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Abstract
The recognition of motion patterns belongs to very important research areas related to neurology, rehabilitation, and

robotics. It is based on modern sensor technologies and general mathematical methods, multidimensional signal pro-

cessing, and machine learning. The present paper is devoted to the detection of features associated with accelerometric data

acquired by 31 time-synchronized sensors located at different parts of the body. Experimental data sets were acquired from

25 individuals diagnosed as healthy controls and ataxic patients. The proposed method includes the application of the

discrete Fourier transform for the estimation of the mean power in selected frequency bands and the use of these features

for data segments classification. The study includes a comparison of results obtained from signals recorded at different

positions. Evaluations are based on classification accuracy and cross-validation errors estimated by support vector machine,

Bayesian, nearest neighbours (k-NN], and neural network (NN) methods. Results show that highest accuracies of 77.1%,

78.9%, 89.9%, 98.0%, and 98.5% were achieved by NN method for signals acquired from the sensors on the feet, legs,

uplegs, shoulders, and head/spine, respectively, recorded in 201 signal segments. The entire study is based on observations

in the clinical environment and suggests the importance of augmented reality to decisions and diagnosis in neurology.

Keywords Multidimensional signal analysis � Computational intelligence � Machine learning � Accelerometers �
Ataxic gait � Motion classification

1 Introduction

Motion analysis has a wide range of applications in neu-

rology, rehabilitation, and physical therapy, allowing the

detection of motion disorders [7, 27] and monitoring of

different neurological symptoms. This multidisciplinary

area combines the knowledge and use of different micro-

electromechanical sensor units (MEMS), video, depth and

thermal camera systems [38, 39, 42], and wireless com-

munication links. The development of automatic informa-

tion systems in this area is a way how to contribute to the

more efficient health care as well.

Computational intelligence methods process the data

recorded by sensors located inside wearable devices, such

as mobile phones [12, 18, 26] and tablets or more sophis-

ticated systems including perception neuron [28, 35] and

robotic devices. Specific sensors are often applied for gait

analysis [1, 15, 47, 49, 53], gesture recognition [52],

motion symmetry study [41], breathing [40], or for moni-

toring human activities [16, 17, 50]. The results of the
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associated mathematical processing of the observed signals

are then used for the early detection and classification of

possible neurological disorders [46], monitoring the quality

of the rehabilitation process, or for simulation-based

training in surgery.

Motion sensors provide time-synchronized multichannel

signals and multidimensional records that must be analysed

by appropriate signal processing methods and specific

intelligent data processing tools. While spatial domain

features based on observations by video cameras are often

used, frequency domain features can be very efficient as

well. To avoid problems related the selection of the most

significant features, the deep learning methods

[2, 10, 45, 51] are used for more effective decision making

in some cases as well. This complex approach [4, 21] to

construction of classification models can be very efficient,

but it needs sophisticated software and powerful compu-

tational tools.

The present paper is devoted to the analysis of motion

feature [11, 22, 33] related to ataxia [13] as a neurological

symptom characterized by the loss of balance and disrupted

coordination while walking [7, 48]. Clinical scales used for

diagnosing and quantification of ataxia (e.g. SARA) are not

suitable for continuous monitoring in the natural environ-

ment of patients. In this situation, wearable sensors [19]

can be very useful for balance assessment even though

there are still many problems before their introduction to

clinical practice. These problems include the selection of

(1) the most suitable sensor positions, (2) the most deter-

mining features, and (3) the most reliable classification

methods.

There exist different instrumented methods for objecti-

fication of ataxic disorders including infrared 3D cameras,

pressure sensitive walkways [44], or electrooculography

tests [32]. The increasing acceptance of gait analysis

techniques and associated statistical analysis are enable to

quantify subtle gait characteristics that are unmeasurable

by current clinical methods to evaluate different gait scores

and to differentiate between ataxic patients and healthy

controls [7]. Despite of favourable results, no automated

classification methods are commonly applied in the clinical

practice.

Extracted parameters used for imbalance detection

during the gait or stance represent spatio-temporal prop-

erties like the range of motions, step length, step time,

stride time and speed, double support time, base width, and

the anthropometric measures [9, 23]. A small number of

studies bring promising results when extracting more

complex features based on frequency measures [8, 29] and

entropy [34, 37]. Specific studies are often devoted to the

correlation of different biomedical and neurological signals

[31], their interaction, and reactions to external stimuli.

