasible

solutions.

• Rule 3: Between two feasible solutions, the one having

the better objective function value is preferred.

• Rule 4: Between two infeasible solutions, the one

having the smaller sum of constraint violation is

preferred.

Using the first and fourth rules, the search is oriented to the

feasible region rather than the infeasible region. Applying

the third rule guides the search to the feasible region with

good solution quality [17]. For the most optimization

problems, the global minimum locates on or close to the

boundary of a feasible design space. By applying Rule 2,

the streams and rivers approach the boundaries and can

reach the global minimum with a higher probability using

Rule 3 [18]. It is worth mentioning that other constrained

handling approaches can be utilized in the WCA. For

instance, one can apply penalty function approach or other

existing strategies widely studied in the literature.

3.7 Convergence criteria

For termination criteria, the best results are determined

when the stopping condition can be taken account as the

maximum iteration number (Max_It), the maximum num-

ber of function evaluation (NFEs), CPU time (in second),

or e which is a little nonnegative value and is a tolerance

between the last two outcomes achieved, as is commonly

considered in all metaheuristic optimization algorithms.

However, recently, the CPU time criterion seldom is con-

sidered as it is heavily depending on the skills in coding,

configuration of working system (i.e., RAM, CPU power,

and so forth) and many other factors.

Besides, the number of maximum iteration criterion is

strongly related to the defined strategy in each optimizer.

Indeed, taking the maximum number of iteration as stop-

ping criterion may not be fair for comparison purposes

among the optimizers. For instance, the NFEs used in PSO

and GAs under the same maximum number of iteration are

not the same, and in this case, performance evaluation may

not be valid under this circumstance. Therefore, it is gen-

erally accepted to apply NFEs criterion as fair stopping

condition among metaheuristics. In the most cases, the

WCA proceed until the maximum NFEs as a convergence

criterion is satisfied.

3.8 Steps and flowchart of WCA

Detailed flowchart of WCA is demonstrated in Fig. 14.

Also, the steps of WCA are summarized as follows:

Fig. 14 Flowchart of the WCA
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• Given parameters for a specific optimization problem:

Dimension size (N), LB and UB, mathematical model,

and the maximum NFEs considered as stopping

condition.

• Step 1: Select the user parameters of the WCA

including Npop (population size), Nsr (number of rivers

and sea).

• Step 2: Calculate the Nstream using Eq. (5).

• Step 3: Randomly create the initial population with the

size of Npop.

• Step 4: Compute the cost function value of each stream

using Eq. (3).

• Step 5: Determine the rivers, and streams and the best

solution as the sea in the initial population.

• Step 6: Determine the intensity of flow for rivers and

sea using Eqs. (7) and (8).

• Step 7: The streams directly flow to the sea by Eq. (10).

• Step 8: Exchange positions of a stream with the sea

which gives better solution.

• Step 9: The streams flow to the rivers using Eq. (11).

• Step 10: Exchange positions of a stream with its river

which gives better solution, as shown in Fig. 8.

• Step 11: The rivers flow to the sea using Eq. (12).

• Step 12: Similar to Step 10, if a river finds better

solution than the sea, the position of river is exchanged

with the sea.

• Step 13: Check the evaporation condition by relations

(13) and (14).

• Step 14: If the evaporation condition is satisfied, raining

process and the forming of new streams will occur

using Eqs. (16) and (17) (for constrained).

• Step 15: Reduce the value of dmax using Eq. (15).

• Step 16: Check the stopping conditions. If the termi-

nation criterion is achieved, the algorithm will be

stopped. Otherwise, return to step 7.

3.9 Pseudo-code of the WCA

For a detailed explanation of the performance of the WCA,

the pseudo-code of this algorithm is represented in Table 4

[4]. The following Pseudo-code is the programming pro-

cess described in Sect. 3.8. In this pseudo-code, attempts

have been made to present these steps in a concise and

understandable way using instructions of ‘‘while’’ and ‘‘if,’’

and alike.

3.10 Exploration and exploitation used in WCA

It is crucial to equip any metaheuristic optimization algo-

rithm with two main features for detecting the global

optimum, which are the so-called exploration and

exploitation features. Having an ensured balance between

these two features is a big deal for any optimizer. Scholars

and researchers try to balance the cooperation of these two

major characteristic during the optimization task. Explo-

ration as its name suggests means to explore the entire

region in order to find a relative good solution, not global

optimum one. This strategy usually happens first, and the

results of this section will be given to exploitation phase.

Exploitation as its name means is an effort to improve the

current good solution toward the global optimum solution.

Indeed, exploitation phase is responsible for level of

accuracy of obtained solution by an optimizer, and usually

is the second phase after exploration phase. Therefore,

most of algorithms start with exploration and end with

exploitation phase in a series form.

However, it may be different story which an algorithm

starts both exploration and exploitation inside an iteration

simultaneously. These differences make algorithms dif-

ferent with each other, and that is why, we have different

strategies and consequently different performance evalua-

tion. That is why some optimizers perform better than the

other or vice versa. It is worth mentioning that at first

iteration standard deviation of initial population is very

high, while by iteration continues, the standard deviation

reduces at final iterations. Therefore, in this respect,

metaheuristic optimization techniques can be categorized

into two main classifications as given follows:

1. Trajectory optimization methods which use one single

solution for finding global optimum point such as SA

[59, 60], TS [1, 2], greedy randomized adaptive search

procedure [104], VNS [105], guided local search

(GLS) [106], and iterated local search [107]. These

approaches are more exploration oriented approaches

and the position of initial solution may affect the

performance of obtained results and running time.

2. Population-based optimization methods which utilize a

population of solution for finding global optimum point

such as GAs [108], PSO [21, 109], WCA [43] and

many others [110]. These optimizers are more explo-

ration-oriented strategies, and the position of initial

solution does not affect the performance of attained

results and running time. In fact, they are called global

optimizers [111, 112].

The WCA is classified into the second group. It utilizes

power and advantages of population for searching the

global optimum. Talking about exploration and exploita-

tion phases in the WCA, unlike other common optimizers,

the WCA starts with exploitation using three updating

Eqs. (10)–(12). As it is mentioned earlier in this section, at

first iterations, due to high standard deviation among

solutions in the population, exploration indirectly applies

without using exploration search operators. In the WCA,
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exploitation and exploration are considered at the same

time within an iteration.

After flowing streams and rivers toward the sea which is

taken into account as exploitation phase in the WCA,

exploration phase shows up with the evaporation condition.

If evaporation condition is satisfied, then the algorithm

enters the exploration phase. Note that there is possibility

to not enter to the exploration phase; hence, it can be said

there is no exploration on that iteration. This may happen

and exploitation phase carry the burden of optimization.

Indeed, exploitation is always existed in the WCA, while

exploration phase may be or may not play role. Looking at

relations (13) and (14), there are two conditions for satis-

fying the evaporation condition which are Euclidian dis-

tances between streams and rivers with the sea, and 10

percent chance for accepting this condition. If one of the

conditions is met, then new streams are formed within LB

and UB of a given problem using simple random search

strategy. The random search assumed for exploration phase

in the WCA is a simple one and potential of exploration

phase can be enhanced using new and novel, or other

existing global search operators.

Table 4 Pseudo-code of the WCA
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4 Overview of WCA in literature

Due to the strengths and capabilities of the WCA, this

optimization algorithm and its developed variants have

been utilized in many and various papers in the literature in

order to improve performance of engineering systems and

to tackle different engineering problems. In this section,

overview of the WCA-based papers has been represented.

Table 5 indicates summary of the WCA based papers in the

literature.

In the articles given in Table 5, the standard WCA is

investigated on diverse engineering systems and bench-

mark test functions with the aim of solving optimization

problems. In addition, in Refs.

[116, 134, 138, 139, 150, 152], the ER-WCA, which is a

modified version of the WCA, has been employed to obtain

the solution of many problems. In all papers and applica-

tions, the optimization results demonstrate good real-time

performance, fast convergence, and competitive accuracy

of proposed method and also efficiency of the WCA in

discovering the optimal solution. Meanwhile, Ref. [118]

has provided detailed open source code for the WCA for

solving optimization problems.

5 Modifications/improvements of WCA

In the most optimization algorithms, the significant attempt

is to preserve the balance between the exploration and

exploitation mechanisms over search spaces and subse-

quently to achieve the optimal solution. In recent years,

diverse techniques have been employed by the researchers

in the different areas in order to improve the performance

and efficiency of the standard WCA.

In this regard, the variants of the original WCA in terms

of modifications, parameter tuning, applying a set of three

evolutionary operators and also other methods have been

proposed in literature. Table 6 depicts a brief summary of

the main modified attributes of the improved WCA ver-

sions. Also, Fig. 15 shows the different modifications of

the WCA in a classified way.

In addition, Fig. 16 demonstrates percentage of the

WCA modifications existed in the literature. According to

the statistical results shown in Fig. 16, the categories of

‘‘other modifications of the WCA’’ and ‘‘chaotic based

WCA’’ have more percentage on WCA improvement

papers. In the following, the modified versions of the WCA

are provided.

5.1 Chaotic

A chaotic mapping in nonlinear dynamic systems is a

nonlinear and common phenomenon that is very suscepti-

ble to its initial conditions and parameters [169]. Since the

chaotic systems are sensitive to the initial conditions, a tiny

change in these systems would lead to a considerable

change. With this in mind, there is obviously random,

unforeseeable and regular nature in chaotic behaviors

[194]. The word ‘‘chaotic’’ usually comes from ‘‘chaos,’’

described as the property of an unexpected complex

scheme, and map defines chaos in an algorithm as the

mapping or associating of a function with certain param-

eters. Chaotic maps are maps that reflect nonlinear sys-

tems’ complicated and dynamic behavior. Due to the

periodical and non-repeatability characteristics of the

chaos, global searches may be conducted more quickly

than stochastic searches that are essentially based on

probabilities [195]. The concept of chaos is that the non-

stable dynamic attitude is susceptible to the early circum-

stances and involves infinite volatile periodical movements

in nonlinear systems [196].

Coupled chaos and metaheuristic optimization algo-

rithms can improve population diversity and improve

diversification capacity, which prevents premature con-

vergence. Chaos has therefore been utilized in different

optimization applications.

5.1.1 Gravitation-based chaos water cycle algorithm

Despite the fact that the WCA has the considerable con-

vergence characteristics, it is possible it suffers from the

premature convergence since the diversity of population is

reduced quickly during the evolutionary process.

In Ref. [169], with the aim of designing an improved

WCA and also making the appropriate balance between

exploration and exploitation, gravitation-based chaos water

cycle algorithm (GCWCA) has been presented in order to

achieve the advantages of WCA and GSA. In many studies,

chaos strategy has been employed to avoid trapping in local

optima and improve the quality of searching global

optimum.

In this modified version, the population has been first

divided into three groups including streams, rivers and sea,

and the gravitational search is applied to update their

positions to enhance the population search. Moreover, a

new chaotic map has been used to improve the diversity of

population. In other words, in this paper using the global

search ability of the WCA and the local search capability

of the GSA and consequently defining a new chaotic

mapping and incorporating into WCA to update the
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Table 5 Summary of the WCA based papers in literature

References Problems/applications Results obtained using the WCA

[113] Improving the power management system of a stand-alone

hybrid green power generation based on the fuzzy logic

controller

Reduction in loss of power supply probability and operation and

maintenance

[114] Sizing optimization of truss structures Good efficiency of the WCA

[115] Restoring contrast in images or videos while preserving its

colorfulness and brightness

Better performance using the WCA

[116] Effective parameters estimation of PV cell/module High efficiency in parameter identification of PV cell/module

[117] Extracting the optimal parameters of PV module Validity and superiority of WCA in extracting the optimal

parameters of the TJSC based PV module

[118] Open source code for the WCA Step-by-step explanation of the WCA code

[119] Simulating hydraulic shaking table for estimating harmonic

information such as amplitude and phase

Good real-time performance, fast convergence, and competitive

accuracy

[120] Sizing optimization of sandwich panels having prismatic

core

High performance of WCA with respect to other compared methods

[121] Solving job shop scheduling problem Efficiency of the WCA in solving job shop scheduling problem

[122] Optimization of closed-loop supply chain network design Efficiency of the WCA in optimization of the closed-loop Supply

chain network

[123] Optimal power flow solution Finding better optimal power flow solution using the WCA

compared with the other methods

[124] Load frequency controller for interconnected power systems

comprising nonlinearity

Efficiency of the WCA to generate optimal fine settings for the four

parameters of the PID

[125] Parameter estimation of lithium-ion batteries dynamic

model

Good performance in parameters estimation of lithium-ion batteries

dynamic model

[126] Solving smooth and non-smooth economic dispatch Showing capability of the proposed WCA for solving complex ED

problems

[127] Optimal allocation and sizing of multiple DG and capacitor

banks

Ability of the WCA to minimize transmission losses

[128] Optimal placement and sizing of distributed generation and

capacitor banks

Superior performance, economic and environmental benefits for the

system using the WCA

[129] Decarbonized unit commitment Efficiency and durability in minimizing the cost function

incorporating costs of CO2 emission

[130] Tuned PI control of a doubly fed induction generator Superiority and effectiveness of the proposed method in terms of

solution qualities, exploration and exploitation capabilities and

convergence fastness

[131] Continuous p-median problem Finding the optimal solution in less computational cost

