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Abstract
Figurative language (FL) seems ubiquitous in all social media discussion forums and chats, posing extra challenges to

sentiment analysis endeavors. Identification of FL schemas in short texts remains largely an unresolved issue in the broader

field of natural language processing, mainly due to their contradictory and metaphorical meaning content. The main FL

expression forms are sarcasm, irony and metaphor. In the present paper, we employ advanced deep learning methodologies

to tackle the problem of identifying the aforementioned FL forms. Significantly extending our previous work (Potamias

et al., in: International conference on engineering applications of neural networks, Springer, Berlin, pp 164–175, 2019), we

propose a neural network methodology that builds on a recently proposed pre-trained transformer-based network archi-

tecture which is further enhanced with the employment and devise of a recurrent convolutional neural network. With this

setup, data preprocessing is kept in minimum. The performance of the devised hybrid neural architecture is tested on four

benchmark datasets, and contrasted with other relevant state-of-the-art methodologies and systems. Results demonstrate

that the proposed methodology achieves state-of-the-art performance under all benchmark datasets, outperforming, even by

a large margin, all other methodologies and published studies.

Keywords Sentiment analysis � Natural language processing � Figurative language � Sarcasm � Irony � Deep learning �
Transformer networks

1 Introduction

In the networked-world era, the production of (structured

or unstructured) data is increasing with most of our

knowledge being created and communicated via web-based

social channels [96]. Such data explosion raises the need

for efficient and reliable solutions for the management,

analysis and interpretation of huge data sizes. Analyzing

and extracting knowledge from massive data collections is

not only a big issue per se, but also challenges the data

analytics state-of-the-art [103], with statistical and machine

learning methodologies paving the way, and deep learning

(DL) taking over and presenting highly accurate solutions

[29]. Relevant applications in the field of social media

cover a wide spectrum, from the categorization of major

disasters [43] and the identification of suggestions [74] to

inducing users’ appeal to political parties [2].

The raising of computational social science [56] and

mainly its social media dimension [67] challenge con-

temporary computational linguistics and text-analytics

endeavors. The challenge concerns the advancement of text

analytics methodologies toward the transformation of

unstructured excerpts into some kind of structured data via

the identification of special passage characteristics, such as

its emotional content (e.g., anger, joy, sadness) [49]. In this

context, sentiment analysis (SA) comes into play, targeting

the devise and development of efficient algorithmic pro-

cesses for the automatic extraction of a writer’s sentiment

or emotion as conveyed in text excerpts. Relevant efforts

focus on tracking the sentiment polarity of single utter-

ances, which in most cases is loaded with a lot of subjec-

tivity and a degree of vagueness [58]. Contemporary
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research in the field utilizes data from social media

resources (e.g., Facebook, Twitter) as well as other short

text references in blogs, forums, etc. [75]. However, users

of social media tend to violate common grammar and

vocabulary rules and even use various figurative language

forms to communicate their message. In such situations,

the sentiment inclination underlying the literal content of

the conveyed concept may significantly differ from its

figurative context, making SA tasks even more puzzling.

Evidently, single turn text lacks in detecting sentiment

polarity on sarcastic and ironic expressions, as already

‘‘signified in the relevant SemEval-2014 Sentiment Anal-

ysis task 9’’ [83]. Moreover, lacking of facial expressions

and voice tone require context-aware approaches to tackle

such a challenging task and overcome its ambiguities [31].

As sentiment is the emotion behind customer engagement,

SA finds its realization in automated customer-aware ser-

vices, elaborating over user’s emotional intensities [13].

Most of the related studies utilize single turn texts from

topic-specific sources, such as Twitter, Amazon and

IMDB. Handcrafted and sentiment-oriented features,

indicative of emotion polarity, are utilized to represent

respective excerpt cases. The formed data are then fed

traditional machine learning classifiers (e.g., SVM, random

forest, multilayer perceptrons) or DL techniques and

respective complex neural architectures, in order to induce

analytical models that are able to capture the underlying

sentiment content and polarity of passages [33, 42, 84].

The linguistic phenomenon of figurative language (FL)

refers to the contradiction between the literal and the non-

literal meaning of an utterance [17]. Literal written lan-

guage assigns ‘exact’ (or ‘real’) meaning to the used words

(or phrases) without any reference to putative speech fig-

ures. In contrast, FL schemas exploit non-literal mentions

that deviate from the exact concept presented by the used

words and phrases. FL is rich of various linguistic phe-

nomena like ‘metonymy’ reference to an entity stands for

another of the same domain, a more general case of ‘syn-

onymy’; and ‘metaphors’ systematic interchange between

entities from different abstract domains [18]. Besides the

philosophical considerations, theories and debates about

the exact nature of FL, findings from the neuroscience

research domain present clear evidence on the presence of

differentiating FL processing patterns in the human brain

[6, 13, 46, 60, 95], even for woman–man attraction situa-

tions! [23], a fact that makes FL processing even more

challenging and difficult to tackle. Indeed, this is the case

of pragmatic FL phenomena like irony and sarcasm that

main intention of in most of the cases, are characterized by

an oppositeness to the literal language context. It is crucial

to distinguish between the literal meaning of an expression

considered as a whole from its constituents’ words and

phrases. As literal meaning is assumed to be invariant in all

context at least in its classical conceptualization [47], it is

exactly this separation of an expression from its context

that permits and opens the road to computational approa-

ches in detecting and characterizing FL utterance.