The most common sensor placement is lower back and

lower limb, while the locations on the upper body are

relatively uncommon [19]. To analyse this problem, the

full-body motion capture device (perception neuron [28])

was used to simultaneously record accelerometric data [3]

at different sensor positions during the gait. Our set of

individuals consists of healthy controls and ataxic patients

suffering from multiple sclerosis (MS) as an autoinflam-

matory neurodegenerative disease.

The proposed method for the selection of features

includes the use of functional transforms [25] to evaluate

the components of the power at specific frequency ranges

[24]. The extracted features are then used for the classifi-

cation of the individual records and for evaluation of the

classification accuracy for data acquired from different

parts of the body.

2 Methods

2.1 Data acquisition

Figure 1 presents the principle of simultaneous data

acquisition by the perception neuron system [5, 28] that

uses 31 sensor units located at different parts of the body.

This system enables both the data collection for the spatial

location of the individual body joints and the recording of

detailed signals acquired by individual sensors with a given

sampling frequency. The notation for selected body posi-

tions used in the present study is presented in Table 1.

The individuals in Table 1 form two separate classes:

1. Normal: 13 individuals (95 time windows 20-s long),

2. Ataxic: 12 individuals (106 time windows 20-s long).

The diagnosis of these individuals was evaluated by two

experienced neurologists according to their behaviour

during the gait. The simultaneous recording of accelero-

metric data was performed by the perception neuron after

its initial calibration. The sampling frequency was fs ¼ 60

Hz (sampling time period Ts ¼ 0:017 s). Each time frame

included accelerometric data in three directions for specific

body positions. Their modulus was then used for the data

analysis.

2.2 Data processing methods

The pattern matrix was formed by the column vectors of

the features associated with each signal segment recorded

at a specific body position. The distribution of power

components was studied for each joint and signal segment

separately, using the discrete Fourier transform and fre-

quency windows 0.5 Hz long. A sample of the resulting

plots for the left/right shoulder for all windows belonging
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to a selected individual is presented in Fig. 2. Differences

depend upon location of sensors and the diagnosis of a

selected individual.

To reduce the number of features, two frequency ranges

were selected to analyse the high-frequency components of

the accelerometric data. Each of the selected spectral fea-

tures of a signal segment N samples long was evaluated,

using the discrete Fourier transform, in terms of the relative

power in a specified frequency band hfc1; fc2i, as follows:

PV ¼
P

k2U YðkÞj j2
PM=2

k¼0 YðkÞj j2
; YðkÞ ¼

XM�1

n¼0

yðnÞ e�j kn2pM ð1Þ

where U is the set of indices for which the frequency values

fk ¼ k
N fs 2 hfc1; fc2i. In the given case, we studied

accelerometric spectral features in R ¼ 2 frequency bands,

h3; 15Þ Hz and h15; 30Þ Hz.
The classification of Q pattern vector values and asso-

ciated target values into two classes was performed by the

methods of a support vector machine, Bayesian analysis,

nearest neighbours, and neural networks. Special attention

was given to the two-layer neural network as a classifica-

tion model with R inputs, S1 neurons in the first layer, and

S2 neurons in the second layer, as presented in Fig. 3.

The pattern matrix PR;Q was formed by Q columns with

each of them standing for a pattern vector associated with

the individual accelerometric time window. The outputs of

the individual layers formed the values

A1S1;Q ¼F1ðW1S1;R PR;Q; b1S1;1Þ
A2S2;Q ¼F2ðW2S2;S1 A1S1;Q; b2S2;1Þ

ð2Þ

The network coefficients included the elements of the

matrices W1S1;R, W2S2;S1 and vectors b1S1;1, b2S2;1. The

matrix of target values TS2;Q with S2 ¼ 2 rows was defined

by the corresponding classes specified by a neurologist.

The proposed model used the sigmoidal transfer func-

tion F1 in the first layer and the probabilistic softmax

transfer function F2 in the second layer. The values of the

output layer, based on the Bayes theorem [42], used the

function

F2ð:Þ ¼ expð:Þ
sumðexpð:ÞÞ ð3Þ

which provides the probabilities of individuals’ belonging

to each class. The separate columns of the output matrix

present the memberships in individual classes.