[132] Optimal control strategy for efficient operation of an

autonomous microgrid

High performance of the proposed control strategy using the WCA

[133] Transient stability augmentation of a wave energy

conversion system

Effectiveness of the proposed WCA-based PI control strategy

[134] Optimal coordination of direction overcurrent relays ER-WCA, an improved version of WCA, is quite competent in

dealing with such problems

[135] Optimal scheduling of CCHP with distributed energy

resources

Better convergence performance, faster calculation and higher

precision

[136] Power system stabilizer robust design for power systems Finding optimum parameters in reasonable computation time to

increase the power system stability

[137] Optimal energy saving of doubly fed induction motor Efficiency of WCA to maximize the energy saving of DFIM with a

reduced inverter capacity

[138] The environmental economic scheduling of hydrothermal

energy systems

Superiority of ER-WCA in terms of both lower fuel cost and fuel

emissions

[139] Short-term hydrothermal scheduling Superiority of ER-WCA in terms of cost and computational time

[140] A comprehensive evaluation on the WCA and its

applications

The better performance and efficiency of the WCA to other

evaluated algorithms

[141] Robust possibilistic programming for multi-item EOQ

model

The better performance and efficiency of the WCA in programming

of the multi-item EOQ model
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Table 5 (continued)

References Problems/applications Results obtained using the WCA

[142] Optimization of a fuzzy sliding-mode controller for stand-

alone hybrid renewable power system

the effectiveness of the proposed technique based on the WCA

[143] Efficient multiprocessor scheduling Better performance of the WCA

[144] Optimal over current relays coordination in electric power

systems

The efficiency of the WCA in solving optimal coordination problem

[145] Pipe size design optimization of water distribution networks Efficiency of WCANET model in design optimization of water

distribution networks

[146] Energy constraints in WSN Energy reduction using the WCA

[147] Computationally expensive and combinatorial Internet

shopping optimization problems

Effectiveness and advantage of WCA for solving Internet shopping

optimization problem

[148] The reliability redundancy allocation problem with a choice

of redundancy strategies

Superiority of the proposed model and the efficiency of WCA

[149] Optimal dynamic and steady-state performance of switched

reluctance motor

Robustness of the proposed model

[150] Short-term hydrothermal coordination The strength and potential of the ER-WCA in obtaining the better

quality result

[151] Optimization of a hybrid phase-change memory cell The minimum programming current for a given SET resistance

using the WCA

[152] Short-term solar power prediction using multi kernel-based

random vector functional link

Providing accurate prediction of solar power using the proposed

WCA

[153] Frequency control of renewable-based isolated two area

interconnected microgrid

Effectiveness and robustness of the proposed WCA optimized

FOPID controller over IO controller

[154] Robot path planning WCA was able to find better paths

[155] Energy-efficient design of three phase induction motor Efficiency of WCA in terms of quick convergence to the global

minima

[156] Optimal capacitor allocation in distribution networks Effectiveness of WCA in solving problem

[157] Soil shear strength prediction High capability of the WCA in predicting the SSS in stranger

environments

[158] Community detection in networks Good performance

[159] Trusted routing in smart grid communication network Proposed method consumes less memory and seems to be energy

efficient than the previous intuitive approach

[160] Distribution network reconfiguration and DG integration The proposed method outperforms other technique such as harmony

search algorithm (HSA), fireworks algorithm (FWA), Cuckoo

search algorithm (CSA)

[161] Effective network reconfiguration with distributed

generation allocation in radial distribution networks

Effectiveness of the WCA

[129] Decarbonized unit commitment Algorithm shows its efficiency in minimizing the cost function

along with costs of CO2 emission.

[162] Optimal placement of wind turbines in wind farms WCA gave the best solution compared to Salp Swarm Algorithm

(SSA), Satin Bowerbird Optimization (SBO), gray wolf Optimizer

(GWO), and Differential Evolution (DE), thus confirming the

reliability and validity of WCA in optimally configuring turbines

in a wind farm for both the studied cases

[163] Performance analysis of the hierarchical routing protocols Good performance

[164] Load frequency control of single area power system WCA presents optimal solutions compared with other methods

[165] Calibration of the QUAL2Kw model WCA gives a better accuracy and performance over GA

[166] Constrained type optimal coordination of over current relay

problem

Effectiveness and superiority of WCA over the firefly algorithm

(FA), continuous genetic algorithm, chaotic firefly algorithm

(CFA) and root tree algorithm (RTA) in terms of accuracy, input

parameter and iterations

[167] Load frequency control (LFC) coordination using PID

controller

The WCA makes LFC stable and robust

[168] Optimum design of a hybrid photovoltaic/diesel/battery/

system

Efficiency and robustness of the WCA
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Table 6 Summary of recent modifications of WCA versions

Modifications Proposed

algorithms

Description of modifications Problems/applications References Results

Chaotic-based WCA

Gravitation-based

chaos WCA

GCWCA Defining a new chaotic mapping and

incorporating in WCA to update

the population

Numerical optimization [169] To enhance search

ability, population

diversity, and

convergence

accuracy and speed

WCA-based

diversity

evaluation and

chaos theory

DC-WCA Defining a new evaporation process

and using the chaos theory to

generate new streams

Long-term multi-reservoir

optimization

[170] To increase speed in

finding optimal

solution and

improve

convergence rate

Enhanced WCA

based on chaos

EWCA High-quality initial solutions

obtained by the chaos-based

method, balancing of exploration

of streams using a dynamic

adaptive parameter, and dynamic

variation of sub-water system size

using the fitness value of rivers

Optimization of multi-reservoir

systems

[171] Performance

improvement,

higher ability to find

a feasible solution

Chaotic-based

WCA

CWCA Incorporates chaotic patterns into

stochastic processes of WCA

Optimization tasks [172] Better performance,

to mitigate

premature

convergence

Modified (chaos)

WCA

Chaos

WCA

Improving evaporation process by

chaos map

Optimized fuzzy PI controller

for improved stability of

photovoltaic-based distributed

generation towards microgrid

integration

[173] To enhance stability

of the proposed

controller

Fuzzy logic-based WCA

Enhanced WCA

using a fuzzy

inference

system

WCA-

DPA

Fuzzy dynamic adaptation of the

parameters

Optimization benchmarks [174, 175] Better performance in

terms of accuracy

and convergence

rate

Binary-based WCA

Binary encoding

WCA

BEWCA Binary encoding water cycle

algorithm

Solving Bayesian network

structures learning problem

[176] Better performance,

high accuracy,

convergence speed

Discrete-based WCA

Improved discrete

WCA

IWCA Feature-based search operator Urban traffic light scheduling

problem

[177] Speed up the

convergence

Discrete WCA DWCA Developing two movement operators Symmetric and asymmetric

traveling salesman problem

[178] Better performance,

convergence speed

Discrete WCA DWCA Using a discretization strategy Remanufacturing rescheduling

problem

[179] Better performance

Augmented Lagrangian-based WCA

WCA-augmented

Lagrangian

method

WCA-

ALM

Augmented Lagrangian method Optimization problems [180] Significant

convergence,

solution quality

Other modifications

Quantized WCA QWCA Quantization of the phase results,

using a speed boosting method

Antenna array synthesis by using

digital phase shifters

[181] Better performance,

less computational

time

Dual-system

WCA

DS-WCA New processes of inland and ocean

cycles

Constrained engineering

optimization problems

[182] Faster and more

robustness

compared with the

others

GBWCA [183]
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population, the exploration and exploitation mechanisms

have been effectively enhanced.

In the GCWCA, streams and rivers locations are updated

in their own groups in the GSA to enhance the search of

population by using Eqs. (5) and (6), respectively. Thus,

the rivers and streams are updated by Eqs. (20)–(23) in

order to find the optima and escape from local optima.

Table 7 shows the framework of GCWCA in brief.

5.1.2 Modified WCA based on the diversity evaluation
and chaos theory

Due to the stochastic nature of most metaheuristics and like

the other metaheuristic optimization algorithms as well, the

WCA may not strike a proper balance between the

exploitation and exploration operators and it may get

trapped in the local optimum and leads to premature con-

vergence for complex problems.

In Ref. [170], to overcome these drawbacks, a modified

WCA-based diversity evaluation and chaos theory (DC-

WCA) has been described in order to improve the com-

putation efficiency of the WCA. In this technique, two

process including evaporation process based on diversity

evaluation and chaotic raining process have been utilized to

improve the WCA. The improved evaporation process of

DC-WCA evaluates not only the movement of the river

into the sea but also it controls the diversity of streams

assigned to the river.

Table 6 (continued)

Modifications Proposed

algorithms

Description of modifications Problems/applications References Results

Gaussian bare-

bones WCA

Developing new movement

operators

ORPD problem in electric power

systems

Higher efficiency,

better performance

Gradient-based

WCA with

evaporation rate

GWCA Incorporating a local operator named

as gradient-based approach

Chaos Suppression [184] Higher efficiency

Modified WCA MWCA Increasing the C value in WCA Optimal direction overcurrent

relays coordination

[185] Better performance

Evaporation rate

based WCA

ER-WCA Introducing evaporation rate Constrained and unconstrained

optimization problems

[186] Better balance

between exploration

and exploitation

phases

Self-adaptive

percolation

WCA

SPWCA Percolation behavior Optimization problems [187] Better convergence

speed

Inter-Peer

communication

WCA

IPCWCA Inter-Peer communication

mechanism

Optimization problems [188] Better performance

WCA with active

learning and

return strategy

WCA-

ALR

Selection method for choosing

learning targets, a promising

position sifting and returning

strategy

Optimization problems [189] Better performance

WCA with

percolation

operator

PWCA Percolation operator Clustering analysis [190] Better performance in

terms of the quality,

speed and stability

of the final

solutions.

Enhanced water

cycle algorithm

EWCA Developing the WCA by mutation

and crossover operators

Optimal network reconfiguration

and DG integration in power

distribution systems

[191] The improvement of

the considered

indices

Mutation

volatilization-

dependent

WCA

MVWCA Adding mutation operator to the

WCA

Optimum design of PV battery-

based microgrid

[192] The performance

improvement

Hierarchical

learning WCA

HLWCA Using hierarchical learning concept Optimization [193] The efficiency of the

presented method
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In addition, this process has been also applied to assess

the flow of streams to the sea. In the second process

meaning chaotic raining process, after satisfying the

evaporation conditions, the chaos theory is incorporated

into the precipitation process in order to generate new

streams. In this case, if the best new stream is better than its

corresponding river after calculating the fitness value for

the generated stream, the positions of the best new stream

and river are exchanged. The flowchart of the DC-WCA

has been depicted in Fig. 17.

Fig. 15 Different modifications

of WCA (2012–2020/04/22)

22% 

5% 

4% 

13% 4% 

52% 

Chaotic based WCA

Fuzzy Logic based WCA

Binary based WCA

Discrete based WCA

Augmented Lagrangian based WCA

Other Modifications of WCA

Fig. 16 Percentage of the WCA

modifications in the literature

(2012–2020/04/22)
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5.1.3 Enhanced water cycle algorithm based on chaos
method

In Ref. [171], an enhanced version of WCA based on chaos

named as EWCA map has been introduced to improve the

performance initial WCA. In this paper, three different

improvements are performed to the standard WCA. These

improvements consist of enhancement of the quality of

initial solutions generated by the chaos-based method,

balancing of streams exploration by using a dynamic

adaptive parameter, and finally dynamic variation of sub-

water system size using the fitness value of rivers.

Since the initial population operator is one of the most

important factors in metaheuristic optimization algorithms,

a method based on chaos theory has been presented to

generate the initial population instead of the classic random

method.

The second improvement in this study is balancing of

streams exploration using a dynamic adaptive parameter. In

the WCA, two main operators the surface runoff and the

evaporation conditions have been employed to exploit and

explore the search space, respectively. To control the

operator of the surface runoff, the parameter C has been

considered as a constant with value of 2.

It is obvious that the quality of exploration improves

when the value of C rises and when the C value is reduced,

the streams explore the neighborhood. In Ref. [171], in

order to improve the WCA, to the whole population with

larger average fitness value in maximization problem (or

smaller average fitness value in minimization problem) a

smaller C has been considered to exploit, while to the

population with smaller average fitness has been given a

larger C. The third improvement in this paper refers to

dynamic variation of the sub-water system size.