We may identify three common FL expression forms,

namely irony, sarcasm and metaphor. In this paper, figu-

rative expressions, and especially ironic or sarcastic ones,

are considered as a way of indirect denial. From this point

of view, the interpretation and ultimately identification of

the indirect meaning involved in a passage does not entail

the cancellation of the indirectly rejected message and its

replacement with the intentionally implied message (as

advocated in [12, 30]). On the contrary, ironic/sarcastic

expressions presuppose the processing of both the indi-

rectly rejected and the implied message so that the differ-

ence between them can be identified. This view differs

from the assumption that irony and sarcasm involve only

one interpretation [32, 85]. Holding that irony activates

both grammatical/explicit and ironic/involved notions

provides that irony will be more difficult to grasp than a

non-ironic use of the same expression.

Despite that all forms of FL are well-studied linguistic

phenomena [32], computational approaches fail to identify

the polarity of them within a text. The influence of FL in

sentiment classification emerged both on SemEval-2014

sentiment analysis task [18, 83]. Results show that natural

language processing (NLP) systems effective in most other

tasks see their performance drop when dealing with figu-

rative forms of language. Thus, methods capable of

detecting, separating and classifying forms of FL would be

valuable building blocks for a system that could ultimately

provide a full-spectrum sentiment analysis of natural

language.

In the literature, we encounter some major drawbacks of

previous studies and we aim to resolve with our proposed

method:

• Many studies tackle figurative language by utilizing a

wide range of engineered features (e.g., lexical and

sentiment-based features) [21, 28, 76, 78, 79, 87] mak-

ing classification frameworks not feasible.

• Several approaches search words on large dictionaries

which demand large computational times and can be

considered as impractical [76, 87].

• Many studies exhaustively preprocess the input texts,

including stemming, tagging, emoji processing, etc.,

that tend to be time-consuming especially in large

datasets [52, 91].

• Many approaches attempt to create datasets using social

media API’s to automatically collect data rather than

exploiting their system on benchmark datasets, with

proven quality. To this end, it is impossible to be

compared and evaluated [52, 57, 91].
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To tackle the aforementioned problems, we propose an

end-to-end methodology containing none handcrafted

engineered features or lexicon dictionaries, a preprocessing

step that includes only de-capitalization and we evaluate

our system on several benchmark dataset. To the best of

our knowledge, this is the first time that an unsupervised

pre-trained transformer method is used to capture figurative

language in many of its forms.

The rest of the paper is structured as follows: In Sect. 2,

we present the related work on the field of FL detection; in

Sect. 3, we shortly describe the background of recent

advances in natural language processing that achieve high

performance in a wide range of tasks and will be used to

compare performance; in Sect. 4 we present our proposed

method; the results of our experiments are presented in

Sect. 5; and finally, our conclusion is in Sect. 6.

2 Literature review

Although the NLP community have researched all aspects

of FL independently, none of the proposed systems were

evaluated on more than one type. Related work on FL

detection and classification tasks could be categorized into

two main categories, according to the studied task:

(a) irony and sarcasm detection and (b) sentiment analysis

of FL excerpts. Even if sarcasm and irony are not identical

phenomena, we will present those types together, as they

appear in the literature.

2.1 Irony and sarcasm detection

Recently, the detection of ironic and sarcastic meanings

from respective literal ones have raised scientific interest

due to the intrinsic difficulties to differentiate between

them. Apart from English language, irony and sarcasm

detection have been widely explored on other languages as

well, such as Italian [86], Japanese [36], Spanish [68] and

Greek [10]. In the review analysis that follows, we group

related approaches according to the their adopted key

concepts to handle FL.

2.1.1 Approaches based on unexpectedness
and contradictory factors

Reyes et al. [80, 81] were the first that attempted to capture

irony and sarcasm in social media. They introduced the

concepts of unexpectedness and contradiction that seems to

be frequent in FL expressions. The unexpectedness factor

was also adopted as a key concept in other studies as well.

In particular, Barbieri and Saggion [4] compared tweets

with sarcastic content with other topics such as, #politics,

#education, #humor. The measure of unexpectedness was

calculated using the American National Corpus Frequency

Data source as well as the morphology of tweets, using

random forests (RF) and decision trees (DT) classifiers. In

the same direction, Buschmeir et al. [7] considered unex-

pectedness as an emotional imbalance between words in

the text. Ghosh et al. [26] identified sarcasm using support

vector machines (SVM) using as features the identified

contradictions within each tweet.

