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Abstract
Computer-aided diagnosis system is becoming a more and more important tool in clinical treatment, which can provide a

verification of the doctors’ decisions. In this paper, we proposed a novel abnormal brain detection method for magnetic

resonance image. Firstly, a pre-trained AlexNet was modified with batch normalization layers and trained on our brain

images. Then, the last several layers were replaced with an extreme learning machine. A searching method was proposed to

find the best number of layers to be replaced. Finally, the extreme learning machine was optimized by chaotic bat algorithm

to obtain better classification performance. Experiment results based on 5 9 hold-out validation revealed that our method

achieved state-of-the-art performance.

Keywords AlexNet � Magnetic resonance image � Deep learning � Extreme learning machine � Computer-aided diagnosis

1 Introduction

Brain is the most sophisticated organ in our body. It is the

control center of the nervous system which controls our

behavior. So, brain diseases are the most deadly compared

with other diseases. Early diagnosis can assist the patients

to survive these diseases. Currently, diagnosis of brain

disease is dependent on medical imaging. Magnetic reso-

nance image (MRI), computed tomography (CT) and X-ray

are common medical imaging modalities in clinical diag-

nosis. MRI is non-invasion and free of radiation; it can

provide clearer imaging results on soft tissue than CT and

X-ray. Therefore, it is the first choice for brain disease

diagnosis.

Recently, automated medical image analysis is becom-

ing a hot research topic, which requires both medical

expertise and machine learning. The developed computer-

aided diagnosis (CAD) systems can assist the doctors and

physicians to come up with decisions based on medical

images. Abnormal brain detection can be regarded as an

image recognition and classification problem from the

viewpoint of artificial intelligence. A general framework to

solve image classification problems often includes feature

extraction and classifier training. During the last two
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decades, researchers and practitioners have proposed their

methods to detect abnormal brain automatically based on

MRI.

These abnormal brain detection methods can be classi-

fied toward two groups: traditional machine learning and

deep learning. For classical machine learning, the image

features are usually handcrafted; much attention is paid to

classifier training and optimization. In [1], authors pro-

posed to use discrete wavelet transform (DWT) for feature

extraction and employed two classification algorithms for

brain MRI classification: neural network self-organizing

maps (SOM) and support vector machine (SVM). The

SOM and SVM yielded accuracy of 94% and 98%,

respectively. El-Dahshan and Hosny [2] proposed a hybrid

pathological brain detection method. They firstly employed

DWT to extract features from brain MRI. Thereafter,

principle component analysis (PCA) was leveraged to

reduce the feature dimension. Finally, feedforward back

propagation neural network (BPNN) and k nearest neigh-

bors (k-NN) were selected as the classification algorithms.

The neural network and k-NN achieved 97% and 98%

accuracy, respectively. Kalbkhani and Shayesteh [3] sug-

gested to combine DWT and generalized autoregressive

conditional heteroscedasticity (GARCH) for feature gen-

eration. PCA and linear discriminant analysis (LDA) were

utilized to remove the redundant features. Finally, they

trained k-NN and SVM to identify the types of the brain

MRIs. Their approach can not only classify abnormal and

healthy, but also recognize seven different brain abnor-

malities. Saritha, Paul Joseph (2013) [4] firstly performed

DWT on brain MRIs and extracted entropies from the

DWT sub-bands. Then, they proposed to use spider web

plots to generate features based on wavelet entropy.

Probabilistic neural network (PNN) was trained for image

classification which achieved good classification results.

El-Dahshan and Mohsen [5] put forward a brain tumor

detection system based on brain MRI. The feedback pulse-

coupled neural network was trained to segment the brain

tumors before classification. Then, DWT with PCA was

employed to generate image features. BPNN served as the

classification algorithm which recognized the image as

abnormal or healthy. The proposed method achieved 99%

accuracy on both training and testing samples. Bahadure

and Ray [6] put forward their brain tumor segmentation

and recognition method. The signal-to-noise ratio of the

raw images was improved by pre-processing. Then, they

compared the performance of several image segmentation

methods including watershed segmentation, fuzzy cluster-

ing means, discrete cosine transform and Berkeley wavelet

transform, and found out Berkeley wavelet transform per-

formed the best. Then, morphological operation was

applied to the segmented images and a set of texture and

statistical features were calculated to form the feature

vector. Finally, genetic algorithm (GA) was employed for

feature selection and classification. Their system achieved

overall accuracy of 92.03%. Gudigar and Raghavendra [7]

suggested two image decomposition methods: bidimen-

sional empirical mode decomposition and variational mode

decomposition. Then, supervised neighborhood projection

embedding and bispectral feature extractor were used to

generate feature vector. SVM was trained as the classifier.