5.1.4 Chaotic-based water cycle algorithm

Many and diverse approaches have been investigated in

literature in order to enhance the premature convergence to

local optimum of the optimization algorithms in solving

optimization problems. In this regard, Ref. [172] has

incorporated chaotic patterns into stochastic processes of

WCA in order to improve the WCA performance and to

alleviate its premature convergence. The authors in this

study after implementing several improved WCA methods

Table 7 Framework of GCWCA [169]

1: Input: parameters Npop, Nsr, dmax, G0, a,, Max_FES, FES = 0

2: Determine the number of streams which flow to the rivers and sea using Eqs. (4) and (5)

3: Create randomly initial population and form streams, rivers and sea, according to their fitness values

4: Calculate the intensity of flow (how many stream flow to their corresponding rivers and sea) using Eq. (7)

5: While FES B Max_FES do

6: Update positions of streams and rivers using Eqs. (18) and (19) in the GSA;

vdi t þ 1ð Þ ¼ rand � vdi tð Þ þ adi tð Þ (18)
xdi t þ 1ð Þ ¼ xdi t þ 1ð Þ þ vdi t þ 1ð Þ (19)
7: Generate chaotic sequence hi using Eq. (22), and update streams flowing to its corresponding rivers and sea using Eqs. (20) and (21);

Xiþ1
str ¼ Xi

str þ 1þ hið Þ � Xi
riv � X~

i

str

� �
(20)

Xiþ1
str ¼ Xi

str þ 1þ hið Þ � Xi
sea � X~

i

str

� �
(21)

8: Calculate the fitness value of the generated stream. If the fitness value of the generated stream is better than the corresponding river and sea,

exchange the position of them

9: Generate chaotic sequence hi using Eq. (22), and update rivers flowing to the sea using Eq. (23):

r tþ1ð Þ ¼ 0:95 sin 8p
rt

� �� �3

exp �2 rtð Þ2
� �

(22)

Xiþ1
riv ¼ Xi

riv þ 1þ hið Þ � Xi
sea � X~

i

riv

� �
(23)

10: Calculate the fitness value of the generated river. If the fitness value of the generated river is better than the corresponding sea, exchange

the position of them;

11: If the condition of evaporation process satisfied, perform raining process

12: Update dmax and G

13: end while

14: Output: Report the optimal results

17454 Neural Computing and Applications (2020) 32:17433–17488

123



Fig. 17 Flowchart of the DC-WCA [170]
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based on chaotic including WCA with chaotic streams,

WCA with chaotic evaporation and raining process, and

WCA with chaotic streams, evaporation and raining pro-

cess addition to chaotic signal functions, the most proper

signal is selected as the best approach for the improvement

of the WCA.

In this regard, 13 different chaotic maps have been

incorporated into the WCA movement phases and raining

process. After assessment of different chaotic-based

improved WCA strategies along with various chaotic maps,

the WCA with chaotic streams, evaporation, and raining

process based on sinusoidal map has been preferred as the

most appropriate strategy for enhancement the WCA. The

chaotic WCA (CWCA) not only can efficiently exploit

high-quality alternatives, but can also effectively search for

the best alternative in more accuracy through simulation

outcomes and experimental evaluations.

5.1.5 Modified (chaos) water cycle algorithm

In Ref. [173], for gaining parameters tuning of independent

distributed generation controllers’ (IDGCs’), a new

improved (chaos) WCA was implemented. The chaos

WCA has been introduced to optimize the stability of the

system [173]. In the scheme, the chaos map taken into

account with WCA in order to investigate the nonlineari-

ties. Throughout this case, the evaporation phase of the

WCA is affected by chaotic mapping to render the flow

sensitive to the desired solution. In different grid operating

contingencies, the efficiency of the considered IDGC was

demonstrated. In terms of small-signal stabilization and

dynamic oscillations, the IDGC’s efficiency was better than

conventional FL-PI and PI.

Fig. 18 Flowchart of the WCA

with fuzzy dynamic adaptation

of parameters [174]

17456 Neural Computing and Applications (2020) 32:17433–17488

123



5.2 Fuzzy logic

5.2.1 Fuzzy dynamic adaptation of parameters in water
cycle algorithm

The main idea of fuzzy dynamic adaptation of the

parameters in optimization algorithms is to enhance the

behavior of algorithms. Dynamic parameter adaptation has

been taken into account in various ways such as linearly

increasing or decreasing a parameter, nonlinear functions,

and stochastic functions. In Ref. [174], a single-input and

multiple-output (SIMO) Mamdani’s fuzzy inference sys-

tem (FIS) has been developed to improve the WCA

performance.

As it was mentioned in Sect. 3, there are two major

parameters in the WCA which can be adapted dynamically.

One parameter is the parameter C, which is used in

Eqs. (10)–(12) for updating streams and rivers positions.

The other parameter is the parameter dmax, utilized in

Eqs. (13)–(15) which controls the depth of the search near

the sea for the evaporation criterion. This study has con-

centrated on adapting the C parameter. Figure 18 shows a

flowchart of the WCA with the SIMO-FIS integrated.

From the simulation results, it can be concluded that

dynamically adapting the parameter C can help to improve

the performance of the WCA. Also, In Ref. [175], the

WCA efficient has been upgraded by using a fuzzy infer-

ence system to adapt its parameters dynamically.

5.3 Binary encoding water cycle algorithm

Bayesian networks (BNs) refer to mix the graph and

probability theories to achieve a comprehensible repre-

sentation of the joint probability distribution. Since BNs

have robustness representation and learning capabilities,

the special attention has been paid to the development of

them in diverse scientific and research areas [176].

In Ref. [176], a modified version of WCA has been

introduced named as the binary encoding water cycle

algorithm (BEWCA) in order to learn the Bayesian net-

works (BEWCA-BN). Due to the binary structure of the

solution space in learning problem, XOR, and or operators

have been employed to produce solutions in the opti-

mization. Individuals in proposed methodology learns from

selected individuals in the current population randomly,

while in basic WCA individuals are updated only based on

the sea and rivers which are as the best and better solutions.

Simulation and experimental optimization results prove

that the proposed BEWCA-BN found better solution

quality compared to the other reported optimizers.

5.4 Discrete based WCA

5.4.1 Improved discrete WCA with FBS operator

The improved WCA (IWCA) based on feature based search

(FBS) operator is one of some enhanced algorithms pre-

sented in Ref. [177] which has been employed to tackle

large-scale urban traffic light scheduling problem

(LUTLSP).

As it was mentioned Sect. 3.2, in standard WCA the

streams as generated solutions are compared with their sea

as the best temporal solution and/or corresponding rivers as

second or third best temporal solutions. Therefore, there is

no comparison between the streams/rivers as updated

solutions with their current positions. In order to increase

the solution quality for the LUTLSP and also improve

exploitation ability around the best solution, in the pro-

posed IWCA comparison between the streams/rivers as

updated solutions with their current positions has been

considered.

In this paper, after dedicating each stream to rivers and

sea based on their flow intensity in each iteration, the

discrete-based IWCA produces a random integer vector of

zero and one with the size of (Npop - 1) 9 D. This vector

of zero and one is utilized for deciding whether the com-

ponents of sea as the best solution must be accepted or not,

where the value one means ‘‘Replace’’ and zero means ‘‘Do

not replace.’’

It is worth mentioning that for new solutions, values

given by one from sea/rivers are replaced with the corre-

sponding new streams/rivers in the new solutions. Table 8

depicts the pseudo-code of the discrete based IWCA in

details. In the IWCA, the raining process has been replaced

with the FBS operator. Employing the FBS operator can

assist the discrete based IWCA to search all areas with high

exploitation, and also strengthen both diversification and

intensification capabilities. Numerical optimization find-

ings show speed up the convergence of discrete based

IWCA.

5.4.2 Discrete water cycle algorithm with hamming
distance

In Ref. [178], an enhanced discrete version of the WCA

(DWCA) has been presented to solve symmetric and

asymmetric traveling salesman problem (ATSP).

Since heuristic operators like how streams flow into the

rivers and sea are the main aspect when using the WCA,

the DWCA has selected a distance measurement between

the streams and their respective rivers/sea with a well-

known hamming distance. In addition, in the proposed

DWCA two significant movement operators have been
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employed. The first operator is insertion and the second is

2-opt [178]. In addition, one of the considerable modifi-

cations of the DWCA compared to the WCA is its capa-

bility of implementing different movement abilities.

Finally, the developed technique has been tested, and

has been compared the different algorithms including GAs,

Island-based GAs, Evolutionary SA, bat algorithm, FA and

ICA. The simulations show superiority of the DWCA to

other optimizers.

5.4.3 Discrete water cycle algorithm

In Ref. [179], an improved version of the basic WCA

coined as DWCA has been investigated to tackle remanu-

facturing rescheduling problem (RRP). The goal of this

study is to minimize the total flow time and the instability

at the same time. In this regard, a bi-objective function has

been developed for RRP, and a discretization strategy has

been employed to guarantee the WCA applicable for han-

dling the RRP.

In addition, two objective oriented local search opera-

tors have been combined with the DWCA for total flow

time and instability and also to improve the exploitation

(local search) performance of the DWCA. The raining

process of the DWCA has been replaced with the combi-

nation of two operators for solving the RRP.

As it was mentioned in Sect. 3.2, in the WCA the

streams as generated solutions are compared with their sea

as the best temporal solution and/or corresponding rivers as

second or third best temporal solutions. Thus, there is no

comparison between the streams/rivers as updated solu-

tions with their current positions. By taking into account

this fact, comparison between the streams/rivers has been

considered in the DWCA in order to improve the solution

quality for the RRP. In fact, by employing this modifica-

tion, more exploitation (local search) has been carried out

around the best solution. At the end, the studied and

compared results indicate that the DWCA is a considerable

method to solve the RRP.

5.5 Augmented Lagrangian method-based WCA

The augmented Lagrangian method (ALM) is a well-

known technique for managing limitations that reduces the

risk of ill-conditioning by incorporating specific estimates

of the Lagrange multiplier into a reducer function called

the Augmented Lagrange function. The ALM is based on

the circumstances of Kuhn-Tucker and can then be used to

turn a constrained issue of optimization into an uncon-

strained issue.

In Ref. [180], the performance of the WCA has been

improved by using ALM. In this research, the performance

of the WCA-ALM along with the quadratic penalty method

has been also assessed by means of a number of con-

strained mechanical and engineering benchmark opti-

mization problems. The simulation and comparison results

indicate appropriate enhancement in convergence and the

quality of the solution.

5.6 Other modifications of WCA

In this section, other different improved variants of the

WCA have been described.

5.6.1 Quantized version of water cycle algorithm

In Ref. [181], a quantized version of WCA (QWCA) has

been investigated for the pattern synthesis of a linear array

by using phase-only control with digital phase shifters.

Two made modifications on the original WCA [195] to

develop QWCA include the quantization of the phase

results, and a speed boosting method. Optimization results

showed that the QWCA is capable of generating appro-

priate results and less computational time than other opti-

mization techniques in the literature.

5.6.2 Dual-system water cycle algorithm

In Ref. [182], an improved version of the WCA based on a

dual cycle system has been explained named as the dual-

system water cycle algorithm (DS-WCA). In this method,

two principal processes including inland and ocean cycles

have been utilized in order to expand the diversity of the

population and speed up the convergence rate.

Table 8 Pseudo-code of the discrete based IWCA [177]
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The DS-WCA contains two different sections of the

external cycle scheme (exploration) and the internal cycle

system (exploitation). The objective of the external cycle

scheme is to effectively find the maximum value and avoid

the local optimum while the internal cycle system helps to

find the present best solution and to correctly identify the

solution by creating novel rivers, which improves the

population’s variety. Evaluations on capability of the DS-

WCA showed that the DS-WCA has the capability of

achieving optimal solutions. In addition, the DS-WCA in

comparison with other evolutionary optimizers has con-

siderably the quality, speed, and stability of the responses.

5.6.3 Gaussian bare-bones water cycle algorithm

Premature convergence and also imbalance between

exploration and exploitation capabilities are the significant

technical challenges in metaheuristic optimization algo-

rithms that researchers attempt to mitigate those by

enhancing the main operators or the searches mechanisms.

In Ref. [183], the authors have struggled to alleviate

these challenging problems by developing the new move-

ment operators. In this reference, a novel modification of

the WCA called Gaussian bare-bones water cycle algo-

rithm (GBWCA) has been presented to solve optimal

reactive power dispatch (ORPD) problem.

In this modified variant of the WCA, an enhanced

movement strategy has been employed to increase the

quality of the exploration and exploitation abilities of

GBWCA. In the GBWCA, streams can flow randomly to

three distinct places, including its own, the strongest (to-

gether with the sea) and both, from the other rivers, outside

the sea. Therefore, this scheme can assist the WCA to

improve its own exploration and exploitation capabilities.

The performance and efficiency of the GBWCA has been

evaluated on ORPD problem. Simulation findings totally

demonstrate that the GBWCA can outperform the con-

ventional WCA.

5.6.4 Gradient-based water cycle algorithm

In Ref. [184], an enhanced variant of ER-WCA called

gradient-based water cycle algorithm (GWCA) has been

introduced by employing a gradient-based approach. The

aim of utilizing the method based on gradient in the

GWCA is to improve exploration phase. In this algorithm,

in order to develop local and global search, the streams and

rivers motion schemes have been modified. This modifi-

cation has been also performed to discover the best optima

response.

To substantiate the ability of the GWCA, chaos sup-

pression has been considered as a real-life problem, and it

has been also compared with the other optimizers such as

GAs, DE, PSO, ICA, WCA, and ER-WCA. Simulation

findings and compared results demonstrate mature con-

vergence, better quality solutions and also speed of finding

better optimal solutions obtained by the GWCA over the

other compared optimization algorithms such as standard

WCA and ER-WCA.

5.6.5 Modified water cycle algorithm

It is an undeniable fact that tuning the initial parameters in

an optimization algorithm is essential in the performance

improvement of that algorithm. In this regard, many and

various algorithms have been introduced with the aim of

accurate tuning of parameters to achieve an efficient

performance.

In Ref. [185], Modified water cycle algorithm (MWCA)

has been presented to solve the optimal coordination

problem of directional over current relays (DOCRs). The

MWCA has been developed to improve the basic WCA

and also minimize operating times of relays when they act

as primary protective devices. The decision variables

consist of time dial setting and pickup current setting or

plug setting. Since the exploration and exploitation mech-

anisms are balance by tuning the value of parameter C (in

WCA, C value is equal 2) in the WCA, in the MWCA the C

value increases from 1 to 2 in accordance with the fol-

lowing equation:

Ci ¼ 2� 1� i

Max � iteration

� 	2

i ¼ 1; 2; . . .;NPOP

ð24Þ

where Max.iteration is the maximum number of iteration

and Npop is the population size. This adjustment enhances

the balance between exploitative and explorative capabil-

ities to look for the optimal solution globally by increasing

the C value over time rather than as a constant value.