2.1.2 Content and context-based approaches

Inspired by the contradictory and unexpectedness concepts,

follow-up approaches utilized features that expose infor-

mation about the content of each passage including: N-

gram patterns, acronyms and adverbs [8]; semi-supervised

attributes like word frequencies [16]; statistical and

semantic features [79]; and Linguistic Inquiry and Word

Count (LIWC) dictionary along with syntactic and psycho-

linguistic features [77]. LIWC corpus [70] was also utilized

in [28], comparing sarcastic tweets with positive and

negative ones using an SVM classifier. Similarly, using

several lexical resources [87], and syntactic and sentiment

related features [57], the respective researchers explored

differences between sarcastic and ironic expressions.

Affective and structural features are also employed to

predict irony with conventional machine learning classi-

fiers (DT, SVM, naı̈ve Bayes/NB) in [20]. In a follow-up

study [21], a knowledge-based k-NN classifier was fed with

a feature set that captures a wide range of linguistic phe-

nomena (e.g., structural, emotional). Significant results

were achieved in [91], were a combination of lexical,

semantic and syntactic features passed through an SVM

classifier that outperformed LSTM deep neural network

approaches. Apart from local content, several approaches

claimed that global context may be essential to capture FL

phenomena. In particular, in [93] it is claimed that cap-

turing previous and following comments on Reddit

increases classification performance. Users’ behavioral

information seems to be also beneficial as it captures useful

contextual information in Twitter post [78]. A novel

unsupervised probabilistic modeling approach to detect

irony was also introduced in [66].

2.1.3 Deep learning approaches

Although several DL methodologies, such as recurrent

neural networks (RNNs), are able to capture hidden

dependencies between terms within text passages and can

be considered as content-based, we grouped all DL studies

for readability purposes. Word embeddings, i.e., learned

mappings of words to real-valued vectors [62], play a key

role in the success of RNNs and other DL neural archi-

tectures that utilize pre-trained word embeddings to tackle
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FL. In fact, the combination of word embeddings with

convolutional neural networks (CNN), so-called CNN-

LSTM units, was introduced by Kumar et al. [53] and

Ghosh and Veale [25] achieving state-of-the-art perfor-

mance. Attentive RNNs exhibit also good performance

when matched with pre-trained Word2Vec embeddings

[39], and contextual information [102]. Following the same

approach, an LSTM-based intra-attention was introduced

in [89] that achieved increased performance. A different

approach, founded on the claim that number present sig-

nificant indicators, was introduced by Dubey et al. [19].

Using an attentive CNN on a dataset with sarcastic tweets

that contain numbers, showed notable results. An ensemble

of a shallow classifier with lexical, pragmatic and semantic

features, utilizing a bidirectional LSTM model is presented

in [51]. In a subsequent study [52], the researchers engi-

neered a soft attention LSTM model coupled with a CNN.

Contextual DL approaches are also employed, utilizing

pre-trained along with user embeddings structured from

previous posts [1] or, personality embeddings passed

through CNNs [34]. ELMo embeddings [73] are utilized in

[40]. In our previous approach, we implemented an

ensemble deep learning classifier (DESC) [76], capturing

content and semantic information. In particular, we

employed an extensive feature set of a total 44 features

leveraging syntactic, demonstrative, sentiment and read-

ability information from each text along with Tf-idf fea-

tures. In addition, an attentive bidirectional LSTM model

trained with GloVe pre-trained word embeddings was uti-

lized to structure an ensemble classifier processing differ-

ent text representations. DESC model performed state-of-

the-art results on several FL tasks.

2.2 Sentiment analysis on figurative language

The Semantic Evaluation Workshop-2015 [24] proposed a

joint task to evaluate the impact of FL in sentiment analysis

on ironic, sarcastic and metaphorical tweets, with a number

of submissions achieving highly performance results. The

ClaC team [69] exploited four lexicons to extract attributes

as well as syntactic features to identify sentiment polarity.

The UPF team [3] introduced a regression classification

methodology on tweet features extracted with the use of the

widely utilized SentiWordNet and DepecheMood lexicons.

The LLT-PolyU team [99] used semi-supervised regression

and decision trees on extracted unigram and bi-gram fea-

tures, coupled with features that capture potential contra-

dictions at short distances. An SVM-based classifier on

extracted n-gram and Tf-idf features was used by the Elirf

team [27] coupled with specific lexicons such as Affin,

Patter and Jeffrey 10. Finally, the LT3 team [90] used an

ensemble regression and SVM semi-supervised classifier

with lexical features extracted with the use of WordNet and

DBpedia11.

3 The background: recent advances
in natural language processing

Due to the limitations of annotated datasets and the high

cost of data collection, unsupervised learning approaches

tend to be an easier way toward training networks.

Recently, transfer learning approaches, i.e., the transfer of

already acquired knowledge to new conditions, are gaining

attention in several domain adaptation problems [22]. In

fact, pre-trained embeddings representations, such as

GloVe, ElMo and USE, coupled with transfer learning

architectures were introduced and managed to achieve

state-of-the-art results on various NLP tasks [37]. In the

current section, we summarize those methods in order to

introduce our proposed transfer learning system in Sect. 5.

Model specifications used for the state-of-the-art models

can be found in ‘‘Appendix’’.