Experiment results suggested that variational mode

decomposition was better than bidimensional empirical

mode decomposition with 90.68% accuracy. Acharya and

Fernandes [8] proposed a Alzheimer’s disease detection

system based on brain MRI. A number of different image

transforms were employed to extract features including

wavelet transform and its variants. Then, Student’s t test

was utilized for feature selection. Thereafter, k-NN was

trained for identification and recognition. There are other

reports showing the success of AI and signal processing

methods in handling various tasks [9–13].

On the other hand, deep learning techniques usually

generate image features in an automated manner. Deep

learning is becoming an important tool for image classifi-

cation in recent five years. Convolutional neural networks

(CNNs) have made substantial improvements in image-

based machine learning tasks. We no longer need to use

image transforms or decomposition methods to extract

handcrafted features, because CNN provides a unified

framework to implement feature extraction and classifica-

tion automatically and simultaneously. So, a bunch of deep

learning-based abnormal brain detection approaches have

been proposed recently. Nayak and Das [14] proposed a

multilayer ELM autoencoder with leaky rectified linear

unit to classify brain MRIs. The ELM autoencoders were

stacked together to form a deep ELM in their experiment of

multi-class classification. Deepak and Ameer [15] pro-

posed a brain tumor classification approaches which can

distinguish three types of tumors: glioma, meningioma and

pituitary tumors. They used pre-trained GoogleNet and

transfer learning to implement the classification. The last

three layers in the pre-trained GoogleNet were modified

and the parameters in early layers remained unchanged. So,

the training of the modified GoogleNet was only for

determining the weights in the last three layers. Their

method achieved good classification performance in

experiment. Han and Rundo [16] proposed a data aug-

mentation method for brain tumor detection because the

size of medical image datasets is small. A generative

adversarial network (GAN)-based brain MRI augmentation

algorithm was presented, which improved the classification

accuracy. Lu and Lu [17] combined AlexNet and transfer

learning for detecting the abnormalities in brain MRI. They

used a pre-trained AlexNet modified the last several layers.

Then, the whole modified AlexNet was fine-tuned on the
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brain MRIs. Their method achieved 100% accuracy on

testing set.

From the above analysis, we can find that in abnormal

brain detection systems based on classical machine learn-

ing, the feature extraction relies on manual image trans-

forms and sometimes requires further feature selection and

reduction. But the classifier training is generally faster than

deep learning methods because of simple classifier struc-

tures and much less parameters. Deep learning methods are

capable of generating image features automatically. With

convolution and pooling operations in CNN, features can

be learned from low level to high level gradually. Never-

theless, training deep CNN models is time-consuming.

The contribution of this study is that we aim to combine

the classical machine learning and deep learning technique

to obtain the fast training and automated feature learning

ability. We improved the performance of pre-trained

AlexNet by introducing batch normalization (BN) layers.

The improved AlexNet was fine-tuned on our brain MRI

dataset. Thereafter, we replaced its last several layers with

ELM structure and proposed a searching approach to find

the optimal number of layers to be replaced. To obtain

better classification results, we optimized the weights and

biases in ELM with a novel chaotic bat algorithm. Four

different chaotic maps were tested. The evaluation results

were all obtained by 5 9 hold-out validation. Experimental

results suggested that our system achieved good classifi-

cation performance. Furthermore, our method provided a

general framework that can be used in other image clas-

sification tasks.

The rest of this paper is as follows. Section 2 presents

the brain MRIs in our experiment. Section 3 explains the

methods in detail. Section 4 offers the experiment envi-

ronment and settings, and the experiment research is given

in Sect. 5. Finally, Sect. 6 provides the conclusion and

future work.

2 Material

The brain MRIs used in this study are obtained from Whole

Brain Atlas-Harvard Medical School (website: http://www.

med.harvard.edu/AANLIB/). The key slices are selected by

radiologists of over ten years’ experience. Our original

dataset contains 177 abnormal samples but merely 28

healthy controls. To balance the ratio of the two classes, we

firstly randomly select 14 samples from both classes to

form the testing set and the rest samples to form training

set. Then, the 14 healthy samples in training set are

resampled to get 168 normal samples, which were copied

for eleven times. In this way, both training set and testing

set are balanced generally. The diseases with abnormal

samples include cerebrovascular diseases, neoplastic

diseases, degenerative diseases and inflammatory or

infectious diseases. Some samples in our dataset are pre-

sented in Fig. 1.

3 Methods

We proposed a novel abnormal brain detection algorithm

based on machine learning and deep learning techniques.