Instead, with respect to simple WCA, the processing time

of the MWCA is reduced. Finally, testing the MWCA on

some systems and also the acquired comparisons indicate

the efficiency and excellence of the MWCA to other rivals

in deal to the mentioned problem.

5.6.6 Evaporation rate based WCA

In Ref. [186], an improved WCA version, called the

evaporation rate WCA (ER-WCA), has been presented.

The WCA improvements involve the definition of the

rivers and streams evaporation rate. The made improve-

ment to the ER-WCA, evaporation rate, regulate water

evaporation with adaptation. Implementing the ER-WCA

on benchmarks along with the carried out comparisons
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demonstrate the speed and accuracy of this algorithm than

other methods.

5.6.7 Self-adaptive percolation behavior WCA

In Ref. [187], an improved WCA based on self-adaptive

percolation behavior called SPWCA has been proposed

with the aim of improvement the convergence rate and

precision of the traditional WCA. The percolation behavior

in the SPWCA update the position of the streams the

dimension by dimension, while the WCA utilizes the whole

update and evaluation strategy on solutions.

Also, in presented method a new strategy of rainfall

named as self-adaptive process has been introduced to

avoid getting the algorithm into local optimality. The

convergence speed and solution reliability can be improved

by these approaches. The SPWCA will create the new

stream, and gradually new positions can be explored, thus

increasing community composition. The comparative

assessments on the SPWCA proved its superior abilities for

optimal solving of large-scale optimization problems.

5.6.8 Inter-peer communication mechanism based WCA
(IPCWCA)

As it was mentioned in Sect. 3.2, the individuals in the

WCA include sea, rivers and streams that the streams move

toward the specific river and sea according to the fitness of

the rivers and sea. In the WCA, flow step is a method of

obtaining information for streams from rivers or sea and

rivers from the sea. Therefore, streams and rivers may

obtain more data from higher population, which they can

help to improve their quality. The lack of this effective way

can influence the exploration of the algorithm.

In Ref. [188], to overcome these shortcomings, an inter-

peer communication mechanism has been employed. In

this mechanism streams and rivers must choose a peer

before they flow toward a higher individual and learn from

some dimensions of its peer. Upon learning from a mentor,

every river and stream will be updated to increase the

population diversity. In this study, eight unimodal and

multimodal benchmark test functions have been proved the

considerable efficiency of IPCWCA.

5.6.9 WCA with active learning and return strategy (WCA-
ALR)

In Ref. [189], an adaptation approach for enhancement of

the global search capability has been introduced in order to

increase the efficiency of the WCA. The WCA-ALR has

utilized a method based on diversity of population to

effectively enhance the exploration phase in the WCA.

The presented method employs two main changes

including a method of choosing learning objectives: a

promising position sifting and returning strategy. Numeri-

cal tests on fundamental benchmarking issues were per-

formed in order to verify the results. The findings of

statistical tests of optimization indicate that the proposed

method could achieve better results than the initial WCA.

5.6.10 WCA with percolation operator

In Ref. [190], the clustering study has been carried out

using the WCA with a percolation operator. The WCA

employs the whole system upgrade and evaluation

approach. This way could degrade the convergence speed

and quality of the solution in solving complex function

optimization problems through interaction between

dimensions [190]. To resolve this weakness, a percolation

operator that updates the position of streams has been used.

This operator can be presented in the pseudo code format

below as shown in Table 9.

In this study, in order to facilitate the basic WCA pro-

cedure, the process of rainfall has been discarded. To verify

the proposed PWCA, ten collections of information have

been utilized to assess the PWCA. The findings of the

PWCA were then compared with other reported optimizers.

The optimization results showed quality, speed, and relia-

bility of the PWCA. Therefore, the results achieved show

that the proposed operator can seek a more effective

solution.

5.6.11 Enhanced water cycle algorithm

An enhanced WCA (EWCA) for the resolution of a

dynamic network reconfiguration taking DG scale and

position have been into account in Ref. [191]. The

Table 9 The percolation operator in the proposed PWCA in Pseudo

code format
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EWCA’s key benefit was to be able to implement a global

approach with the required speed and precision.

For each section of the planned stream, the standardized

crossover procedure approach was implemented separately,

and the raining method was carried out by the mutation

operator on a random probability. The proposed EWCA

often utilized the crossover operator to address the discreet

and continuous search space simultaneously compared to

other methods which address the discrete or continuous

search space. The findings indicated that the presented

process is effective in tackling the problem provided the

distinct and continuous existence of the regulated variables.

5.6.12 Mutation volatilization-dependent water cycle
algorithm

Ref. [192] implemented a mutation volatilization-depen-

dent water cycle algorithm (MVWCA) to boost the

efficiency of the microgrid photovoltaic (PV) network by

adjusting the parameters of various regulators during grid

regular and uncertain circumstances. A mutation procedure

was included in the standard WCA to provide better

solutions for increased efficiency. This operator produced

stronger and productive raindrops with high intensity for

optimal functioning. In addition, the new streams were

determined using a harmonic search technique. With quick

convergence, the modification determines efficiency in

comparison with the standard HS.

5.6.13 Hierarchical learning water cycle algorithm

In order to improve the global searching ability of WCA,

the hierarchical learning concept-based WCA named as the

hierarchical learning WCA (HLWCA) was proposed in

Ref. [193]. HLWCA’s basic concept was to split the

approaches into sets and to hierarchically separate these

Table 10 A summary of the WCA applications in unconstrained optimization problems

Variants of

WCA

Problems/applications References Year

Standard WCA Simulating hydraulic shaking table for estimating harmonic information such as amplitude and

phase

[119] 2019

Standard WCA Solving job shop scheduling problem [121] 2015

Standard WCA Parameter estimation of lithium-ion batteries dynamic model [125] 2017

Standard WCA Efficient multiprocessor scheduling [143] 2018

Standard WCA Soil shear strength prediction [157] 2020

Standard WCA Community detection in networks [158] 2019

Standard WCA Trusted routing in smart grid communication network [159] 2020

Standard WCA Performance analysis of the hierarchical routing protocols [163] 2019

Standard WCA Load frequency control of single area power system [164] 2019

Standard WCA Calibration of the QUAL2Kw model [165] 2019

WCA-DPA Optimization benchmarks [174, 175] 2017,

2016

BEWCA Solving Bayesian network structures learning problem [176] 2018

IWCA Urban traffic light scheduling problem [177] 2017

DWCA Symmetric and asymmetric traveling salesman problem [178] 2018

DWCA Remanufacturing rescheduling problem [179] 2017

WCA-ALM Benchmark optimization problems [180] 2019

ER-WCA [186] 2015

SPWCA [187] 2015

IPCWCA [188] 2019

GWCA Chaos Suppression [184] 2017

PWCA Clustering analysis [190] 2019

WNN-WCA Demand prediction in cloud computing [227] 2019

GA-WCA Impact identification of framed structures [225] 2018

WCSA Spam E-mail detection [226] 2019

WCA–PNN Classification problems [229] 2020

EG-ER-WCA IoT service selection [230] 2019
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Table 11 A summary of the WCA variants for solving constrained optimization problems

Variants of WCA Problems/applications References Year

Standard WCA Improving the power management system of a stand-alone

hybrid green power generation based on the fuzzy logic

controller

[113] 2015

Standard WCA Sizing optimization of truss structures [114] 2015

Standard WCA Restoring contrast in images or videos while preserving its

colorfulness and brightness.

[115] 2017

Standard WCA Effective parameters estimation of PV cell/module [116] 2017

Standard WCA Extracting the optimal parameters of PV module [117] 2017

Standard WCA Sizing optimization of sandwich panels having prismatic core [120] 2013

Standard WCA Optimization of closed-loop Supply chain network design [122] 2016

Standard WCA Optimal power flow solution [123] 2016

Standard WCA Load frequency controller for interconnected power systems

comprising nonlinearity

[124] 2016

Standard WCA Solving smooth and non-smooth economic dispatch [126] 2017

Standard WCA Optimal allocation and sizing of multiple DG and capacitor

banks

[127] 2017

Standard WCA Optimal placement and sizing of distributed generation and

capacitor banks

[128] 2018

Standard WCA Decarbonized unit commitment [129] 2018

Standard WCA Tuned PI control of a doubly fed induction generator [130] 2018

Standard WCA Continuous p-median problem [131] 2018

Standard WCA Optimal control strategy for efficient operation of an

autonomous microgrid

[132] 2018

Standard WCA Transient stability augmentation of a wave energy conversion

system

[133] 2019

Standard WCA Optimal coordination of direction overcurrent relays [134] 2018

Standard WCA Optimal scheduling of CCHP with distributed energy resources [135] 2019

Standard WCA Power system stabilizer robust design for power systems [136] 2015

Standard WCA Optimal energy saving of doubly fed induction motor [137] 2019

Standard WCA The environmental economic scheduling of hydrothermal

energy systems

[138] 2016

Standard WCA Short-term hydrothermal scheduling [139] 2017

Standard WCA Robust possibilistic programming for multi-item EOQ model [141] 2018

Standard WCA Optimization of a fuzzy sliding-mode controller for stand-

alone hybrid renewable power system

[142] 2019

Standard WCA Optimal over current relays coordination in electric power

systems

[144] 2019

Standard WCA Pipe size design optimization of water distribution networks [145] 2019

Standard WCA Energy constraints in water distribution networks [146] 2019

Standard WCA Computationally expensive and combinatorial Internet

shopping optimization problems

[147] 2018

Standard WCA The reliability redundancy allocation problem with a choice of

redundancy strategies

[148] 2019

Standard WCA Optimal dynamic and steady-state performance of switched

reluctance motor

[149] 2018

Standard WCA Short-term hydrothermal coordination [150] 2017

Standard WCA Optimization of a hybrid phase-change memory cell [151] 2019

Standard WCA Short-term solar power prediction using multi kernel-based

random vector functional link

[152] 2019

Standard WCA Frequency control of renewable-based isolated two area

interconnected microgrid

[153] 2019

Standard WCA Robot path planning [154] 2018
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sets. Another of the sets is more complex and requires an

exploration-oriented method for upgrading. The other

collections are sorted by the practical importance of the

examples and the solutions in such collections determine

whether to adopt or not their own case. In fact, two main

improvements are performed in the proposed study as

given follows: (1) it has been followed a new upgrade

definition to increase their research pattern for solutions

known as rivers; (2) it has been used an aggressive goal

preference approach to decide how to learn from their

approaches categorized as a source, depending on the

characteristics of their guide. It helped enhance global

selection flexibility, thus minimizing needless work. The

global search functionality was expanded by various

collections upgrading processes while maintaining WCA’s

quick integration and powerful local search capabilities.

The HLWCA assessments validated their performance and

capacity to solve challenges in the real world.

6 WCA used in different problem types

6.1 WCA used for unconstrained and constrained
optimization problems

In this section, another classifications concerning applica-

tion of WCA on unconstrained and constrained optimiza-

tion problems have been given. Hence, Table 10 gives

Table 11 (continued)

Variants of WCA Problems/applications References Year

Standard WCA Energy-efficient design of three phase induction motor [155] 2020

Standard WCA Optimal capacitor allocation in distribution networks [156] 2020

Standard WCA Distribution network reconfiguration and DG integration [160] 2020

Standard WCA Effective network reconfiguration with distributed generation

allocation in radial distribution networks

[161] 2019

Standard WCA Decarbonized unit commitment [129] 2018

Standard WCA Optimal placement of wind turbines in wind farms [162] 2019

Standard WCA Constrained type optimal coordination of over current relay

problem

[166] 2019

Standard WCA Load frequency control coordination using PID controller [167] 2019

Standard WCA Optimum design of a hybrid photovoltaic/diesel/battery/system [168] 2019

GCWCA Numerical optimization [169] 2017

DC-WCA Long-term multi-reservoir optimization [170] 2018

EWCA Optimization of multi-reservoir systems [171] 2017

CWCA Optimization tasks [172] 2017

Chaos WCA Optimized fuzzy pi controller for improved stability of

photovoltaic-based distributed generation toward microgrid

integration

[173] 2020

QWCA Antenna array synthesis by using digital phase shifters [181] 2014

DS-WCA Constrained engineering optimization problems [182] 2016

GBWCA ORPD problem in electric power systems [183] 2017

MWCA Optimal direction overcurrent relays coordination [185] 2019

ER-WCA Optimization problems [186] 2015

WCA-ALR [189] 2019

HLWCA [193] 2020

EWCA Optimal network reconfiguration and DG integration in power

distribution systems

[191] 2020

MVWCA Optimum design of pv-battery-based microgrid [192] 2020

HWAA Optimal order allocation problem with mixed quantity discount

scheme

[223] 2015

WCMFO Solving numerical and constrained engineering optimization

problems

[224] 2017

Masi- WCA Performing color image segmentation over the optimal

threshold value selection process

[228] 2018

AWCA Manufacturing cell design [231] 2019
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published papers that utilize the WCA for their benchmark

functions and unconstrained optimization problems, while

Table 11 reports applications of WCA and its modified

versions for solving real-life optimization problems (i.e.,

mostly engineering optimization problems). By observing

Tables 10 and 11, we can see that the WCA has been used

more for solving constrained optimization problems with

respect to unconstrained optimization problems.