3.1 Contextual embeddings

Pre-trained word embeddings proved to increase classifi-

cation performances in many NLP tasks. In particular,

global vectors (GloVe) [71] and Word2Vec [63] became

popular in various tasks due to their ability to capture

representative semantic representations of words, trained

on large amount of data. However, in various studies (e.g.,

[61, 72, 73]), it is argued that the actual meaning of words

along with their semantics representations varies according

to their context. Following this assumption, researchers in

[73] present an approach that is based on the creation of

pre-trained word embeddings through building a bidirec-

tional language model, i.e., predicting next word within a

sequence. The ELMo model was exhaustingly trained on

30 million sentences corpus [11], with a two-layered

bidirectional LSTM architecture, aiming to predict both

next and previous words, introducing the concept of con-

textual embeddings. The final embeddings vector is pro-

duced by a task-specific weighted sum of the two

directional hidden layers of LSTM models. Another con-

textual approach for creating embedding vector represen-

tations is proposed in [9], where complete sentences,

instead of words, are mapped to a latent vector space. The

approach provides two variations of universal sentence

encoder (USE) with some trade-offs in computation and

accuracy. The first approach consists of a computationally

intensive transformer that resembles a transformer network

[92], proved to achieve higher performance figures. In

contrast, the second approach provides a lightweight model

that averages input embedding weights for words and bi-
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grams by utilizing of a deep average network (DAN) [41].

The output of the DAN is passed through a feed-forward

neural network in order to produce the sentence embed-

dings. Both approaches take as input lowercased PTB

tokenized1 strings and output a 512-dimensional sentence

embedding vectors.

3.2 Transformer methods

Sequence-to-sequence (seq2seq) methods using encoder-

decoder schemes are a popular choice for several tasks

such as machine translation, text summarization and

question answering [88]. However, encoder’s contextual

representations are uncertain when dealing with long-range

dependencies. To address these drawbacks, Vaswani et al.

[92] introduced a novel network architecture, called

transformer, relying entirely on self-attention units to map

input sequences to output sequences without the use of

RNNs. The transformer’s decoder unit architecture con-

tains a masked multi-head attention layer, followed by a

multi-head attention unit and a feed-forward network,

whereas the decoder unit is almost identical without the

masked attention unit. Multi-head self-attention layers are

calculated in parallel facing the computational costs of

regular attention layers used by previous seq2seq network

architectures. In [17] the authors presented a model that is

founded on findings from various previous studies (e.g.,

[14, 38, 73, 77, 92]), which achieved state-of-the-art results

on eleven NLP tasks, called BERT—bidirectional encoder

representations from transformers. The BERT training

process is split into two phases: the unsupervised pre-

training phase and the fine-tuning phase using labeled data

for down-streaming tasks. In contrast with previous pro-

posed models (e.g., [73, 77]), BERT uses masked language

models (MLMs) to enable pre-trained deep bidirectional

representations. In the pre-training phase, the model is

trained with a large amount of unlabeled data from Wiki-

pedia, BookCorpus [104] and WordPiece [98] embeddings.

In this training part, the model was tested on two tasks; on

the first task, the model randomly masks 15% of the input

tokens aiming to capture conceptual representations of

word sequences by predicting masked words inside the

corpus, whereas in the second task, the model is given two

sentences and tries to predict whether the second sentence

is the next sentence of the first. In the second phase, BERT

is extended with a task-related classifier model that is

trained on a supervised manner. During this supervised

phase, the pre-trained BERT model receives minimal

changes, with the classifier’s parameters trained in order to

minimize the loss function. Two models presented in [17],

a ‘‘Base Bert’’ model with 12 encoder layers (i.e.,

transformer blocks), feed-forward networks with 768 hid-

den units and 12 attention heads, and a ‘‘Large Bert’’ model

with 24 encoder layers 1024 feed-the pre-trained Bert

model, an architecture almost identical with the afore-

mentioned transformer network. A [CLS] token is supplied

in the input as the first token, the final hidden state of which

is aggregated for classification tasks. Despite the achieved

breakthroughs, the BERT model suffers from several

drawbacks. Firstly, BERT, as all language models using

transformers, assumes (and pre-supposes) independence

between the masked words from the input sequence, and

neglects all the positional and dependency information

between words. In other words, for the prediction of a

masked token both word and position embeddings are

masked out, even if positional information is a key-aspect

of NLP [15]. In addition, the [MASK] token, which is

substituted with masked words, is mostly absent in fine-

tuning phase for down-streaming tasks, leading to a pre-

training fine-turning discrepancy. To address the cons of

BERT, a permutation language model was introduced, so-

called XLnet, trained to predict masked tokens in a non-

sequential random order, factorizing likelihood in an

autoregressive manner without the independence assump-

tion and without relying on any input corruption [100]. In

particular, a query stream is used that extends embedding

representations to incorporate positional information about

the masked words. The original representation set (content

stream), including both token and positional embeddings,

is then used as input to the query stream following a

scheme called ‘‘Two-Stream SelfAttention’’. To overcome

the problem of slow convergence, the authors propose the

prediction of the last token in the permutation phase,

instead of predicting the entire sequence. Finally, XLnet

uses also a special token for the classification and separa-

tion of the input sequence, [CLS] and [SEP], respectively;