Firstly, a pre-trained AlexNet was modified and fine-tuned

on our brain MRI dataset. Then, we substituted the last

several layers in the modified AlexNet with extreme

learning machine. Finally, the extreme learning machine

was optimized by a novel chaotic bat algorithm to obtain

better generalization ability.

3.1 Improved AlexNet

AlexNet is one of the most well-known deep CNN struc-

tures proposed by Krizhevsky and Sutskever [18]. AlexNet

achieved high classification accuracy on ImageNet dataset,

which was a significant breakthrough in machine learning

field. Since then, people started to put more time and effort

to the research of deep learning models. Various deep

CNNs have been invented recently, like ResNet [19],

GoogleNet [20], VGG [21], etc., along with numerous

training and optimization algorithms.

In this study, we propose to use batch normalization

(BN) to improve the robustness of AlexNet for detecting

abnormal brain. The distribution of the brain MRIs is

complex because of the high variance of human brains. As

a result, the distributions of inputs of the layers in AlexNet

are different from layer to layer. This can make the

parameter training extremely hard and time-consuming,

which requires good initialization. In order to overcome

this internal covariate shifting, BN is invented. The intu-

ition behind BN is simple. As CNNs are trained in mini-

batch mode, BN uses normalization transform on the

activations of layers to keep the means and variances fixed.

For a random variable x and its values in a mini-batch S:

S ¼ x1; x2; x3; . . .; xn½ � ð1Þ

The mean lS and variance r2S of x can be obtained by:

lS ¼
1

n

Xn

i¼1

xi ð2Þ

r2S ¼
1

n

Xn

i¼1

xi � lSð Þ2 ð3Þ

So, the normalized values x̂i can be obtained by:

x̂i ¼
xi � lSffiffiffiffiffiffiffiffiffiffiffiffiffi
r2S þ e

p ð4Þ
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Where e denotes a constant value to increase the

numerical stability. Nevertheless, the normalized activa-

tions may not be the learning target of the layers in some

cases. So, a transformation is added to the result:

yi ¼ cx̂i þ a ð5Þ

Where c and a are two learnable parameters of mini-

batch S.

With BN, the training speed of deep CNNs can be

accelerated and gradients are less dependent on the initial

values of parameters. Furthermore, BN can serve as a

regularization, which improves the generalization ability of

deep networks.

3.2 ELM

The improved AlexNet can yield good classification per-

formance, but its classification is dependent on the last

several layers (mostly fully connected layers). We pro-

posed to replace these layers with a more efficient classifier

model: extreme learning machine, to further improve the

detection accuracy. ELM is a training algorithm for single-

hidden layer feedforward network (SLFN), proposed by

Guang-Bin and Qin-Yu [22]. An SLFN contains merely

three layers, namely input layer, hidden layer and output

layer, shown in Fig. 2. The w and b are the input and

output weights, respectively, and b denotes the bias in

hidden nodes. The x and o represent the input and output,

respectively.

The advantage of ELM is that it is trained without

iteration, which makes it converges extremely faster than

traditional BPNN [23, 24], and the generalization ability of

ELM is also promising [25]. The training algorithm of

ELM contains only three steps. Given a training set M:

M ¼ x1; t1ð Þ; x2; t2ð Þ; x3; t3ð Þ; . . .; xn; tnð Þ½ � ð6Þ

Where xi represents the input vector and ti denotes the

label, ELM firstly initializes the input weight w and bias b

with random values. Then, the output matrix of hidden

layer H can be calculated:

H ¼
X̂N

i¼1

gi wixj þ bi
� �

; j ¼ 1; . . .; n ð7Þ

Where N̂ denotes the number of hidden nodes and g(�)
denotes the activation function in hidden layer. Finally, our

target is to achieve the ELM output equals to the actual

sample labels:

Hb ¼ T ð8Þ

Where T ¼ t1; t2; t3; . . .; tnð ÞT . So, the b can be obtained

by Moore–Penrose pseudo-inverse:

b ¼ HyT ð9Þ

Where Hy represents the pseudo-inverse of H. The

training algorithm is summarized in Table 1.

From the above analysis, it is clear that the training of

ELM is simple to implement. So, ELM is widely applied in

practical applications, like recognition [26], prediction [27]

(a) Healthy samples (b) abnormal samples

Fig. 1 Some samples of our

dataset

wi

bi

βix1

x2

xn

.

.

.

o1

om

.

.

.
.
.
.

Fig. 2 Architecture of SLFN
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and clustering [28]. Therefore, we employ ELM in this

study to replace the last several layers for brain MRIs

classification. However, the random input weight and bias

can have a bad effect on the robustness of the ELM per-

formance; we hope to further optimize these parameters.