6.2 Applications and variants of multi-objective
WCA

For handling multi-objective optimization problems

(MOPs), the standard WCA should be equipped with multi-

objective operators such as non-dominate sorting and

crowding distance operator. Indeed, selecting the best

candidate at the end of each iteration varies from single-

objective optimization problems to MOPs.

As can be seen in Sect. 3.2, in standard WCA, an

individual with the lowest objective function (for mini-

mization problem) is considered as sea, and then, some of

the best individuals after sea are considered as rivers (i.e.,

flow into the sea) and the rest of individual are accounted

as streams that move directly/indirectly to the sea and

rivers. Nevertheless, there is more than one function to

optimize in MOPs. Hence, different scenarios for deter-

mining the best sea and rivers as the leaders in population

should be defined.

In the proposed multi-objective WCA (MOWCA) [197],

crowding mechanism developed by Deb and his colleagues

[198] is utilized to determine the best members in the

community as a sea and rivers. This criterion demonstrates

that non-dominated solutions are spread around a certain

non-dominated solution. Selection among the sea and riv-

ers in the generated population is one of the crucial steps in

the MOWCA as the best solution migrating to next popu-

lation/iterations. This affects the algorithm’s convergence

performance. In the following, the multi-objective versions

of the WCA are described in brief.

One of the well-used strategies for transferring a single-

objective optimizer to a multi-objective optimizer is Pareto

front approach. In the MOPs, there is usually a set of

solution which is defined as Pareto optimal solutions or

non-dominated solutions [199]. The main purpose of the

MOPs is to find as many of non-dominated solutions as

possible. The non-dominated solutions are defined as fol-

lows [200]:

(a) Pareto dominance: U = (u1, u2, u3,…,un)\V = (v1,

v2, v3,…,vn) if and only if U is partially less than V in

the objective space which it means:

fiðUÞ� fiðVÞ 8i
fiðUÞ\ fiðVÞ 9i

(
i ¼ 1; 2; 3; . . .;N; ð25Þ

where N is the number of objective functions.

(b) Pareto optimal solution: vector U is said to be a

Pareto optimal solution if and only if any other

solutions cannot be detected to dominate U. A set of

Pareto optimal solution is called Pareto optimal front

(PFoptimal).

Figure 19 illustrates the concept of Pareto optimal opti-

mization technique for bi-objective problems. As can be

seen in Fig. 19, solutions A and B are considered as non-

dominated solutions. The reason is they are not dominated

by each other for given objectives.

To clarify further, the obtained solution A has the min-

imum value for the f1 compared with solution B. However,

the obtained value for solution A for the f2 is higher than

solution B (see Fig. 19). In contracts, solution C is domi-

nated by solutions A and B in terms of the minimum values

for both objective functions (f1 and f2) as shown in Fig. 19.

The solution C is called dominated solution and solutions

A and B are known as Pareto optimal solutions (non-

dominated solutions).

To select the most efficient (best) solutions in the pop-

ulation as a sea and rivers, crowding-distance mechanism is

used. The concept of crowding-distance mechanism was

first defined by Deb et al. [198].

This parameter is a criterion to show distribution of non-

dominated solutions around a particular non-dominated

solution. Figure 20 illustrates how to calculate crowding-

distance for point i which is the average side length of the

cuboid [198]. Lower value for crowding-distance indicates

more distribution of the solutions in a specific region. In

the MOPs, this parameter is calculated in objective space.

Fig. 19 Optimal Pareto solutions (A and B) for the two-dimensional

domain
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Hence, to compute this parameter for each non-dominated

solution, all non-dominated solutions should be sorted in

term of values for one of the objective functions.

Selection of the sea and rivers from the obtained pop-

ulation as the best guide solution for other solutions at each

iteration is a vital step in the MOWCA. This affects both

the convergence capability of the MOWCA as well as

maintaining a good distribution of non-dominated solu-

tions. Therefore, for all iterations, crowding-distance for all

non-dominated solutions should be calculated to determine

which solutions have the highest crowding-distance values.

Afterward, the obtained non-dominated solutions are

designated as sea and rivers and also, the intensity of flow

for rivers and sea are calculated based on the crowding-

distance values. In this situation, most likely, some non-

dominated solutions are created around sea and rivers at

next iterations, and their value of crowding-distance

amends and reduces.

Moreover, it is significantly important to save the non-

dominated solutions in an archive to generate the Pareto

front sets. This archive is updated at each iteration and

dominated solutions are eliminated from the archive and all

non-dominated solutions are added to the Pareto archive.

The essence of many is-

sues in real life is known as MOPs. In many complex

optimization problems, several objective functions must be

simultaneously investigated and solved. In the past couple

of years, several different algorithms like the WCA have

therefore been developed in order to solve multi-objective

problems within multiple objectives [201, 202].

In this regard, the WCA is utilized and converted to

solve MOPs in the literature (MOWCA). Also, different

variants of multi-objective WCA employing different

mechanism have been proposed and examined. In diverse

articles and domains, different multi-objective versions of

the WCA along with different applications of MOWCA

have been investigated. Table 12 lists the recent multi-

objective WCA reported in the literature and provides a

brief summary of the major attributes of such optimizers.

In References [197, 203, 204, 206–209], the same ver-

sion of MOWCA as explained earlier in this section have

been used for solving various MOPs. Related applications

and studied problem for each paper have been given in

Table 10. It is worth mentioning that comparing hybrid and

improved variants of WCA, multi-objective versions of

WCA is limited so far, and therefore, there are few variants

of multi-objective WCA so called Multi-Objective Uni-

form WCA (MOUWCA) [205] and MOWCA [210]. In the

following, some descriptions and explanations of these

multi-objective optimizers are given.

The main differences of standard MOWCA using non-

dominate sorting strategy are briefly listed as follows

[205]:

(a) No stream flows toward the sea thereby the evapo-

ration condition is checked only for rivers.

(b) Streams are equally and randomly distributed among

rivers (i.e., Eqs. (7) and (8) are not used any more).

Hence, the proposed algorithm is called Uniform

WCA.

(c) If the evaporation condition given in Relation (13) is

satisfied for a river, the river and its corresponding

streams will change their positions for the raining

process. Eventually, if a newly moved stream

dominates the corresponding moved river, their

labels will be exchanged, that is, that stream is

considered as the corresponding river and the old

river is regarded as a stream.

In Ref. [210], a modified operator has been included in

non-dominate sorting strategy for selecting the best feasi-

ble solution. Upon having Pareto optimal solutions, the

proposed approach selects only one feasible solution by

computing a membership function li to represent the ith

objective function OFi as defined follows:

li ¼
OFi � OFmin

i

OFmax
i � OFmin

i

8 i 2 M ð26Þ

where OFmin
i and OFmax

i are the lower and upper values of

the ith objective function among the available Pareto

solutions, respectively, and M is the number of solutions.

For each optimal Pareto solution m, the normalized mem-

bership function lm is obtained using the expression in

Eq. (27) as follows:

lm ¼
PNobj

i¼1 lmiPM
k¼1

PNobj
i¼1 lmi

ð27Þ

Fig. 20 Schematic view of crowding-distance calculation
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The best solution is decided among the final stored

members, that having the minimum value as expressed in

Eq. (28).

Best Solution ¼ min l1; . . .; lm

 �

ð28Þ

In these studies, the MOWCA has been evaluated using a

variety of test functions and well-known problems along

with some practical applications. The obtained findings of

aforementioned researches showed that the MOWCA and

its variants have capability of providing much more suc-

cessful Pareto optimal solutions compared to the consid-

ered multi-objective optimizers.

7 Hybridizations of WCA

In general, hybridization of at least two or more opti-

mization algorithms refers to simultaneous operation of

algorithms advantages each other to overcome the restric-

tions of an algorithm lonely and also to acquire optimal

solutions for complex optimization problems. Hybridiza-

tion means, in other words, incorporating or integrating

elements of smart techniques into a novel approach.

Since, hybridization of two or more optimization algo-

rithms can produce a synergy of their main advantages

[211, 212], many researchers try to combine a variety of

optimization algorithms to improve overall search

performance. Thus, numerous hybrid algorithms have been

developed by combing two or more methods to achieve

more advantages and also better performance.

Algorithms hybridization concept was first proposed by

Malek et al. at University of Texas at Austin within the

framework of the paper entitled ‘‘A Hybrid Algorithm

Technique’’ in 1989. In this paper, a new hybrid algorithm

technique based on the idea of mixing two algorithms

named as SA and TS algorithms was presented [213].

In the present and particularly in the current literature,

more and various hybrid algorithms have been extremely

and widely developed. Due to the unique advantages of the

metaheuristic optimization algorithms in solving complex

scientific and engineering problems, researchers have uti-

lized different hybridizations of algorithms such as ACO

[24, 25], artificial bee colony [26, 27], cuckoo search [33],

BA [35], FA [36], krill herd [41], WCA [43], ant lion

optimizer [48], social spider algorithm [49], crow search

algorithm [52], whale optimization algorithm [53], lion

optimization algorithm [54], and so forth in their research

works.

Many hybrid algorithms have been proposed in order to

improve exploration, exploitation, or balance between

exploration and exploitation [214]. The exploration

improvement refers to the global search among search

space in a restricted time [215–217]. The exploitation

enhancement refers to the local search among search area

Table 12 Multi-objective versions of WCA

Proposed

algorithms

References Problems/applications Results obtained by MOWCA

MWCA [203] Extractive single document summarization Better performance of the proposed approach as compared to state-

of-the-art techniques in terms of ROUGE-2 score for both datasets

MOWCA [204] Multi-item EOQ model considering partial

backordering and defective supply batches

Superior performance in solving the complex multi-objective

model, the reduction of the search radius over the course of

iterations

MOUWCA [205] Operation management of a microgrid with

multiple distributed generations

Speed up the convergence, more accurate to find extreme solutions

on the true Pareto optimal front

MOWCA [206] Coordinated design of UPFC and PSS the efficiency and the superior performance of the proposed method

when compared with other algorithms such as PSO and GAs

MOWCA [207] Multi-objective linear fractional programming Better performance, higher efficiency compared with the other

reported optimizers

MOWCA [197] Constrained multi-objective optimization

problems

Providing a superior quality of Pareto optimal solutions over

constrained MOPs

MOWCA [208] Portfolio selection Results indicate that the applied MOWCA is an efficient and

practical optimizer compared with the other methods for handling

portfolio optimization problems

MOWCA [209] Multi-objective optimization problems Verifying the efficiency of the WCA and its exploratory capability

for solving the multi-objective benchmarks problems

MOWCA [210] Economic dispatcher for sequential and

simultaneous objectives including practical

constraints

Numerical results indicate the viability and the strength of the

proposed WCA-based ELD method to other multi-objective

optimizers
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[211, 218, 219]. In addition, the goal of hybridization for

conformity is to achieve good balance between identifica-

tion and diversification with lower search time [220–222].

In the following, hybridizations of WCA with other

algorithms and methods are described in details. In this

regard, Fig. 21 shows developed hybrid methods based on

WCA. In the following section, different combinations of

optimizers with the WCA are represented.

7.1 Hybridization of WCA with metaheuristics

Looking at the WCA searching operators, it shows that it is

suitable and effective for combination with other opti-

mizers. Therefore, it would be beneficial and effective to

tackle complex optimization problems in different fields.

Consequently, in recent years, different metaheuristic

optimization algorithms have been combined with the

WCA to deal optimization problems and also enhance the

performance of existing optimizers. Table 13 shows the

hybridizations of WCA with the optimization algorithms

till present. In the following sections, hybridizations of

WCA with optimization algorithms including metaheuris-

tics and other methods have been represented and each has

been described concisely.

7.1.1 Hybridization of WCA with ABC

As it was mentioned in Sect. 6.1, a variety of hybrid

algorithms based on nature have been developing to

improve the performance of existing algorithms. During

these years, many algorithms have been developed by

inspiring intelligent behaviors of honey bees. Among these

algorithms, artificial bee colony (ABC) algorithm is the one

which has been widely employed to solve the real-world

problems.

The ABC algorithm was first proposed by Karaboga and

Basturk [26, 27] in 2006. The studies conducted on ABC

have been shown that this algorithm has the ability to scape

of local optimum and can be efficient in facing with opti-

mization problems. Due to the good features and impres-

sive performance of the ABC, various hybrid techniques

based on the ABC algorithm have been proposed. More

information about the ABC algorithm is available in the

literature [26, 27].

One of the hybrid algorithms based on the ABC and

WCA is the hybrid water cycle-artificial bee colony algo-

rithm (HWAA). The HWAA was introduced by Praepa-

nichawat et al. [223] to optimize complex optimization

problems. In their research, the HWAA has been employed

for optimal order allocation problem with mixed quantity

discount scheme. Objective function in this problem was

the minimization of the total purchase cost. Also, consid-

ered constraints were considered as capacity constraint,

demand constraint, discount constraints, and nonnegativity

constraint.

The major structure of HWAA is based on WCA except

the stage in which new streams are generated in Eq. (11).