however, it also learns an embedding that denotes whether

the two words are from the same segment. This is similar to

relative positional encodings introduced in TrasformerXL

[15], and extents the ability of XLnet to cope with tasks

that encompass arbitrary input segments. Recently, a

replication study [59], suggested several modifications in

the training procedure of BERT which outperforms the

original XLNet architecture on several NLP tasks. The

optimized model, called robustly optimized BERT

approach (RoBERTa), used 10 times more data (160 GB

compared with the 16 GB originally exploited), and is

trained with far more epochs than the BERT model (500 K

vs. 100 K), using also 8 times larger batch sizes, and a

byte-level BPE vocabulary instead of the character-level

vocabulary that was previously utilized. Another signifi-

cant modification was the dynamic masking technique

instead of the single static mask used in BERT. In addition,

RoBERTa model removes the next sentence prediction1 https://nlp.stanford.edu/software/tokenizer.html.
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objective used in BERT, following advises by several other

studies that question the NSP loss term [44, 55, 101].

4 Proposed method: recurrent CNN
RoBERTA (RCNN-RoBERTa)

The intuition behind our proposed RCNN-RoBERTa

approach is founded on the following observation: As pre-

trained networks are beneficial for several down-streaming

tasks, their outputs could be further enhanced if processed

properly by other networks. Toward this end, we devised

an end-to-end model that utilizes pre-trained RoBERTa

[59] weights combined with a RCNN in order to capture

contextual information. The RoBERTa network architec-

ture is utilized in order to efficiently map words onto a rich

embedding space. To improve RoBERTa’s performance

and identify FL within a sentence, it is essential to capture

the dependencies within RoBERTa’s pre-trained word-

embeddings. This task can be tackled with an RNN layer

suited to capture temporal reliant information, in contrast,

to fully-connected and 1D convolution layers that are not

able to delineate with such dependencies. In addition,

aiming to enhance the proposed network architecture, the

RNN layer is followed with a fully connected layer that

simulates 1D convolution with a large kernel (see below),

which is capable to capture spatiotemporal dependencies in

RoBERTa’s projected latent space. Actually, the proposed

leaning model is based on a hybrid DL neural architecture

that utilizes pre-trained transformer models and feed the

hidden representations of the transformer into a recurrent

convolutional neural network (RCNN), similar to [54]. In

particular, we employed the RoBERTa base model with 12

hidden states and 12 attention heads, and used its output

hidden states as an embedding layer to a RCNN. As already

stated, contradictions and long-time dependencies within a

sentence may be used as strong identifiers of FL expres-

sions. RNNs are often used to capture temporal relation-

ships between words. However they are strongly biased,

i.e., later words are tending to be more dominant that

previous ones. This problem can be alleviated with CNNs,

which, as unbiased models, can determine semantic rela-

tionships between words with max-pooling [54, 65]. Nev-

ertheless, contextual information in CNNs is depended

totally on kernel sizes. Thus, we appropriately modified the

RCNN model presented in [54] in order to capture unbi-

ased recurrent informative relationships within text. In

particular, we implemented a bidirectional LSTM

(BiLSTM) layer, which is fed with RoBERTa’s final hid-

den layer weights. The output of LSTM is concatenated

with the embedded weights, and passed through a feed-

forward network, acting as a 1D convolution layer with

large kernel, and a max-pooling layer. Finally, softmax

function is used for the output layer. Table 1 shows the

parameters used in training, and Fig. 1 illustrates the pro-

posed deep network architecture.

5 Experimental results

To assess the performance of the proposed method, we

performed an exhaustive comparison with several

advanced state-of-the-art methodologies along with pub-

lished results. Nowadays trends in NLP community tend to

explicitly utilize deep learning methodologies as the most

convenient way to approach various semantic analysis

tasks. In the past decade, RNNs such as LSTM and GRUs

were the most popular choice, whereas the last years the

impact of attention-based models such as transformers

seems to outperform all previous methods, even by a large

margin [17, 92]. On the contrary, classical machine

learning algorithms such as SVM, k-nearest neighbors

(kNN) and tree-based models (decision trees, random for-

est) have been considered inappropriate for real-world

applications, due to their demand on hand-crafted feature

extraction and exhaustive preprocessing strategies. In order

to have a reasonable kNN or SVM algorithm, there should

be a lot of effort to embed sentences on word level to a

higher space that a classifier may recognize patterns. In

support of the arguments made, in our previous study [76],

classical machine learning algorithms supported with rich

and informative features failed to compete deep learning

methodologies and proved non-feasible to FL detection. To

this end, in this study we acquired several state-of-the-art

models to compare our proposed method. The used

methodologies were appropriately implemented using the

available codes and guidelines, and include: ELMo [73],

Table 1 Selected hyperparameters used in our proposed method

RCNN-RoBERTa

Hyperparameter Value

RoBERTa layers 12

RoBERTa attention heads 12

LSTM units 64

LSTM dropout 0.1

Batch size 10

Adam epsilon 1e-6

Epochs 5

Learning rate 2e-5

Weight decay 1e-5

The hyperparameters were settled following a grid search based on a

fivefold cross-validation process; the finally selected parameters are

the ones that exhibit the best performance
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USE [9], NBSVM [94], FastText [45], XLnet base cased

model (XLnet) [100], BERT [17] in two setups: BERT

base cased (BERT-Cased) and BERT base uncased

(BERT-Uncased) models, and RoBERTa base model [59].