So, chaotic bat algorithm is proposed to handle this

problem.

3.3 SNN

We also employed Schmidt neural network (SNN) and

random vector functional link (RVFL) net as classifiers to

compare with ELM. SNN and RVFL are both random

neural networks, but their structures are different. SNN was

proposed by Schmidt and Kraaijveld [29]. There are three

layers in SNN, shown in Fig. 3. The weights from input

layer to hidden layer were randomly assigned, and there are

biases in both hidden layer and output layer. The output of

SNN can be expressed as

XN̂

i¼1

big wixj þ bi
� �

þ b
� �

¼ o; j ¼ 1; . . .;N ð10Þ

Where N denotes the number of hidden nodes. The

training of SNN is similar to training of ELM, which can

be implemented by pseudo-inverse to get the output

weights b.

3.4 RVFL

RVFL was proposed by Pao and Park [30], which is dif-

ferent from ELM and SNN. RVFL firstly maps the input

features to enhancement space with random weights and

biases. Then, the input features and enhanced features are

concatenated to form the feature vector. This structure

looks like the shortcut shown in Fig. 4, which is similar to

the modules in ResNet. Finally, output weights b are

obtained by pseudo-inverse like ELM and SNN.

3.5 Chaotic bat algorithm

Chaotic bat algorithm (CBA) belongs to a swarm intelli-

gent optimization method, which is evolved from bat

algorithm [31]. Inspired by the echolocation behavior of

bats, CBA uses a set of bats with potential solutions to

search the solution space by certain strategies. In every

iteration, the parameters of the bats will be updated

including the position, velocity and frequency based on the

optimal solution found so far. The bat algorithm is better

than traditional PSO for optimization, and we introduce

chaotic map to improve its searching ability.

Chaotic map is used in updating the positions of bats in

our CBA. There are various chaotic maps, and we choose

four maps for optimization: sine map, cosine map, Gaus-

sian map and logistic map [32]. The formulae are presented

below.

Sine map:

xkþ1 ¼ lsin pxkð Þ ð11Þ

Where k denotes the iteration time and l the parameter

ranging from 0 to 1.

Cosine map:

xkþ1 ¼ lcos pxkð Þ ð12Þ

Table 1 Training algorithm of ELM

Pseudocode of ELM

Input Training set in Eq. (6)

Step1 Initialize the input weight and bias randomly

Step2 Calculate the output matrix of hidden layer by Eq. (7)

Step3 Obtain the output weight by Eq. (9)

Output Trained ELM model

Fig. 3 Architecture of SNN
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Fig. 4 Architecture of RVFL
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Where l represents the parameter ranging from 0 to 1.

Gaussian map:

xkþ1 ¼ exp �ax2k
� �

þ b ð13Þ

Where a and b are two parameters of real values.

Logistic map:

xkþ1 ¼ rxk 1� xkð Þ ð14Þ

Where r denotes the parameter of positive integer

values.

CBA firstly initializes the parameters in the bats with

random values. Then, in each iteration, all the bats search

the solution space with their velocities and update the

solutions using chaotic maps. The best solution in that

iteration is obtained by sorting. The iterations will continue

until the stop criterion is met. A brief diagram of the CBA

is given in Fig. 5.

3.6 BN-AlexNet-ELM-CBA

We propose the abnormal brain detection method based on

batch normalized AlexNet, extreme learning machine and

chaotic bat algorithm, abbreviated as BN-AlexNet-ELM-

CBA. First of all, we employ a pre-trained AlexNet for

extracting image feature from brain MRIs. We add the

batch normalization layers in the AlexNet model to handle

the internal covariate shifting problem. We also modify the

last three layers because the original output contains 1000

nodes, but our brain images have only two categories:

abnormal and healthy. Totally, six BN layers are added into

AlexNet, mainly located after the convolution and pooling

layers. The original fully connected layer ‘fc8’ is also

replaced by two new fully connected layers. Because the

output matrix dimension of ‘drop7’ is 4096 9 1, and the

original ‘fc8’ in AlexNet contains 1000 nodes, but our

abnormal brain detection is a binary problem. So, we use

two layers ‘fc8’ and ‘fc9’ to gradually shrink the dimen-

sions, and the dimensions for ‘fc8’ and ‘fc9’ are 256 9 1

and 2 9 1, respectively. We also construct a transfer-

AlexNet (T-AlexNet) for performance comparison.

T-AlexNet is built by removing all the batch normalization

layers in BN-AlexNet. The three deep CNN structures are

given in Fig. 6.