However, this step has been replaced by a new step when a

new candidate food source position in the ABC algorithm

is determined. Hence, the new step is given as follows:

Xiþ1
stream ¼ Xi

straem þ rand 0:1ð Þ � Xi
river � Xi

stream

� 

ð29Þ

Regarding the developed HWAA, the core method utilizes

the WCA; nonetheless, a step in a WCA is replaced by an

exploration step of the ABC algorithm (finding a new

candidate source of food). Experimental tests of the

HWAA framework indicate that in the most cases, it tends

to find the best solutions. However, compared to other

algorithms, as well as the standard WCA and ABC, the

HWAA gives better or comparable results.

Fig. 21 Various hybridizations

of the WCA
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7.1.2 Hybridization of WCA with MFO

Moth flame optimization (MFO) algorithm is an algorithm

motivated by the moths’ behavior in nature, which uses

from an effective and applicable navigation mechanism

named as transverse orientation of moths in space and

nature. The MFO method was firstly introduced by Mir-

jalili [232] in 2015.

Naturally moths move in night with the consideration of

a constant angle to the moon for flying in long distances.

Hence, the main idea of MFO algorithm refers to the

procedure of the navigation in flying moths called trans-

verse orientation.

Due to simple implementation and promising capabili-

ties of this optimizer in solving challenging problems, the

MFO has been utilized in a variety of hybrid algorithms.

Khalil Pour Azari et al. [224] employed the MFO algorithm

for hybridization purpose along with the WCA. The

authors have used this hybrid algorithm named as WCMFO

to solve constrained optimization problems.

In their research, the MFO has been injected into the

WCA as main body for improvement the capability of its

exploitation. In fact, in this study the major objective of

combining these two algorithms and introducing a hybrid

method called the WCMFO is to fill the gap due to the lack

of a robustness operator to perform exploitation in WCA

and an effectiveness operator to perform exploration in the

MFO algorithm as well.

To achieve a powerful exploitation, two appropriate

improvements have been adopted in the WCA. The first

improvement has been applied in the WCA using the spiral

movement of the moths around their corresponding flame

in order to upgrade the streams and the rivers position and

increase the exploitation of the proposed method conse-

quently. The second improvement is related to improve-

ment of the raining process in the original WCA. Since

randomization procedure has considerable importance in

metaheuristic optimization algorithm, in the WCMFO

approach in order to improve the random nature in the

algorithm, using the following equation, the current posi-

tion of the streams can be updated by Levy flight strategy

[224]:

xiþ1 ¼ xi þ Levy dimð Þ � xi ð30Þ

where xi?1 is the next position of the stream, xi is the

current position of the stream and dim is equal to the

dimension of the problem or number of the decision

Table 13 Hybridizations of WCA with optimization methods

Proposed

algorithms

References Description Problems/applications Results/outcomes

Hybridization of WCA with metaheuristics

HWAA [223] Hybridization with ABC Optimal order allocation problem with

mixed quantity discount scheme

Better performance in terms of solution quality

WCMFO [224] Hybridization with moth

flame optimization

algorithm (MFO)

Solving numerical and constrained

engineering optimization problems

Capability in finding the global optimal along

with good quality solutions

GA-WCA [225] Hybridization with GAs Impact identification of framed

structures

Superiority of WCA in exploration or global

search over large design space having many

design variables

WCSA [226] Hybridization with

simulated annealing (SA)

Spam E-mail detection Efficiency of WCASA over other reported

methods

Hybridization of WCA with other methods

WNN-

WCA

[227] Hybridization with wavelet

neural network algorithm

(WNN)

Demand prediction in cloud

computing

High accuracy, high running time

Masi-

WCA

[228] Hybridization with Masi

entropy method

Performing color image segmentation

over the optimal threshold value

selection process

Effective performance of the WCA over other

existing optimizers

WCA–

PNN

[229] Hybridization with

probabilistic neural

network

Classification problems Good convergence speed and accuracy of the

proposed method

EG-ER-

WCA

[230] Hybridization with game

theory

IoT service selection Good performance of EG-ER-WCA

AWCA [231] Hybridization with

autonomous search

Manufacturing Cell Design Applicability of method for solving problems
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variables. The Levy flight can be calculated using the given

formula [224]:

Levy xð Þ ¼ 0:01� r� r1

r2j j
1
b

ð31Þ

where r1 and r2 are randomly generated numbers between

zero and one. Also, the parameter r can be calculated using

the following equation [224]. In the following, Table 14

shows the pseudo-code of the WCMFO.

r ¼
C 1þ bð Þ � sin pb

2

� �

C 1þb
2

� �
� b� 2

b�1
2ð Þ

0
@

1
A

1
b

ð32Þ

Table 14 Pseudo-code of the proposed hybrid WCMFO [224]
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In their study, the WCMFO has been tested on some test

functions to assess its performance. Moreover, to demon-

strate the efficiency of the WCMFO in constrained opti-

mization problems, three engineering problems have been

solved using this approach. Meanwhile, to verify the effi-

ciency of the WCMFO, the introduced hybridization has

been compared to several metaheuristic optimization

algorithms such as ABC, CS, GAs, PSO, hybrid particle

swarm optimization and gravitational search algorithm

(PSOGSA), GSA, MFO, WCA, and dragonfly algorithm

(DA). The results of simulations show that the WCMFO

algorithm is superior to the existing tested methods and

also it has capability of finding the global optimal in a wide

range of optimization problems.

7.1.3 Hybridization of WCA with GAs

The GAs is one of the earliest and well-known meta-

heuristic optimization algorithms. The GAs originally is

proposed by Holland [105]. The GAs is a random way that

forms the evolution of the human population. In other

words, the GAs focuses on models for the choice of the

DNA as found in nature as crossover and mutation

[233, 234].

Due to the strengths of GAs such as high convergence

speed, parallel process, simple implementation and so

forth, this algorithm has been used in many hybrid opti-

mization algorithms. Hence, the GAs plays a considerable

role in combination with other methods in order to enhance

efficiency of the applied method for tackling a given

problem.

Mahdavi et al. [225] presented a hybrid algorithm

including the GAs and WCA for impact force localization

and identification of framed structures in time domain. To

be more exact, in their study, a synthesis strategy consist-

ing of GAs and WCA has been applied for solving opti-

mization problem by means of a two-stage fitness

assessment method based on wavelets.

In other words, a decimal GAs coding system and a

modified WCA have been improved for evaluating influ-

ence localization and identification. The authors have used

two stages in proposed hybrid strategy. In the first stage,

they examined impact localization using the GAs strategy,

while the findings for defining the impact features using the

WCA have been improved in the second phase. The con-

figuration of the presented GA-WCA algorithm is

demonstrated in Fig. 22.

As can be seen from Fig. 21, Species 1 store the best

fitted individuals to avoid skipping optimal solution. Also,

Species 2 and 3 have been organized for random search/

reproduction in initial and reduced search domain,

respectively. Moreover, Species 4 have been constructed

for local search and to focus on local optimum.

Dynamic simulation is carried out in order to evaluate

the GA-WCA efficiency. The entire results including

numerical and experimental studies demonstrate the

effectiveness of the described method compared to other

techniques in terms of cost and performance. Thus, it is

believed that the strengths of the GA-WCA have made this

kind of hybridization approaches become a practical and

efficient method for tackling many optimization problems.

Meanwhile, the comparative analysis of the WCA with

PSO, ICA, and DE methods indicates efficiency and

effectiveness of WCA in identification step and exploration

in their research.

7.1.4 Hybridization of WCA with SA

Simulated annealing is a well-known optimizer that is

widely used in solving optimization problems. The algo-

rithm emulates the physical process of annealing into the

field of optimization. With the considering of the SA as a

heuristic algorithm for acquiring strong solutions, several

desirable attributes such as easy implementation, applying

to a wide range of problems, providing high-quality solu-

tions for many problems, etc., have made SA a beneficial

optimizer for optimization.

In Ref. [226], three hybridizations of WCA with SA

algorithm called WCSA based on three levels have been

presented to for Detect Spam E-mail. In the low level of

WCSA, the WC explorative ability and the SA acceleration

have been investigated in the WCSA in purifying solutions.

The WCA considers the optimum area, while the SA

identifies the optimal characteristics. The best balance

between global search and local search can be reached with

such hybridization.

The local procedure in the combination has been inte-

grated in WCA at the interleaved level. Following through

cycle of iteration, the SA adopt the best value from the Npop

as the starting point. The Npop would be modified if the

fitness value of the locally optimized vectors is stronger

than the ones in Npop. This cycle proceeds to the point of

end. While in the high level of WCSA, to improve the

algorithm a one-step SA algorithm has been implemented.

The WCA operations are used for creating new collection

features and the following procedure for the new solutions

is introduced. In this level, to achieve a high-quality feature

collection, the WCA explorative ability and the SA fine-

tuning capability are investigated among all iterations. The

findings of the simulation reveal that the WCASA performs

higher than HS, PSO, and GA.
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7.2 Hybridization of WCA with other methods

7.2.1 Hybridization of WCA with WNN

Wavelets are one of the functions that are generated from

the dilation and shifting of a ‘‘mother’’ function and also

are employed for localization a specific function in both

space and scaling [235, 236]. Neural networks (NNs) is

also an interconnected group of natural or artificial neu-

rons that utilizes models for information processing and is

motivated by the biological nervous systems like the brain.

In order to combine the strengths wavelets and neural

networks, a successful synthesis of theories has been pro-

duced a novel class of networks called wavelet neural

networks (WNNs) [237–241]. In fact, with mixing these

two theories, a novel mapping network has been presented

names as wavelet neural network or wave-nets [239]. In

abroad, diverse applications the WNN have recently been

successful [242–245].

In Ref. [227], an effective hybrid WNNs algorithm has

been presented for demand prediction in cloud computing.

In their research, the artificial immune system (AIS) and

WCA have been used to train the mentioned hybrid method

for optimizing the WNNs parameters. In fact, authors have

employed the two optimizers in order to find optimized

parameters such as bias and weight for the WNNs algo-

rithm. Figure 23 displays the overall layout of the proposed

technique. As shown in Fig. 23, the WCA optimized

WNNs algorithm includes two main stages, train stage and

test stage.

In the train stage, the parameters of the WNNs algorithm

are computed by using optimization optimizers and the

workload is estimated by using the WNNs algorithm and

its tuned parameters. As it is indicated in Fig. 23, the area

marked in red box one-third of the all data and other two-

thirds have been utilized to train networks with the AIS and

WCA.

In order to assess the performance, hybrid proposed

methodology has been tested and implemented on some

real-life problems. At last, the accuracy of the presented

method is estimated with the ANNs, ARMA, and LSTM

recurrent neural networks. Simulation results show that the

combined algorithm improves mean average percentage

error (MAPE). Also, since the WCA has been used for

optimizing WNNs hybrid algorithm and for estimating

several upcoming stages, it does not require to be trained
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T R   

Crossover: Single and multi-point
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Crossover: Single and multi-point
Mutation: Random search in reduced domain
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Fig. 22 Construction of the

proposed approach, a multi-

species DGAs for impact

localization, b WCA for impact

identification [225]
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continuously. However, this method has a high running

time.

7.2.2 Hybridization of WCA with Masi entropy method

Masi entropy method as a new entropic measure was first

proposed by Masi et al. [246]. It uses the full probability

distribution for picture separation on the basis of thermo-

dynamic entropy analysis.

In Ref. [228], a hybrid approach by coupling the WCA

and Masi entropy method the so-called Masi-WCA has

been introduced to carry out color picture separation over

the optimal threshold value selection process. In their

paper, Masi entropy method has been utilized to derive the

non-extensive/additive information contained in a picture

by means of a tunable entropic parameter.

Two objective functions were considered for compara-

tive assessment and purposes in their study: Tsallis and

Masi entropy. Meanwhile, in their study, the optimization

algorithms including the WCA, monarch butterfly opti-

mization (MBO), grasshopper optimization algorithm

(GOA), BA, PSO, and wind-driven optimization (WDO)

have been used for the purpose of color picture separation.

Authors in this research have performed a complete

evaluation of this method from new perspectives such as

the objective function, time of computation and so forth.

Figure 24 demonstrates the proposed Masi-WCA approach

in form of flowchart in details. The numerical optimization

results obtained from experimental evaluations show the

effective efficiency of the hybrid technique to the other

optimizers.

7.2.3 Hybridization of WCA with PNN

Artificial intelligence-based methods such as artificial

neural networks (ANNs) are methodologies that have been

utilized by many academics for tackling various problems.

The authors proposed in Ref. [229] using WCA to increase

the efficiency of the typical probabilistic neuronal network

(PNN).

The WCA has been applied to define the best weights to

be utilized in combination with the PNN technique. A

modern hybrid algorithm known as the WCAPNN was then

implemented to solve and accomplish high precision clas-

sification problems. The proposed approach provides near-

optimal solutions for controlling arbitrary parameter

selection of the PNN. The research also indicates that the

improved WCA (EWCA), to strike a compromise between

local and global search, may be used to avoid rapid con-

junction and population immobility. The tests of the anal-

ysis demonstrate that the WCA and EWCA are able to

change the PNN’s weight parameters and thereby increase

convergence speed and classification accuracy relative to

the initial PNN classifier.

Fig. 23 Overall process of WNNs algorithm learning by AIS and WCA [227]
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The proposed WCAPNN design is shown in Fig. 25.

This consists of two parts: PNN where the training data is

used is included in the first section. The weights of the

PNN are then determined with the WCA. The precision of

the newly identified data would then be determined. The

cycle persists until the end condition is met.