The performance of this neural network for its given

target and evaluated outputs, TS2;Q and A2S2;Q, respec-

tively, was estimated by the cross-entropy error [30] and

the calculation of the aggregate cross-entropy performance

P ¼ 1

M

XS2

i¼1

XQ

j¼1

CEði; jÞ ð4Þ

in each learning epoch with M ¼ S2� Q standing for the

total number of output values and

CES2;Q ¼ �TS2;Q: � logðA2S2;QÞ ð5Þ

representing the cross-entropy for each pair of target–out-

put elements. During the optimization process, the coeffi-

cients of the model were selected so as to minimize the

cross-entropy values.

Fig. 1 Principle of the use of the axis neuron system for accelero-

metric data acquisition at a selected body position of an individual

with ataxia presenting a data recorded from the left leg during a time

window of 20 s; b its spectral components; c positions of the sensors;
and d, e similar results for the right leg and spectral windows for the

evaluation of the relative power and estimation of the data features
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The complete optimization process was performed for

the training (70%), validation (15%), and test (15%) sets of

signal segments. The qualities of the final models were

then compared by their classification accuracy and the

cross-validation errors.

3 Results

The proposed method was applied to the analysis of

accelerometric data recorded at different body positions in

201 windows, each window being 20-s long (1200 sam-

ples), associated with two classes (normal and ataxic).

After the initial detailed spectral analysis (presented for

selected positions in Fig. 2), two frequency ranges for

estimating the pattern values were chosen: h3; 15Þ Hz and

h15; 30Þ Hz. Evaluations were done in the MATLAB 2019b

environment.

Frequency domain signal processing is supported by

[14, 36], confirming that sudden tilts during the gait cause

three types of involuntary muscle responses. A segmental

stretch reflex M1 occurs with a short latency, less than 50

ms, followed by the ‘long loop’ reflex M2 with its latency

of 60–80 ms, and corrective muscle contractions, M3, at

100 ms. Patients with affected cerebellum or spinocere-

bellar pathways have delayed M2 or M3 reflexes. More-

over, such patients have a stronger and longer M3

antagonist response, which leads to correction overshoot-

ing. This is the most likely explanation for the higher

power in the 3–15 Hz frequency range [33]. Inaccurate

limb movements and dysfunctional corrective reflexes lead

to increased body sway.

The comparison of the classification of the associated

frequency features for the left and the right foot and for the

left and the right shoulder for a selected individual (A09) is

presented in Fig. 4. The selected individual belongs to the

ataxic class, and the results show how symmetric parts of

the body can be distinguished in case they behave

differently.

Table 2 compares the average power features for 25

individuals and four positions on the left and right parts of

the body: Left/RightFoot, Left/RightLeg, Left/RightUp-

Leg, and Left/RightShoulder. The results confirm that in

Table 1 Number of segments (S) belonging to class 1 (normal) and

class 2 (ataxic) of separate individuals and positions used for

extraction of accelerometric data features

Summary of individuals

Class 1: normal Class 2: ataxic

No. Individual S No. Individual S

1 N-10 9 14 A-09 22

2 N-14 5 15 A-13 2

3 N-15 7 16 A-20 7

4 N-16 2 17 A-23 2

5 N-17 7 18 A-29 5

6 N-18 7 19 A-30 3

7 N-19 6 20 A-31 4

8 N-22 6 21 A-68 8

9 N-24 7 22 A-71 14

10 N-28 8 23 A-73 11

11 N-53 1 24 A-75 12

12 N-74 1 25 A-76 16

13 N-92 7

Sum of segments 95 Sum of segments 106

Sensor location

Position Name Position Name

2 RightUpLeg 6 LeftUpLeg

3 RightUp 7 LeftLeg

4 RightFoot 8 LeftFoot

17 RightShoulder 45 LeftShoulder

10 Spine 15 Head

Fig. 2 The evolution of spectral components of a selected individual

(A09) evaluated in a time window 20-s long estimated as the relative

power in the frequency range a 3–15 Hz and b 15–30 Hz, respec-

tively, for the left/right shoulder

NEURAL NETWORK FOR PATTERN RECOGNITION 
                             R     -     S1    -    S2

Sigmoidal   SoftMax
Transfer     Transfer
Function     Function

PATTERN MATRIX: P
          k=1,2,...,Q

p(1,k)

p(2,k)

p(R,k)