Then, the last several layers in BN-AlexNet are replaced

by an ELM classifier. To obtain the optimal layers to be

substituted, we proposed to search it by the classification

performance. We test the accuracy of our system with

n replaced layers based on 5 9 hold-out validation and

select the best one. The searching algorithm is given in

Table 2.

In chaotic bat algorithm optimization for the ELM, the

bats contain the input weight w and bias b of the ELM. The

fitness function f(�) of CBA is the squared error of pre-

dicted labels and actual labels:

f w; bð Þ ¼
Xn

i¼1

oi � tið Þ2 ð15Þ

Where oi and ti stand for the output of ELM and the

image label, respectively, and n denotes the number of

training samples. The solutions in bats are updated with

their velocities and chaotic maps:

xti ¼ xt�1
i þ vti þ k� chaotic xt�1

i

� �
ð16Þ

Where xti denotes the solution of the ith bat in tth iter-

ation, and k is the weighting parameter ranging from 0 to 1.

In this paper, k is set as 0.3. All the evaluation is carried out
based on 5 9 hold-out validation, i.e., we run the systems

for five times and calculate the average classification per-

formance for comparison. The pseudocode of our BN-

AlexNet-ELM-CBA is presented in Table 3, and a brief

diagram is illustrated in Fig. 7. Our method provides a

general framework using off-the-shelf deep learning mod-

els. The system can be used in other image classification

tasks by simple parameter tuning.

4 Experiment

We implemented our BN-AlexNet-ELM-CBA on

MATLAB 2018a with deep learning toolbox. The experi-

ment is done on a laptop with i7 7700HQ CPU, GTX 1060

GPU and 16 GB RAM.

Initialization

Computing 
fitness values  
and find out 

the best

Updating the 
bats' parameters 

with chaotic 
maps 

Generating 
new solution 

randomly

Substitution?

Updating 
ultrasound 
parameters

Yes

No

Stop?

Output the 
optimal 
solution

Yes

No

Gaussian map

Logistic map

Sine map

Cosine map

Fig. 5 CBA optimization
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4.1 Dataset

We obtained 359 samples in total and used 331 samples for

training and 28 for testing. In training set, there are 163

abnormal samples and 168 normal controls. In testing set,

there are 14 images for both classes, respectively. The

dataset information is listed in Table 4.

4.2 Hyper-parameter settings

We added 6 batch normalization layers in AlexNet and

modified its last three layers to obtain BN-AlexNet. The

two fully connected layers ‘fc8’ and ‘fc9’ contained 256

and 2 nodes, respectively. The BN-AlexNet was trained on

our brain images by stochastic gradient descent with

momentum (SGDM) algorithm. The mini-batch size was

(a) AlexNet (b) BN-AlexNet (c) T-AlexNet

data
conv1
relu1

norm1

pool1

conv2
relu2

norm2

pool2
conv3
relu3
conv4
relu4

conv5
relu5
pool5

fc6
relu6
drop6

fc7
relu7
drop7

fc8
prob

output

data
conv1

relu1
norm1
pool1
conv2

relu2
norm2
pool2
conv3

relu3
conv4

relu4
conv5

relu5
pool5

fc6
relu6
drop6

fc7
relu7
drop7

fc8

softmax
output

BN1

BN2

BN3

BN4

BN5

BN6

fc9

data
conv1
relu1

norm1

pool1

conv2
relu2

norm2

pool2
conv3
relu3
conv4
relu4

conv5
relu5
pool5

fc6
relu6
drop6

fc7
relu7
drop7

fc8

softmax

output

fc9

Fig. 6 The structures of

AlexNet and BN-AlexNet

Table 2 Searching algorithm

for the optimal layers to be

replaced

Pseudocode of searching algorithm for the optimal layers to be replaced

Input Training set, testing set and the trained BN-AlexNet

Step1 For n = 2 to 6, run Step2 to Step5

Step2 Replace the last n layers in BN-AlexNet with ELM model

Step3 Train the parameters in ELM using chaotic bat algorithm on training set

Step4 Obtain the BN-AlexNet-ELM-CBA classification performance on testing set

Step5 Run from Step2 to Step5 for five times and compute the average accuracy with that n value

Step6 Compare the average performance with different n values and find the best number

Output The optimal number of layers to be replaced

Table 3 Training of BN-

AlexNet-ELM-CBA
Pseudocode of BN-AlexNet-ELM-CBA

Input Training set and testing set

Step1 Modify the architecture of a pre-trained AlexNet and obtain the BN-AlexNet

Step2 Train the BN-AlexNet using training set

Step3 Replace the last n layers in BN-AlexNet by ELM structure

Step4 Train the weight and bias in ELM on training set by chaotic bat algorithm

Step5 Obtain the BN-AlexNet-ELM-CBA generalization ability on testing set

Step6 Run from Step1 to Step5 for five times

Output The optimal number of layers to be replaced
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40, maximum epoch was 3, and learning rate was 1e-4. The

T-AlexNet was trained on the same settings as BN-

AlexNet.