The settings and the hyper-parameters used for training the

aforementioned models can be found in ‘‘Appendix’’. The

published results were acquired from the respective origi-

nal publication (the reference publication is indicated in the

respective tables). For the comparison we utilized bench-

mark datasets that include ironic, sarcastic and metaphoric

expressions. Namely, we used the dataset provided in

‘‘Semantic Evaluation Workshop Task 3’’ (SemEval-2018)

that contains ironic tweets [35]; Riloff’s high-quality sar-

castic unbalanced dataset [82]; a large dataset containing

political comments from Reddit [48]; and a SA dataset that

contains tweets with various FL forms from ‘‘SemEval-

2015 Task 11’’ [24]. All datasets are used in a binary

classification manner (i.e., irony/sarcasm vs. literal), except

from thec‘‘SemEval-2015 Task 11’’ dataset where the task

is to predict a sentiment integer score (from - 5 to 5) for

each tweet (refer to [76] for more details). For a fair

comparison, we split the datasets on train/test stets as

proposed by the authors providing the datasets or by fol-

lowing the settings of the respective published studies. The

evaluation was made across standard five metrics, namely

accuracy (Acc), precision (Pre), recall (Rec), F1-score (F1)

and area under the receiver operating characteristics curve

(AUC). For the SA task the cosine similarity metric (Cos)

and mean squared error (MSE) metrics are used, as pro-

posed in the original study [24].

The results are summarized in Tables 2, 3, 4 and 5; each

table refers to the respective comparison study. All

tables present the performance results of our proposed

method (‘‘Proposed’’) and contrast them to eight state-of-

the-art baseline methodologies along with published results

using the same dataset. Specifically, Table 2 presents the

results obtained using the ironic dataset used in SemEval-

2018 Task 3.A, compared with recently published studies

and two high performing teams from the respective

SemEval shared task [5, 97]. Tables 3 and 4 summarize

results obtained using Sarcastic datasets (Reddit SARC

politics [48] and Riloff Twitter [82]). Finally, Table 5

compares the results from baseline models, from top two

Fig. 1 The proposed RCNN-RoBERTa methodology, consisting of a

RoBERTa pre-trained transformer followed by a bidirectional LSTM

layer (BiLSTM). Pooling is applied to the representation vector of

concatenated RoBERTa and LSTM outputs and passed through a

fully connected softmax-activated layer. We refer the reader to

[59, 92] for RoBERTa transformer-based architecture

Table 2 Comparison of RCNN-RoBERTa with state-of-the-art neural

network classifiers and published results on SemEval-2018 dataset

Irony/SemVal-2018-Task 3.A [35]

System Acc Pre Rec F1 AUC

ELMo 0.66 0.66 0.67 0.66 0.72

USE 0.69 0.67 0.67 0.67 0.74

NBSVM 0.69 0.70 0.69 0.69 0.73

FastText 0.69 0.71 0.69 0.69 0.73

XLnet 0.71 0.71 0.72 0.70 0.80

BERT-Cased 0.70 0.69 0.70 0.69 0.77

BERT-Uncased 0.69 0.68 0.69 0.68 0.77

RoBERTa 0.79 0.78 0.79 0.78 0.89

Wu et al. [97] 0.74 0.63 0.80 0.71 –

Ilić et al. [40] 0.71 0.70 0.70 0.70 –

THU_NGN [97] 0.73 0.63 0.80 0.71 –

NTUA-SLP [5] 0.73 0.65 0.69 0.67 –

Zhang et al. [102] – – – 0.71 –

DESC [76] 0.74 0.73 0.73 0.73 0.78

Proposed 0.82 0.81 0.80 0.80 0.89

Bold figures indicate superior performance

Table 3 Comparison of RCNN-RoBERTa with state-of-the-art neural

network classifiers and published results on Reddit Politics dataset

Reddit SARC2.0 politics [48]

System Acc Pre Rec F1 AUC

ELMo 0.70 0.70 0.70 0.70 0.77

USE 0.75 0.75 0.75 0.75 0.82

NBSVM 0.65 0.65 0.65 0.65 0.68

FastText 0.63 0.65 0.61 0.63 0.64

XLnet 0.76 0.77 0.74 0.76 0.83

BERT-Cased 0.76 0.76 0.75 0.76 0.84

BERT-Uncased 0.77 0.77 0.77 0.77 0.84

RoBERTa 0.77 0.77 0.77 0.77 0.85

CASCADE [34] 0.74 – – 0.75 –

Ilić et al. [40] 0.79 – – – –

Khodak et al. [48] 0.77 – – – –

Proposed 0.79 0.78 0.78 0.78 0.85

Bold figures indicate superior performance
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ranked task participants [3, 69], from our previous study

with the DESC methodology [76] with the proposed

RCNN-RoBERTa framework on a Sentiment Analysis task

with figurative language, using the SemEval 2015 Task 11

dataset.