FEATURE
VECTOR

OUTPUT VALUES: A2
           k=1,2,...,Q

a2(1,k)

a2(2,k)

a2(3,k)

a2(S2,k)

   Signal segment: 

{s
k
(n)}, n=1,2, ..., N

       k=1,2, ..., Q

TARGET PROBABILITIES: T

t(1,k)

t(2,k)

t(3,k)

t(S2,k)

Fig. 3 A two-layer neural network with sigmoidal and softmax

transfer functions to recognize features of individual signal segments

of accelerometric data acquired at specific body locations
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most cases, the average feature values for corresponding

positions are lower for individuals from class 1 (normal)

than for those from class 2 (ataxic). This fact can be

explained by the body sway of ataxic patients and their

efforts to compensate for instability.

Table 3 compares the average power features of 25

individuals and positions located on the head (15) and the

spine (10). Again, the results confirm that in most cases, the

average values of features for corresponding positions are

lower for individuals from class 1 (normal) in comparison

with those from class 2 (ataxic).

Figure 5 compares the distribution of the global mean of

the power of a signal segment for 25 different individuals

forming class 1 (normal) and class 2 (ataxic), using the

mean power acquired by accelerometers located on the (a)

left and right leg, (b) left and right upleg, (c) left and right

shoulder, and (d) head and spine, using 20-s long time

windows. The distribution of cluster centres with standard

deviations for individual sensors located at different posi-

tions is presented in Fig. 6. The numerical comparison of

clusters was performed by the criterion

CðkÞ ¼ distð½MxðjÞ;MyðjÞ�; ½MxðkÞ;MyðkÞ�Þ
meanð½SxðjÞ; SyðjÞ�Þ þmeanð½SxðkÞ; SyðkÞ�Þ

ð6Þ

where ½MxðiÞ;MyðiÞ� and ½SxðiÞ; SyðiÞ� stand for cluster

centres and standard deviations of cluster pairs for i ¼ j

and i ¼ k. This value is the highest for the shoulder posi-

tion (3.0) and the lowest for the foot position (0.7).

Figure 7 compares selected classification results, and it

presents the distribution of frequency features for the left

foot, for the left upleg, and for the left shoulder, using data

acquired from 25 individuals belonging to class 1 (normal)

and class 2 (ataxic) using the neural network classification

method. The clusters of values belonging to class 1 are

more compact than those belonging to class 2, which have

a larger standard deviation. Moreover, the discriminative

abilities are higher for sensors located in the upper half of

the body, confirming the results of other studies [15, 20].

Table 4 compares the classification accuracy by the

support vector machine (SVM), decision tree (DT),

3-nearest neighbour (3-NN), and neural network (NN)

methods for 25 individuals of class 1 (normal) and class 2

(ataxic) using power features acquired from accelerometers

positioned on the left and right foot, leg, upleg, shoulder,

and head/spine. Cross-validation errors are evaluated by

the leave-one-out method in all cases.

The distribution of frequency features for both classes

(1: healthy controls, 2: ataxic patients) and their
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Fig. 4 Classification of frequency features for a the left and right foot

and b the left shoulder and right shoulder for a selected individual

(A09) belonging to class 2 (ataxic)

Table 2 Comparison of average power features for 25 individuals and

four positions on the left and right parts of the body: Left/RightFoot

(8/4), Left/RightLeg (7/3), Left/RightUpLeg (6/2), and Left/

RightShoulder (45/17)