The ELM is a simple structure with only one hyper-

parameter: number of hidden nodes. We set 500 hidden

nodes in our model considering the input dimension.

Finally, the hyper-parameters in CBA were determined.

The population of bat particles was 20, and max iteration

was 5. The values of all hyper-parameters are provided in

Table 5.

4.3 Evaluation measurements

Six widely used measurements were employed to evaluate

the classification performance of our method and compare

with state-of-the-art approaches: sensitivity, specificity,

accuracy, precision, F1 score and Matthew’s correlation

coefficient (MCC). They can be computed by following

equations:

Find the best value of n

ELM
(Updating)

Trained BN-AlexNet

Last n layers 
Removed

Training 
Image

Training 
Label

Trained ELM

Healthy
(Predicted)

Abnormal
(Predicted)

Training Features

Test Image

Test Features

Test Label

Performance

BN-AlexNet-ELM-CBA

Fitness 
values

CBA

Updated 
Weights/Biases

Stopping Criteria

Pre-trained AlexNet

BN-AlexNet

5 times?

Average 
performance

No 

Yes

for n=2 to 6

Substitute the last 
n layers in CNN 

with ELM

Optimize the ELM 
by chaotic bat 

algorithm 

Get testing 
performance

Run 5 
times?

Report average 
performance

Yes

No

End for ?

No

Compare the 
performance and find 

the best value of n

Yes

Fig. 7 Flowchart of our BN-AlexNet-ELM-CBA

Table 4 Dataset information

Total samples

359

Abnormal samples Healthy samples

177 182

# of samples training set # of samples testing set

331 28

Abnormal Healthy Abnormal Healthy

163 168 14 14
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Sensitivity ¼ TP

TPþ FN
ð17Þ

Specificity ¼ TN

TN þ FP
ð18Þ

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
ð19Þ

Precision ¼ TP

TPþ FP
ð20Þ

F1score ¼ 2� Precision � Sensitivity

Precision þ Sensitivity
ð21Þ

MCC ¼ TP� TN� TP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ � TPþ FNð Þ � TNþ FPð Þ � TNþ FNð Þ

p

ð22Þ

Where TP and FP denote the numbers of abnormal

samples correctly classified and miss classified, respec-

tively, and TN and FN represent the numbers of healthy

samples correctly classified and miss classified,

respectively.

5 Results and discussion

5.1 Performance of the proposed method

The classification performance of T-AlexNet and BN-

AlexNet is presented in Tables 6 and 7, respectively. The

classification results of BN-AlexNet-ELM and BN-Alex-

Net-ELM-CBA are provided in Tables 8 and 9,

respectively. The training time of T-AlexNet was 18 s for

one time running. The comparison of the four methods is

provided in Table 10 and Fig. 8. The BN-AlexNet

achieved sensitivity of 78.57%, specificity of 97.14% and

overall accuracy of 87.86%, which was better than

T-AlexNet in terms of specificity and accuracy. So, the

introduction of batch normalization did improved the

classification performance of AlexNet. The performance of

BN-AlexNet-ELM was better than BN-AlexNet with

accuracy of 92.86%, and the BN-AlexNet-ELM-CBA

outperformed BN-AlexNet-ELM with accuracy of 96.43%.

The CBA optimization contributed to the high accuracy of

BN-AlexNet-ELM-CBA. Though ELM training is extre-

mely fast which can finish within 0.03 s, the ELM-CBA

training can converge in 3 s, which is also acceptable for

real-world application. The number of replaced layers was

3, and the chaotic map was Gaussian map in our BN-

AlexNet-ELM-CBA. Detailed analysis was provided in

following sections.

5.2 Optimal numbers of layers to be replaced

The numbers of layers to be replaced can make a great

difference in our system, because the input dimension of

the ELM is different with different layers to be replaced.

As a result, the training and testing results of ELM vary.

Therefore, we proposed to search the optimal replaced

layers by evaluating the classification performance of our

system with different layers to be replaced. The statistics

were the average results of 5 9 hold-out validation, shown

in Table 11. It is clear that our system achieved over 90%

accuracy except with 2 replaced layers. Because the feature

dimension was only two, most information was lost. BN-

AlexNet-ELM-CBA performed best with 3 layers to be

replaced in terms of F1 score and MCC. Though the

specificity was the highest when our system was with 5

replaced layers, the sensitivity was only 90.00%. Addi-

tionally, 4096 features were much more than 256 features,

which inevitably increased the computational complexity.