As it can be easily observed, the proposed RCNN-

RoBERTa approach outperforms all approaches as well as

all methods with published results, for the respective binary

classification tasks (Tables 2, 3, 4). In particular, the

RCNN architecture seems to reinforce RoBERTa model by

2–5% F1 score, increasing also the classification

confidence, in terms of AUC performance. Note also that

RoBERTa-RCNN show better behavior, compared to

RoBERTa, on imbalanced datasets (Riloff [82], SemEval-

2015 [24]). Also, one-way ANOVA Tukey test [64]

revealed that RoBERTa-RCNN model outperforms by a

statistical significant margin the maximum values of all

metrics of previously published approaches, i.e., p ¼
0:015; p\0:05 for ironic tweets and p ¼ 0:003; p\0:01

for Riloff sarcastic tweets. Furthermore, the proposed

method increased the state-of-the-art performance even by

a large margin in terms of accuracy, F1 and AUC score.

Our previous approach, DESC (introduced in [76]), per-

forms slightly better in terms of cosine similarity for the

sentiment scoring task (Table 5, 0.820 vs. 0.810), with the

RCNN-RoBERTa approach to perform better and manag-

ing to significantly improve the MSE measure by almost

33.5% (2.480 vs. 1.450).

6 Conclusion

In this study, we propose the first transformer based

methodology, leveraging the pre-trained RoBERTa model

combined with a recurrent convolutional neural network, to

tackle figurative language in social media. Our network is

compared with all, to the best of our knowledge, published

approaches under four different benchmark dataset. In

addition, we aim to minimize preprocessing and engineered

feature extraction steps which are, as we claim, unnecessary

when using overly trained deep learning methods such as

transformers. In fact, handcrafted features along with pre-

processing techniques such as stemming and tagging on

huge datasets containing thousands of samples are almost

prohibited in terms of their computation cost. Our proposed

model, RCNN-RoBERTa, achieves state-of-the-art perfor-

mance under six metrics over four benchmark dataset,

denoting that transfer learning non-literal forms of language.

Moreover, RCNN-RoBERTa model outperforms all other

state-of-the-art approaches tested including BERT, XLnet,

ELMo and USE under all metric, some by a large factor.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

Table 4 Comparison of RCNN-RoBERTa with state-of-the-art neural

network classifiers and published results on Sarcastic Rillof’s dataset

Riloff sarcastic dataset [82]

System Acc Pre Rec F1 AUC

ELMo 0.85 0.85 0.86 0.85 0.89

USE 0.87 0.81 0.76 0.78 0.89

NBSVM 0.75 0.59 0.57 0.58 0.60

FastText 0.83 0.83 0.61 0.64 0.85

XLnet 0.86 0.88 0.86 0.86 0.92

BERT-Cased 0.86 0.87 0.85 0.86 0.91

BERT-Uncased 0.87 0.88 0.87 0.87 0.91

RoBERTa 0.89 0.85 0.84 0.85 0.91

Farı́as et al. [20] – – – 0.75 –

Ilić et al. [40] 0.86 0.78 0.77 0.75 –

Tay et al. [89] 0.82 0.74 0.73 0.73 –

DESC [76] 0.87 0.86 0.87 0.87 0.86

Ghosh and Veale [25] – 0.88 0.88 0.88 –

Proposed 0.91 0.90 0.90 0.90 0.94

Bold figures indicate superior performance

Table 5 Comparison of RCNN-

RoBERTa with state-of-the-art

neural network classifiers and

published results on Task11—

SemEval-2015 dataset

(sentiment analysis of figurative

language expression)

SemEval-2015 Task 11 [24]

System COS MSE

ELMo 0.710 3.610

USE 0.71 3.17

NBSVM 0.69 3.23

FastText 0.72 2.99

XLnet 0.76 1.84

BERT-Cased 0.72 1.97

BERT-Uncased 0.79 1.54

RoBERTa 0.78 1.55

UPF [3] 0.71 2.46

ClaC [69] 0.76 2.12

DESC [76] 0.82 2.48

Proposed 0.81 1.45

Bold figures indicate superior

performance
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Appendix

In our experiments we compared our model with several

seven different classifiers under different settings. For the

ELMo system, we used the mean-pooling of all contextual-

ized word representations, i.e., character-based embedding

representations and the output of the two layer LSTM

resulting with a 1024-dimensional vector, and passed it

through two deep dense ReLu activated layers with 256 and

64 units. Similarly, USE embeddings are trained with a

transformer encoder and output 512-dimensional vector for

each sample, which is also passed through two deep dense

ReLu activated layers with 256 and 64 units. Both ELMo and

USE embeddings retrieved from TensorFlow Hub.2 NBSVM

system was modified according to [94] and trained with a

10�3 leaning rate for 5 epochs with Adam optimizer [50].

FastText system was implemented by utilizing pre-trained

embeddings [45] passed through a global max-pooling and a

64 unit fully connected layer. System was trained with Adam

optimizer with learning rate 0.1 for 3 epochs. XLnet model

implemented using the base-cased model with 12 layers, 768

hidden units and 12 attention heads. Model trained with

learning rate 4 � 10�5 using 10�5 weight decay for 3 epochs.