Class Ind. Foot Leg UpLeg Shoulder

F1 F2 F1 F2 F1 F2 F1 F2

Normal 1 30.8 9.7 37.8 11.8 44.9 5.6 22.4 0.6

2 29.5 8.5 49.8 15.4 48.6 8.0 31.3 1.2

3 34.2 8.7 47.1 8.3 38.1 7.2 27.7 1.2

4 27.9 13.6 42.4 15.0 42.6 6.0 20.7 1.3

5 28.4 7.5 34.8 9.4 42.1 4.5 38.0 0.9

6 29.6 9.6 48.6 6.4 39.8 4.1 32.5 0.6

7 27.3 11.4 47.0 13.3 37.2 11.6 32.8 1.8

8 30.2 9.6 41.4 20.6 46.5 11.4 29.0 3.3

9 26.9 10.4 47.1 15.5 42.0 10.5 17.1 5.7

10 26.1 6.7 54.9 10.5 42.7 4.7 32.0 0.6

11 23.2 6.1 53.7 13.3 46.3 6.6 26.6 0.6

12 20.5 5.5 26.0 7.1 50.6 7.6 22.2 0.9

13 25.3 6.9 35.2 14.8 46.9 6.7 20.9 0.6

Mean 27.7 8.8 43.5 12.4 43.7 7.3 27.2 1.5

SD 3.5 2.3 8.3 4.0 4.0 2.5 6.1 1.5

Ataxic 14 37.1 11.6 68.3 6.5 65.0 4.8 53.9 4.0

15 25.3 10.1 43.0 9.1 52.1 6.3 41.4 1.5

16 31.6 10.8 55.6 19.2 54.4 13.0 57.7 2.4

17 37.5 14.2 48.5 15.1 57.9 13.1 49.2 1.4

18 32.1 8.3 51.7 16.4 46.1 5.9 54.6 0.9

19 45.6 13.3 51.0 11.4 60.8 6.2 70.4 3.2

20 26.3 9.3 60.4 17.5 49.2 8.9 50.2 1.4

21 40.9 11.8 56.4 10.9 61.8 9.1 63.4 0.8

22 19.0 7.1 50.7 9.9 53.1 10.9 78.6 1.6

23 34.0 6.3 56.1 5.8 54.4 5.6 45.0 1.1

24 29.6 6.9 52.5 9.2 62.4 5.0 49.2 1.1

25 38.0 13.3 42.2 9.4 56.2 11.5 64.8 1.6

Mean 33.1 10.2 53.0 11.7 56.1 8.4 56.5 1.7

SD 7.4 2.7 7.2 4.3 5.7 3.1 10.9 1.0
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classification confirm the importance of their proper

selection. It can be summarized that

1. cluster centres for class 1 (normal) are more compact

than those of class 2 (ataxic): it can be explained by the

different patterns of motion of patients with ataxia;

2. the relative mean power of features of patients with

ataxia (in the frequency band F1 h3; 15i Hz) is higher,
for the same reasons: this can be explained by the fast

motions of patients with ataxia;

3. the classification accuracy is dependent on positions of

sensors and the model used: sensors located on the

shoulder, head, or spine can distinguish between

classes 1 and 2 with an accuracy higher than 98%.

A better discrimination of ataxia with sensors placed on the

upper body can be explained by comparison with the

inverted pendulum. Ankle sensors capture less involuntary

movements due to partial stabilization by the contact with

the floor. Amplitude of body oscillations increases with the

distance from the ground. Sensors placed on the head and

shoulders are therefore more suitable for separation of

normal and ataxic gait.

Results obtained correspond with those published

recently [7, 29, 37]. Main advantages of accelerometric

body-worn systems over other motion capture devices are

in simultaneous monitoring of different body parts with

Table 3 Comparison of average

power features of 25 individuals

and positions located on the

head (15) and the spine (10)

with their mean (MN) values

Class Ind. Head Spine Class Ind. Head Spine

F1 F2 F1 F2 F1 F2 F1 F2

Normal 1 29.5 5.5 33.3 2.6 Ataxic 14 55.1 7.4 52.7 3.2

2 32.3 7.9 30.2 3.0 15 47.8 2.7 50.4 2.2

3 29.3 11.6 35.9 3.4 16 55.6 13.6 48.6 4.8

4 29.4 14.4 29.0 7.4 17 46.5 16.6 53.8 5.6

5 34.1 4.5 41.2 1.4 18 53.8 4.3 55.5 2.1

6 18.0 2.2 26.0 1.1 19 70.3 8.5 69.5 3.2

7 36.3 16.8 40.6 5.0 20 56.2 7.0 52.8 3.5

8 23.4 3.6 37.9 5.5 21 63.8 3.1 58.1 3.6

9 22.1 14.2 21.6 9.4 22 69.4 6.2 64.3 2.3

10 24.1 0.9 27.2 0.8 23 43.6 1.6 47.5 2.5

11 18.5 3.3 23.5 1.3 24 40.7 2.3 48.4 1.6

12 21.4 4.2 28.4 3.2 25 55.7 10.2 66.8 6.4

13 25.4 5.7 25.3 2.8

Mean 26.4 7.3 30.8 3.6 Mean 54.9 7.0 55.7 3.4

SD 5.9 5.2 6.5 2.6 SD 9.4 4.7 7.5 1.5
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Fig. 5 Comparison of distributions of global mean power of signal