7.2.4 Hybridization of WCA with EG

Game theory evaluates a scenario in which individuals

cooperate to optimize their reward and make reasonable

decisions that contribute to a successful solution. The

aspect of game theory in biological development is the

principle of evolutionary games (EG). EG theory is com-

bined with ER-WCA named as EG-ER-WCA in Ref. [230]

to address the internet of things (IoT) service selection

problem.

In the ER-WCA, in any iteration as an exploiting

strategy, the locations of streams and rivers are modified.

The EG theory forecasts the next location of rivers and

streams to further maximize productivity in finding the

goal area. This strategy will scan the space easier as two

new variables are generated per stream and the better of

these two live instead of only depending on one randomly

produced new location. In terms of reaction time, power

and CPU utilization, this approach can optimize the com-

pound workflow. The evaluations validated that the EG-

ER-WCA was superior in all goals and even in terms of the

cost variable to other methodologies.

7.2.5 Hybridization of WCA with autonomous search

A variant in WCA, the so-called autonomous WCA

(AWCA) which can automatically change its parameter

using the autonomous search method was suggested in Ref.

[231] in order to solve the problem of production cell

architecture. The purpose of this project was to investigate

and optimize suitable search space regions such that opti-

mum solutions converge quickly. In the hybrid method, the

autonomous search has been utilized for modifying the

population size (Npop) as given follows:

Npop ¼ round
c
Npop

best � c
Npop

worstPNpop

i¼1 cos ti

�����

������ 100

( )
ð33Þ

where c
Npop

best and c
Npop

worst are the best and worst fitness value in

the current population, respectively. According to Eq. (33),

Npop is increased due to the diversity between the best and

worst fitness. Otherwise, Npop is decreased. The criterion

for the population update is therefore based on the varia-

tions, as a ratio, found in two time intervals in Nsr between

the best and worst solutions. The findings indicated that the

suggested solution effectively solved encountered issues.

Fig. 24 Flowchart of the Masi-WCA approach [228]
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8 Applications of WCA in different fields

After introducing the WCA, many and various applications

have been benefited reported in the literature. The WCA

competing along with other state-of-the-art optimizers have

shown its superiority for optimal solving of optimization

problems. Good exploitation and exploration abilities in

addition to fast and mature convergence rate make the

WCA a competent alternative for solving large-scale

optimization problems.

Moreover, easy in concept and coding as demonstrated

in the literature are the other strength of WCA which

makes it well-known for programmers and researchers.

Due to its capabilities and strengths, the WCA has been

utilized in many fields including mechanical engineering,

electrical and electronic engineering, civil engineering,

industrial engineering, water resources and hydropower

engineering, computer engineering, mathematics,

telecommunications engineering, optimization, control

engineering, and so forth.

In Sect. 4, the broad overview of published research

works related to the WCA was provided. In this section, all

papers published using the WCA in their applications

including usage of standard WCA, usage of multi-objective

WCA, utilization of hybridization versions of WCA, and

usage of modified/improved variants of WCA are classified

based on the variety of fields, and their applications are

represented briefly. Table 15 demonstrates published

Fig. 25 Flowchart of proposed WCAPNN [229]
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Table 15 A summary of the WCA applications in diverse filed of studies

Field of study Problems/applications References Year

Electrical Engineering Improving the power management system of a stand-alone hybrid green power generation based

on the fuzzy logic controller

[113] 2015

Power system stabilizer robust design for power systems [136]

The environmental economic scheduling of hydrothermal energy systems [138] 2016

Operation management of a microgrid with multiple distributed generations [205]

Coordinated design of UPFC and PSS [206]

Optimal power flow [123]

Effective parameters estimation of PV cell/module [116] 2017

Extracting the optimal parameters of PV module [117]

Parameter estimation of Lithium-ion batteries dynamic model [125]

Solving smooth and non-smooth economic dispatch [126]

Economic dispatcher for sequential and simultaneous objectives including practical constraints [210]

Short-term hydrothermal scheduling [139]

Short-term hydrothermal coordination [150]

ORPD problem in electric power systems [183]

Optimal allocation and sizing of multiple and single distributed generation and capacitor banks [127]

[128] 2018

Decarbonized unit commitment [129]

Optimal control strategy for efficient operation of an autonomous microgrid [132]

Optimal coordination of direction overcurrent relays [134]

Optimal dynamic and steady-state performance of switched reluctance motor [149]

Decarbonized unit commitment [129]

Transient stability augmentation of a wave energy conversion system [133] 2019

Optimal scheduling of CCHP with distributed energy resources [135]

Optimal energy saving of doubly fed induction motor [137]

Optimal overcurrent relays coordination in electric power systems [144]

Optimal direction overcurrent relays coordination [185]

Short-term solar power prediction using multi kernel-based random vector functional link [152]

Frequency control of renewable-based isolated two area interconnected microgrid [153]

Effective network reconfiguration with distributed generation allocation in radial distribution

networks

[161]

Optimal placement of wind turbines in wind farms [162]

Load frequency control of single area power system [164]

Constrained type optimal coordination of over current relay problem [166]

Load frequency control Coordination using PID controller [167]

Energy-efficient design of three phase induction motor [155] 2020

Optimal capacitor allocation in distribution networks [156]

Trusted routing in smart grid communication network [159]

Distribution network reconfiguration and DG integration [160]

Optimum design of a hybrid photovoltaic/diesel/battery/system [168]

Optimal network reconfiguration and DG integration in power distribution systems [191]

Optimum design of PV-battery-based microgrid [192]

Electronic Engineering Efficient multiprocessor scheduling [143] 2018

Determination of the harmonic information such as amplitude and phase [119] 2019

Energy constraints in wireless sensor network [146]

Mechanical Engineering Sizing optimization of sandwich panels having prismatic core [120] 2013

Civil Engineering Sizing optimization of truss structures [114] 2015

Optimization of multi-reservoir systems [171] 2017

Urban traffic light scheduling problem [177]
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Table 15 (continued)

Field of study Problems/applications References Year

Impact identification of framed structures [225] 2018

Long-term multi-reservoir optimization [170]

Pipe size design optimization of water distribution networks [145] 2019

Calibration of the QUAL2Kw model [165]

Soil shear strength (SSS) prediction [157] 2020

Computer Engineering Optimal solving of job shop scheduling problem [121] 2015

Restoring contrast in images or videos while preserving its colorfulness and brightness [115] 2017

Computationally expensive and combinatorial Internet shopping optimization problems [147] 2018

Extractive single document summarization [203]

Performing color image segmentation over the optimal threshold value selection process [228]

Solving Bayesian network structures learning problem [176]

Robot path planning [154]

Symmetric and asymmetric traveling salesman problem [178]

Demand prediction in cloud computing [227] 2019

Optimization of a hybrid phase-change memory cell [151]

Community detection in networks [158]

Spam E-mail detection [226]

Internet of things service selection [230]

Classification problems [229] 2020

Control engineering Load frequency controller for interconnected power systems comprising nonlinearity [124] 2016

Tuned PI control of a doubly fed induction generator [130] 2018

Optimization of a fuzzy sliding-mode controller for stand-alone hybrid renewable power system [142] 2019

Independent distributed generation controllers [173] 2020

Optimization and

Metaheuristics

Constrained multi-objective optimization problems [197] 2015

[209]

Open source code for the WCA [118] 2016

An overview evaluation-based on the WCA [140] 2018

Optimal solving of benchmark optimization problems [187] 2015

[175] 2016

[169] 2017

[172]

[174]

[180] 2019

[188]

[189]

Constrained and unconstrained engineering optimization problems [193] 2020

[43] 2012

[186] 2015

[182] 2016

[224] 2017

Industrial engineering Optimal order allocation problem with mixed quantity discount scheme [223] 2015

Optimization of closed-loop supply chain network design [122] 2016

Portfolio selection [208] 2017

Remanufacturing rescheduling problem [179]

Continuous p-median problem [131] 2018

Multi-item EOQ model considering partial backordering and defective supply batches [204]

Robust possibilistic programming for multi-item EOQ model [141]

The reliability redundancy allocation problem with a choice of redundancy strategies [148] 2019
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papers using the WCA by a variety of different categories

and applications.

In addition, Fig. 26 demonstrates percentage of the

published papers which utilized the WCA in different filed

of studies. Also, Fig. 27 shows number of the published

papers based on the WCA by different filed of studies. In

accordance with the statistical results shown in Figs. 26

and 27, majors in ‘‘Electrical Engineering’’ and ‘‘Opti-

mization & Metaheuristics’’ have more percentage on

presented applications.

Regarding the effectiveness of WCA for solving large-

scale optimization problems, several papers have been

considered in References Section, to name a few, look for

Refs. [177, 178, 225]. For instance, in Ref. [225], numer-

ical study is conducted for a large space frame having more

than 100 design variables along with engineering con-

straints. Ref. [177] tackled a problem of traffic congestion

using an intelligent strategy along with WCA approach for

minimizing total vehicle waiting time. In this paper, the

number of design variable was 400 for a 20 by 20 traffic

network. Ref. [178] investigated the application of WCA

for famous TSP having more than 250 design variables. In

Table 15 (continued)

Field of study Problems/applications References Year

Performance analysis of the hierarchical routing protocols [163]

Manufacturing cell design problem [231]

Mathematics Multi-objective linear fractional programming [207] 2018

Clustering analysis [190] 2019

Telecommunications

Engineering

Antenna array synthesis by using digital phase shifters [181] 2014

Chaos suppression [184] 2017

39%

3%1%

8%
14%

4% 17%
10%

2% 2% Electrical Engineering

Electronic Engineering

Mechanical Engineering

Civil Engineering

Computer Engineering

Control Engineering

Optimization & Metaheuristics

Industrial Engineering

Mathematics

Fig. 26 Percentage of the published papers which utilized the WCA

in different filed of studies (2012–2020/04/22)
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this study, asymmetric TSP (ATSP) along with standard

TSP have been examined using a discrete version of WCA.

9 WCA performance over well-known
benchmarks

In brief, concerning performance and efficiency of WCA

for optimal solving of well-known benchmarks, Ref. [147]

provides detail evaluations and assessments. Several well-

studied benchmarks so called CEC’15 computationally

expensive optimization problems [247] have been consid-

ered and examined using the WCA. Details of benchmarks

and their mathematical formulations have been given in the

literature [247]. Table 16 shows the statistical results

obtained by WCA and the other metaheuristic optimization

methods.

Looking at Table 16, out of 15 functions, the WCA has

shown its efficiency for 12 and 8 cases for dimension 10

and 30, respectively. The best obtained solution has been

highlighted in bold in Table 16.

9.1 Computational complexity

Furthermore, the WCA complexity on both 10D and 30D

has been evaluated following the guidelines provided in

CEC’15 [247]. The value for T0 has been calculated using

the test program provided in the guidelines. The calculated

computing time for the test program is T0 = 0.13149 s.