Therefore, the optimal number of layers to be replaced is 3

in this study.

Table 5 Hyper-parameter settings

Hyper-parameter Value

Mini-batch 40

Maximum epoch 3

Learning rate 1e-4

# of hidden nodes in ELM 500

# of population of bats 20

Maximum iteration of bats 5

Table 6 Classification

performance of T-AlexNet
Run Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1 score (%) MCC (%)

1 92.86 92.86 92.86 92.86 92.86 79.59

2 78.57 85.71 82.14 84.62 81.48 50.64

3 71.43 92.86 82.14 90.91 80.00 47.01

4 64.29 100.00 82.14 100.00 78.26 44.25

5 85.71 92.86 89.29 92.31 88.89 67.52

Average 78.57 92.86 85.71 92.14 84.30 57.80

Neural Computing and Applications (2021) 33:10799–10811 10807

123



5.3 Optimal chaotic map

In this study, we tested the performance of our BN-Alex-

Net-ELM-CBA with four different chaotic maps: sine map,

cosine map, Gaussian map and logistic map based on

5 9 hold-out validation. The results are given in Table 12.

The ‘No map’ means the ELM was trained by bat algo-

rithm with any chaotic maps. We can find that the intro-

duction of chaotic maps generally improves the

classification performance, except cosine map. The

improvement was obvious in terms of specificity, from

87.14% to the best 95.71% obtained by Gaussian and

cosine maps. The accuracy of BN-AlexNet-ELM-CBA

with Gaussian map was marginally better than that of

logistic map, and it also achieved the best F1 score and

MCC. So, Gaussian map was selected as the optimal

chaotic map in our method. Gaussian map provides the

better chaotic mechanism for optimization of the CBA. As

a result, the ELM can achieve higher generalization ability.

5.4 Comparison of three classifiers

We compared the performance of ELM, SNN and RVFL

with the same image features from BN-AlexNet and CBA

optimization, i.e., the BN-AlexNet-ELM-CBA, BN-Alex-

Net-SNN-CBA and BN-AlexNet-RVFL-CBA. The statis-

tics is presented in Table 13, which was obtained by

5 9 hold-out validation. It can be seen that all the three

Table 7 Classification

performance of BN-AlexNet
Run Sensitivity (%) Specificity (%) Accuracy (%) Precision F1 score MCC

1 85.71 92.86 89.29 92.31 88.89 67.52

2 71.43 100.00 85.71 100.00 83.33 53.24

3 78.57 100.00 89.29 100.00 88.00 63.20

4 85.71 100.00 92.86 100.00 92.31 73.23

5 71.43 92.86 82.14 90.91 80.00 47.01

Average 78.57 97.14 87.86 96.64 86.51 60.84

Table 8 Classification

performance of BN-AlexNet-

ELM

Run Sensitivity Specificity Accuracy Precision F1 score MCC

1 92.86% 85.71% 89.29% 86.67% 89.66% 73.15%

2 85.71% 92.86% 89.29% 92.31% 88.89% 67.52%

3 92.86% 92.86% 92.86% 92.86% 92.86% 79.59%

4 92.86% 100.00% 96.43% 100.00% 96.30% 86.45%

5 100.00% 92.86% 96.43% 93.33% 96.55% 93.09%

Average 92.86% 92.86% 92.86% 93.03% 92.85% 79.96%

Table 9 Classification

performance of BN-AlexNet-

ELM-CBA

Run Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1 score (%) MCC (%)

1 92.86 100.00 96.43 100.00 96.30 86.45

2 100.00 85.71 92.86 87.50 93.33 86.60

3 100.00 92.86 96.43 93.33 96.55 93.09

4 92.86 100.00 96.43 100.00 96.30 86.45

5 100.00 100.00 100.00 100.00 100.00 100.00

Average 97.14 95.71 96.43 96.17 96.50 90.52

Table 10 Classification performance comparison of our proposed four methods

Method Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1 score (%) MCC (%)

T-AlexNet 78.57 92.86 85.71 92.14 84.30 57.80

BN-AlexNet 78.57 97.14 87.86 96.64 86.51 60.84

BN-AlexNet-ELM 92.86 92.86 92.86 93.03 92.85 79.96

BN-AlexNet-ELM-CBA 97.14 95.71 96.43 96.17 96.50 90.25
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methods achieved over 90% accuracy. The sensitivity of

BN-AlexNet-SNN-CBA and BN-AlexNet-RVFL-CBA is

98.57% which is marginally better than BN-AlexNet-

ELM-CBA, but the specificity of BN-AlexNet-ELM-CBA

was the best among the three. Moreover, BN-AlexNet-

ELM-CBA yielded over 90% performance for all the six

measurements, so we think it is marginally better than the

other two methods.