segments for 25 different individuals forming class 1 (normal) and

class 2 (ataxic) using mean power acquired by accelerometers located

a left and right leg, b left and right upleg, c left and right shoulders,

and d head and spine, using 20-s long time windows
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and 0.8 multiples of standard deviations and criterion values for

selected sensor positions
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relatively high spatio-temporal resolution and extensive

possibilities of feature extraction. Recording upper-body

movements as a clinical biomarker during the gait is

emerging as a powerful measure complementary to tradi-

tional gait analysis using stepping characteristics [6]. The

proposed methodology is relatively simple and affordable

for discriminating ataxic patients from controls. Different

models using spatial domain features have in many cases

much lower accuracy [32, 53] which in the early stage of

the disease is between 70 and 80% [6, 43] only. These facts

motivate further studies of accelerometers to diagnose

ataxic disorders.

4 Conclusion

This paper presents selected methods of signal processing

and machine learning to evaluate and classify accelero-

metric data acquired during the gait. Individuals selected

by the clinical expert assessment include 12 ataxic patients

and 13 healthy controls.

The goal of the study is to present the use of frequency

domain features to classify individuals with neurological

disorders and to study the discrimination abilities of sen-

sors in dependence on their location on the body. Results

show how different positions of sensors can affect the

ability to perform the classification, its accuracy, and the

cross-validation errors.

The study includes the application of selected classifi-

cation methods to distinguish ataxic patients from healthy

controls. The best results were achieved by the neural

network method with the accuracy of 77.1 % for sensors

located on the left/right foot that was increased to more

than 98.0 % for sensors located in the upper part of the

body (shoulders, head, spine).

It is expected that further studies will be devoted to the

analysis of more extensive data sets of patients with dif-

ferent neurological problems during different kinds of

activities and selected positions of sensors. Other features

related to motion disorders (including spasticity, flaccidity,

rigidity, tremor) will be studied as well. It is assumed that

specific intelligent computational and classification
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Fig. 7 Classification of frequency features for a the left foot, b the left

upleg, and c the left shoulder, using data acquired from 25 individuals

belonging to class 1 (normal) and class 2 (ataxic) using the neural

network classification method and presenting the accuracy (AC) and

cross-validation (CV) errors

Table 4 Accuracy (AC [%]), specificity (TNR [%]), sensitivity (TPR

[%]), and cross-validation (CV) errors of the classification by the

support vector machine (SVM), Bayesian, 3-nearest neighbour (3-

NN), and neural network (NN) methods for power features acquired

from accelerometers located on the left and right foot, leg, shoulder,

and head/spine for 14 individuals of class 1 (normal) and class 2

(ataxic)

Position Method AC TNR TPR CV

Left/right foot SVM 76.2 88.9 66.4 0.251

Bayes 67.9 80.5 55.2 0.326

3-NN 75.3 86.8 83.9 0.289

NN 78.1 87.4 69.8 0.246

Left/right leg SVM 71.1 73.7 69.2 0.361

Bayes 70.1 66.8 73.1 0.306

3-NN 79.3 80.5 82.1 0.346

NN 78.9 66.1 81.6 0.264

Left/right upleg SVM 86.8 87.0 91.1 0.137

Bayes 85.6 87.9 83.5 0.144

3-NN 89.8 91.1 88.7 0.182

NN 89.9 92.6 84.1 0.114

Left/right shoulder SVM 97.3 96.8 97.6 0.027

Bayes 97.0 97.4 96.7 0.030

3-NN 97.0 98.4 95.8 0.047

NN 97.6 97.9 97.2 0.012

Head/Spine SVM 96.0 95.3 96.7 0.047

Bayes 93.5 93.2 93.9 0.067

3-NN 96.8 96.8 96.7 0.047

NN 98.5 98.4 97.6 0.035

Neural Computing and Applications (2021) 33:2207–2215 2213

123



methods will contribute to the improvement of automatic

diagnostic and monitoring tools for the daily medical

practice.
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