Next, the average complete computing time T1 for all the

benchmark functions is calculated. Finally, the algorithm

Table 16 Comparison of average error values for different optimizers for F1–F15

Functions Dim. PSO DE RGA (l ? k)-ES CMAES-S CMAES-G WCA

F1 10 1.2178E?09 3.4143E?09 1.0001E?09 2.6325E?09 3.6620E?07 6.5990E?07 9.3453E?07

30 3.6901E?09 2.3911E?10 2.2884E?10 3.5775E?10 6.8700E?07 1.1080E?08 1.6700E?09

F2 10 3.3305E?04 7.4931E?04 2.8613E?04 4.8418E?04 5.8080E?04 1.0240E?05 4.1919E?04

30 7.0403E?04 1.8254E?05 7.9022E?04 1.6179E?05 2.3630E?05 2.9530E?05 1.1922E?05

F3 10 3.1035E?02 3.1093E?02 3.0943E?02 3.1048E?02 6.1200E?02 6.1570E?02 3.0812E?02

30 3.3396E?02 3.4190E?02 3.3388E?02 3.4353E?02 6.3390E?02 6.5270E?02 3.3160E?02

F4 10 2.1565E?03 2.2974E?03 1.9693E?03 1.4368E?03 3.1890E?03 4.1090E?03 1.3283E?03

30 6.1218E?03 7.9627E?03 6.0751E?03 7.0557E?03 8.6730E?03 1.2040E?04 4.6192E?03

F5 10 5.0294E?02 5.0286E?02 5.0263E?02 5.0318E?02 1.0010E?03 1.0060E?03 5.0181E?02

30 5.0380E?02 5.0431E?02 5.0291E?02 5.0499E?02 1.0010E?03 1.0080E?03 5.0286E?02

F6 10 6.0182E?02 6.0286E?02 6.0235E?02 6.0223E?02 1.2010E?03 1.2010E?03 6.0070E?02

30 6.0089E?02 6.0365E?02 6.0397E?02 6.0433E?02 1.2010E?03 1.2010E?03 6.0069E?02

F7 10 7.0764E?02 7.2588E?02 7.1193E?02 7.1668E?02 1.4010E?03 1.4020E?03 7.0275E?02

30 7.0578E?02 7.5438E?02 7.3951E?02 7.8216E?02 1.4010E?03 1.4010E?03 7.0265E?02

F8 10 9.9922E?02 4.1637E?03 1.0444E?03 1.1691E?03 1.6130E?03 1.6480E?03 8.3098E?02

30 1.0348E?04 7.9963E?05 2.7911E?05 7.3789E?06 1.7670E?03 2.3210E?03 2.7502E?04

F9 10 9.0398E?02 9.0415E?02 9.0406E?02 9.0414E?02 1.8080E?03 1.8080E?03 9.0393E?02

30 9.1342E?02 9.1394E?02 9.1354E?02 9.1408E?02 1.8270E?03 1.8280E?03 9.1366E?02

F10 10 4.7184E?05 1.3622E?06 3.4778E?05 1.4666E?06 1.7440E?05 1.7700E?06 4.0759E?05

30 3.6586E?06 3.8759E?07 1.7019E?07 9.5323E?07 3.6310E?06 1.4730E?07 4.2495E?06

F11 10 1.1142E?03 1.1229E?03 1.1137E?03 1.1150E?03 2.2120E?03 2.2190E?03 1.1084E?03

30 1.1604E?03 1.2870E?03 1.2111E?03 1.4378E?03 2.2460E?03 2.2580E?03 1.1532E?03

F12 10 1.5081E?03 1.5980E?03 1.4633E?03 1.5797E?03 2.7390E?03 2.9810E?03 1.3971E?03

30 1.9727E?03 3.0110E?03 1.7286E?03 3.8087E?03 3.4540E?03 4.0940E?03 2.1146E?03

F13 10 1.6631E?03 1.7969E?03 1.6592E?03 1.6663E?03 3.2580E?03 3.3000E?03 1.6392E?03

30 1.7265E?03 1.9613E?03 1.9311E?03 2.2208E?03 3.3840E?03 3.4260E?03 1.7143E?03

F14 10 1.6105E?03 1.6135E?03 1.6091E?03 1.6148E?03 3.2090E?03 3.2170E?03 1.6075E?03

30 1.6797E?03 1.7479E?03 1.6997E?03 1.8406E?03 3.2660E?03 3.3000E?03 1.6768E?03

F15 10 1.8953E?03 1.9452E?03 1.8939E?03 1.9740E?03 3.7770E?03 3.9020E?03 1.8326E?03

30 2.6577E?03 2.9304E?03 2.6859E?03 2.9154E?03 4.4270E?03 4.8360E?03 2.7049E?03
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complexity (T1/T0) has been measured and the WCA

complexity has been shown in Table 17.

By observing Table 17, value of TB/TA equal to one

shows the zero complexity from dimension 10–30 for the

reported computationally expensive problems. Values

greater than one represent the complexity of computational

time using the WCA. F3 and F5 categorized as multimodal

functions have demonstrated higher complexity in terms of

computational time, while as expected, for the hybrid (F11

and F12) and composition functions (F13–F15) have shown

higher values due to their complication, especially for F15.

Relative computationally expensive problems are high-

lighted in bold in Table 17. For the rest of functions, the

average TB/TA is almost equal to 3 which means the

intricacy for dimension 10 to 30 is increased for almost 3

times [134].

10 Discussions

Computational complexity of engineering optimization

problems, on the one hand, and, considerable efficiency

and effectiveness of metaheuristic optimization algorithms,

on the other hand, are led scientific community to employ

metaheuristic optimizers for finding optimal solution. The

metaheuristic algorithms, which are also referred to as

intelligent optimization methods, are an essential kind of

random methods that are usually inspired by nature. The

majority of intelligent algorithms in comparison with the

evolutionary algorithms employ genetic rules. This distin-

guishing performance, in addition to other principal char-

acteristics of metaheuristics such as the rapid search in

response area, capability of finding optimal responses, and

escaping from local optima have led to the widespread use

of the metaheuristic techniques compared to other

methodologies for optimization in many and various areas.

In recent years, a variety of algorithms based on water

called water-based optimization algorithms are introduced

to tackle scientific problems. Despite the similarities

among these optimizers, the water-based optimizers have

their own distinguishing features in terms of their search or

solution strategy. The obtained results demonstrate that

utilizing the WCA in diverse researches and studies is

significantly increasing year by year in comparison with

other water-based optimizers. One of the reasons for this

success is the simple implementation and free access to

source codes of WCA and its variants in Internet.

The WCA like GAs, PSO, and many other optimizers

are more exploration-oriented strategies and the position of

initial solution does not affect the performance of attained

results and running time. Indeed, they are well-known to

global optimizers. The WCA employs power and advan-

tages of population for searching the global optimum.

Regarding exploration and exploitation mechanisms in the

WCA, unlike other common optimizers, the WCA starts

with exploitation. As it was mentioned previously, at first

iterations, due to high standard deviation among solutions

in the population, exploration indirectly applies without

using exploration search operators. In the WCA, exploita-

tion and exploration are considered at the same time within

an iteration. However, the simple random search assumed

for exploration phase in the WCA is a simple one and

potential of exploration phase can be enhanced using new

and novel, or existing global search operators.

Table 17 Computational

complexity used in the WCA
Functions Dimension = 10 Dimension = 30 TB/TA

T1 TA = T1/T0 T1 TB = T1/T0

F1 1.5491e-02 1.1781e-01 4.7418e-02 3.6062e-01 3.0610

F2 1.5674e-02 1.1920e-01 4.7279e-02 3.5956e-01 3.0164

F3 5.0910e-02 3.8718e-01 3.5590e-01 2.7067e?00 6.9908

F4 1.5344e-02 1.1669e-01 4.5599e-02 3.4679e-01 2.9719

F5 3.6914e-02 2.8074e-01 2.3144e-01 1.7601e?00 6.2695

F6 1.4350e-02 1.0913e-01 4.2477e-02 3.2304e-01 2.9601

F7 1.4244e-02 1.0833e-01 4.4410e-02 3.3774e-01 3.1177

F8 1.5050e-02 1.1446e-01 4.7212e-02 3.5905e-01 3.1369

F9 1.4916e-02 1.1344e-01 4.6429e-02 3.5310e-01 3.1127

F10 1.6596e-02 1.2621e-01 4.9931e-02 3.7973e-01 3.0087

F11 2.3538e-02 1.7901e-01 1.0926e-01 8.3094e-01 4.6419

F12 1.8490e-02 1.4062e-01 7.0682e-02 5.3755e-01 3.8227

F13 1.9260e-02 1.4648e-01 8.4310e-02 6.4119e-01 4.3773

F14 1.8978e-02 1.4433e-01 7.6092e-02 5.7869e-01 4.0095

F15 5.6532e-02 4.2993e-01 4.0447e-01 3.0761e?00 7.1549
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Due to the strengths and capabilities of the WCA, this

methodology has been utilized in many and various papers

in the literature. The studies carried out prove the effi-

ciency and effectiveness of the WCA over other well-

known optimizers in terms of computational effort (mea-

sured as number of function evaluations), function value

(accuracy), the solution qualities, exploration and

exploitation capabilities and convergence performance.

Like the other metaheuristic algorithms, the WCA has

its own shortcomings and limitations. The behavior of

WCA can be enhanced by alleviation probably drawbacks

and particularly by means of reinforcement exploration

phase. Different techniques have been employed for

development of the WCA in the literature. Thus, the dis-

tinguishing variants of the standard WCA in terms of

modifications, hybridizations with other optimizers,

parameter tuning, applying a set of three evolutionary

operators and also other methods have been represented.

In general, the main motivation of these significant

attempts is to maintain the balance between the exploration

and exploitation mechanisms over search spaces, and

consequently to achieve the optimal solution. The per-

formed assessments on modifications of the WCA show

that the basic algorithm has been improved based on

chaotic theory, fuzzy logic, binary, discrete, augmented

Lagrangian and other principles. In addition, the

improvements carried out have been resulted in enhance-

ment of the search ability, population diversity, conver-

gence accuracy and speed, efficiency, proper balance

between exploration and exploitation, convergence rate,

and particularly performance in terms of the solution

quality, speed and stability of the final optimal solutions in

the standard WCA.

Looking at the capabilities of the WCA shows that it is

efficient and effective for hybridization with other opti-

mization techniques. Subsequently, during recent years,

different hybridizations of WCA have been introduced for

solving optimization problems. The observation and

assessment of results obtained from the hybridization of

WCA with other optimization methods including ABC,

WNN, MFO, GAs, and Masi entropy method proves the

performance improvement of the hybrid algorithm in terms

of the accuracy, running time, the ability of finding the

global optimal, and the exploration or global search

mechanism.

Due to the appropriate exploitation and exploration

capabilities as two major components in optimization

algorithms in addition to fast and mature convergence rate,

easy in concept and coding as confirmed in the literature,

the utilization of the WCA in real-life applications

including usage of standard WCA, usage of multi-objective

WCA, utilization of hybridization versions of WCA, and

usage of modified/improved variants of WCA as a

applicable and practical methodology to tackle single-ob-

jective or multi-objective large-scale optimization prob-

lems have been of much more interest in the recent years,

and many contributions have been conducted, developed

and also published in a variety of fields including

mechanical engineering, electrical and electronic engi-

neering, civil engineering, industrial engineering, water

resources and hydropower engineering, computer engi-

neering, mathematics, telecommunications engineering,

optimization, control engineering, and so forth.

Furthermore, in the following, various research trends

and characteristics are defined in terms of applications of

WCA with respect to algorithm types (i.e., standard, multi-

objective, modified, and hybrid, see Fig. 28) and problem

types (i.e., unconstrained and constrained optimization

problems) along with contributions of WCA papers based

on continents have been provided given in Figs. 28, 29 and

30.

Figure 28 shows the increasing growth of employing the

WCA and its improved versions in various articles after

introducing it in 2012 to the present. It can be seen from

Fig. 28 that the 2019 indicates the highest usage of the

WCA in comparison with the other years. Nonetheless, the

number of the published WCA articles in a variety of kinds

from invention time of the proposed algorithm to present

demonstrates the rising tendency of utilizing WCA among

scientific community. Also, Fig. 29 shows the number of

published articles with respect to constrained and uncon-

strained optimization problems.

Looking at Fig. 30, distribution of studied WCA papers

is shown with respect to the authors’ affiliation for each

continent. As can be seen in Fig. 30, Asia has the largest

portion of WCA contributions in the world with the max-

imum number of papers from Korea, China, and India,

while America has the lowest contributions. Therefore, it is

expected as for Asia, by witnessing more applications in

America and Europe, WCA can effectively solve engi-

neering applications in aforementioned continents in

future.

11 Conclusions and future directions

In this review paper, a comprehensive survey was con-

ducted on the WCA, its different applications in a broad

and diverse research domain and its recent progresses in

the literature as well. In this regard, while studying and

analyzing many and various research articles related to the

WCA form 2012 to present (2020/04/22), considerable

efforts have been invested to construct this article to create

a strong understanding of the topic for readers and inter-

ested scholars by discussing and summarizing findings of

WCA resulted in recent scientific papers.
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Due to the effectiveness potentials and successful attri-

butes of the WCA among optimization algorithms, the

distinguishing versions of WCA algorithm in terms of

applications, modifications, multi-objective variants and

hybridizations have been provided in a complete list of

references. The acquired results from studies and assess-

ments of these references substantiate that researchers

Standard WCA Mul�-objec�ve Hybridiza�on Modifica�on
2012 1 0 0 0
2013 1 0 0 0
2014 0 0 0 1
2015 4 2 1 2
2016 5 2 0 2
2017 8 2 1 8
2018 13 3 2 3
2019 20 0 4 5
2020 6 0 1 4
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Fig. 28 Number of the published WCA papers with respect to standard WCA, the multi-objective WCA, hybridizations of WCA, and

modifications/improvements of WCA (2012–2020/04/22)
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Fig. 30 Contributions of different continents in using the WCA and

its variants (2012–2020/04/22)

Neural Computing and Applications (2020) 32:17433–17488 17481

123



found it useful and beneficial in order to tackle optimiza-

tion problems. Hence, it is believed that this review paper

can be appropriate, practical for students, academic

researchers, professionals, and engineers. Also, it can be an

innovative and comprehensive reference for subsequent

academic papers and books relevant to the WCA, opti-

mization methods, and metaheuristic optimization algo-

rithms. In addition, from the different analyses, the

following findings also can be summarized as follows:

• Till now, comparing the water-based optimization

methods, the WCA possesses the highest citations and

published papers in the literature which shows its

popularity among water-based metaheuristics.

• Till now, electrical engineering major is pioneer of

using WCA in engineering fields. In majors such as

mechanical engineering depends on its nature, rarely

the WCA has been utilized.

• Till now, in 2019, the citations and number of published

articles related to WCA are the highest since proposing

the WCA.

• So far, the WCA mostly is applied for solving

constrained engineering optimization problems.

• Till now, Asia has the biggest contributions to the

WCA, while America has the lowest ones.

As future guideline, lots of research have been carried out

using the WCA and its variants till the present. However, it is

expected to witness more and more applications, improve-

ments, hybridizations of this metaheuristic optimizer in future

in the literature. Still, many EAs and SI algorithms have not

been combined with the WCA and many different variants of

multi-objective strategies are not applied in the WCA. Indeed,

in terms of multi-objective aspect, the WCA is not well-

developed and in spite of multi-objective nature of the most

real optimization problems serious attentions should be taken

into account for future researches. Furthermore, more

improved versions of WCA equipped with the latest, efficient

strategies should be considered in future research. Besides,

the WCA is not well used in some engineering majors such as

mechanical engineering. Despite great potential of this prin-

cipal major, it is necessary to utilize and use more meta-

heuristic optimization algorithm such as WCA.
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