5.5 Comparison with state-of-the-art methods

We offer a comparison between our BN-AlexNet-ELM-

CBA and state-of-the-art methods in detecting abnormal

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

T-AlexNet BN-AlexNet BN-AlexNet-ELM BN-AlexNet-ELM-CBA

Sensitivity Specificity Accuracy Precision F1 score MCC

Fig. 8 Comparison of the four

proposed methods

Table 11 Performance of BN-AlexNet-ELM-CBA with different number of replaced layers

# of replaced layers Feature dimension Sensitivity Specificity Accuracy Precision F1 score MCC

2 2 98.57% 57.14% 77.86% 69.70% 81.66% 60.34%

3 256 97.14% 95.71% 96.43% 96.17% 96.50% 90.25%

4 4096 92.86% 91.43% 92.14% 91.55% 92.20% 78.27%

5 4096 90.00% 100.00% 95.00% 100.00% 94.74% 80.83%

6 4096 97.14% 92.86% 94.29% 93.15% 95.10% 87.51%

Table 12 Performance of BN-AlexNet-ELM-CBA with different chaotic maps

Chaotic map Sensitivity (%) Specificity (%) Accuracy (%) Precision (%) F1 score (%) MCC (%)

No map 97.14 87.14 92.14 87.18 91.89 81.02

Sine map 97.14 90.00 93.57 93.15 95.10 87.51

Cosine map 87.14 95.71 91.43 95.24 91.01 70.15

Gaussian map 97.14 95.71 96.43 96.17 96.50 90.25

Logistic map 97.14 92.86 95.00 93.15 95.10 87.51

Table 13 Performance of

different classifier structures
Method Sensitivity Specificity Accuracy Precision F1 score MCC

BN-AlexNet-ELM-CBA 97.14% 95.71% 96.43% 96.17% 96.50% 90.25%

BN-AlexNet-SNN-CBA 98.57% 91.43% 95.00% 92.00% 95.17% 88.94%

BN-AlexNet-RVFL-CBA 98.57% 88.57% 93.57% 89.61% 93.88% 86.33%
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brains in MRIs. The state-of-the-art methods include:

RBFNN [33], CNN [34], GA [6] and SVM [7]. The

detailed information is listed in Table 14. It is obvious that

SVM yielded the best sensitivity and CNN achieved the

best specificity. However, the difference between sensi-

tivity and specificity of the two methods was relatively

large, which resulted in the low accuracy. Our BN-Alex-

Net-ELM-CBA was marginally worse than SVM and CNN

in terms of sensitivity and specificity, respectively, and

achieved the best accuracy among the methods. Mean-

while, BN-AlexNet-ELM-CBA was also robust because of

the small differences between the three measurements

(Fig. 9).

6 Conclusion

In this study, we proposed four novel abnormal brain

diagnosing method for brain MRI: T-AlexNet, BN-Alex-

Net, BN-AlexNet-ELM and BN-AlexNet-ELM-CBA.

Experiment result revealed that BN-AlexNet-ELM-CBA

was the best of the four with sensitivity of 97.14%,

specificity of 95.71% and overall accuracy of 96.43%. Our

method leveraged the feature learning ability of deep

neural network and the particle intelligence for ELM

optimization for classification on small dataset. The

introduction of batch normalization and chaotic bat algo-

rithm improved the generalization ability of our system.

Moreover, our method can provide a general framework to

search the optimal feature layers in deep CNN models,

which is applicable to other image classification tasks.

However, our system can only classify brain images as

abnormal or healthy, multi-class classification is more

useful in clinical diagnosis, which is one of our future

research directions. We shall collect more samples and

build bigger dataset to re-test our method. Because for deep

models, generally, the bigger the training set is, the better

they can perform. We shall adopt other swarm intelligent

algorithms to optimize the ELM in the future.
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Table 14 Performance comparison

Methods Sensitivity (%) Specificity (%) Accuracy (%) Validation

RBFNN [33] 95.89 92.78 95.44 10 9 10-fold cross-validation

CNN [34] 88.41 96.12 94.58 Hold-out validation

GA [6] 92.36 91.42 92.03 No validation

SVM [7] 99.43 87.95 90.68 10 9 10-fold cross-validation

BN-AlexNet-ELM-CBA (ours) 97.14 95.71 96.43 5 9 hold-out validation
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Fig. 9 Comparison with state-

of-the-art methods
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