We exploited both cased and uncased BERT-base models

containing 12 layers, 768 hidden units and 12 attention heads.

We trained models for 3 epochs with learning rate 2 � 10�5

using 10�5 weight decay. We trained RoBERTa model fol-

lowing the setting of BERT model. RoBERTa, XLnet and

BERT models implemented using pytorch-transformers

library3 and were topped with two dense fully connected

layers used as the output classifier.

References

1. Amir S, Wallace BC, Lyu H, Silva PCMJ (2016) Modelling

context with user embeddings for sarcasm detection in social

media. arXiv preprint arXiv:1607.00976

2. Antonakaki D, Spiliotopoulos D, Samaras CV, Pratikakis P,

Ioannidis S, Fragopoulou P (2017) Social media analysis during

political turbulence. PLoS ONE 12(10):1–23

3. Barbieri F, Ronzano F, Saggion H (2015) UPF-taln: SemEval

2015 tasks 10 and 11. Sentiment analysis of literal and figurative

language in Twitter. In: Proceedings of the 9th international

workshop on semantic evaluation (SemEval 2015). Association

for Computational Linguistics, Denver, pp 704–708

4. Barbieri F, Saggion H (2014) Modelling irony in Twitter. In:

EACL

5. Baziotis C, Nikolaos A, Papalampidi P, Kolovou A, Para-

skevopoulos G, Ellinas N, Potamianos A (2018) NTUA-SLP at

SemEval-2018 task 3: tracking ironic tweets using ensembles of

word and character level attentive RNNs. In: Proceedings of the

12th international workshop on semantic evaluation. Associa-

tion for Computational Linguistics, New Orleans, pp 613–621

6. Benedek M, Beaty R, Jauk E, Koschutnig K, Fink A, Silvia PJ,

Dunst B, Neubauer AC (2014) Creating metaphors: the neural

basis of figurative language production. NeuroImage 90:99–106

7. Buschmeier K, Cimiano P, Klinger R (2014) An impact analysis

of features in a classification approach to irony detection in

product reviews. In: Proceedings of the 5th workshop on com-

putational approaches to subjectivity, sentiment and social

media analysis. Association for Computational Linguistics,

Baltimore, pp 42–49

8. Carvalho P (2009) Clues for detecting irony in user-generated

contents: Oh...!! it’s ‘‘so easy. In: International CIKM workshop

on topic-sentiment analysis for mass opinion measurement,

Hong Kong

9. Cer D, Yang Y, Kong SY, Hua N, Limtiaco N, John RS, Con-

stant N, Guajardo-Cespedes M, Yuan S, Tar C et al (2018)

Universal sentence encoder. arXiv preprint arXiv:1803.11175

10. Charalampakis B, Spathis D, Kouslis E, Kermanidis K (2016) A

comparison between semi-supervised and supervised text min-

ing techniques on detecting irony in greek political tweets. Eng

Appl Artif Intell 51:50–57

11. Chelba C, Mikolov T, Schuster M, Ge Q, Brants T, Koehn P,

Robinson T (2013) One billion word benchmark for measuring

progress in statistical language modeling. arXiv preprint arXiv:

1312.3005

12. Clark HH, Gerrig RJ (1984) On the pretense theory of irony.

J Exp Psychol Gen 113:121–126

13. Cuccio V, Ambrosecchia M, Ferri F, Carapezza M, Piparo FL,

Fogassi L, Gallese V (2014) How the context matters. Literal

and figurative meaning in the embodied language paradigm.

PLoS ONE 9(12):e115381

14. Dai AM, Le QV (2015) Semi-supervised sequence learning. In:

Advances in Neural Information Processing Systems,

pp 3079–3087

15. Dai Z, Yang Z, Yang Y, Cohen WW, Carbonell J, Le QV,

Salakhutdinov R (2019) Transformer-xl: attentive language

models beyond a fixed-length context. arXiv preprint arXiv:

1901.02860

16. Davidov D, Tsur O, Rappoport A (2010) Semi-supervised

recognition of sarcastic sentences in Twitter and Amazon. In:

Proceedings of the fourteenth conference on computational

natural language learning, CoNLL ’10. Association for Com-

putational Linguistics, Stroudsburg, pp 107–116

17. Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: pre-

training of deep bidirectional transformers for language under-

standing. In: Proceedings of the 2019 conference of the North

American Chapter of the Association for Computational Lin-

guistics: human language technologies, volume 1 (long and

short papers). Association for Computational Linguistics, Min-

neapolis, pp 4171–4186

18. Dridi A, Recupero DR (2019) Leveraging semantics for senti-

ment polarity detection in social media. Int J Mach Learn

Cybern 10(8):2045–2055

19. Dubey A, Kumar L, Somani A, Joshi A, Bhattacharyya P (2019)

‘‘When numbers matter!’’: detecting sarcasm in numerical por-

tions of text. In: Proceedings of the tenth workshop on com-

putational approaches to subjectivity, sentiment and social

media analysis, pp 72–80
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