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Abstract
For the current paper, the technique of feed-forward neural network deep learning controller (FFNNDLC) for the nonlinear

systems is proposed. The FFNNDLC combines the features of the multilayer feed-forward neural network (FFNN) and

restricted Boltzmann machine (RBM). The RBM is a very important part for the deep learning controller, and it is applied

in order to initialize a multilayer FFNN by performing unsupervised pretraining, where all the weights are equally zero.

The weight laws for the proposed network are developed by Lyapunov stability method. The proposed controller is mainly

compared with FFNN controller (FFNNC) and other controllers, where all the weights values for all the designed

controllers are equally zero. The proposed FFNNDLC is able to respond the effect of the system uncertainties and external

disturbances compared with other existing schemes as shown in simulation results section. To show the ability of the

proposed controller to deal with a real system, it is implemented practically using an ARDUNIO DUE kit microcontroller

for controlling an electromechanical system. It is proved that the proposed FFNNDLC is faster than other FFNNCs in

which the parameters are learned using the backpropagation method. Besides, it is able to deal with the changes in both the

disturbance and the system parameters.

Keywords Lyapunov stability � Neural network � Deep learning controller � Nonlinear system � Restricted Boltzmann

machine

1 Introduction

Nonlinear systems are the most common in industrial

processes where those are defined as their inputs are related

to nonlinear to the outputs. These systems have an

important area in the research field because the modeling

and estimating system nonlinearities are more difficult and

contain inherent uncertainties [1–3]. The development of a

controller for the nonlinear systems should be skillful to

track its output precisely. Noting that, the application of the

traditional controllers for the nonlinear systems is inap-

propriate due to that such nonlinear systems normally

suffer from many difficult problems, such as the nonlinear

dynamic behavioral, the constraints on the manipulated

variables, the uncertain and time-varying parameters,

unmeasured and frequent disturbances [4, 5]. Thus, the

development of the controller is necessary to control such

challenges. Nowadays, many researchers are interested in

artificial intelligent (AI) controllers because of their ability

to make the nonlinear systems are stable [6–10].

In this concern, artificial neural networks (ANNs) are

one of the AI, which are defined as biologically inspired

programming paradigm. ANNs enable the controller to

learn from observational data [11–14]. The ANNs are

considered one of the most successful techniques in non-

linear control applications. In [15], ANN controllers were
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developed in order to control pressure. Also, it is described

in [16] that the diagonal recurrent neural network con-

troller (DRNNC) shows its ability to control the dynamic

behavior of the nonlinear plant. The robust analysis of the

neural network control was utilized for controlling the

speed of a DC motor, which was described in [17]. The

robustness was ensured using an internal model controller.

In [18], feed-forward neural network controller (FFNNC)

with a hybrid method (FFNNC-hybrid) was introduced.

The learning of the FFNNC-hybrid was performed based

on unsupervised (self-organized leaning) and supervised

(gradient descent) method. In [19], the FFNNC and non-

linear autoregressive neural network were used to over-

come the delay control for offshore platform system. A

direct adaptive inverse control was introduced using

FFNNC for controlling the nonlinear system [20]. An

adaptive feed-forward neural controller and PID controller

were used for controlling the joint-angle position of the

SCARA parallel robot [21]. The FFNNC was used to

control the angle with position of a nonlinear inverted

pendulum system [22].

The controllers design was performed based on FFNNC,

which are commonly related to the initialized weights.

Noting that, if the process of initializing weights is not

appropriate, the NN gets stumbling in local minima, lead-

ing the training procedure to unsatisfactory ending or the

vanishing gradient issue is happened during the initial

layers training and the NN training becomes infeasible

[23]. This defect affects the performance of the controller,

and it makes the controller unstable sometimes. On the

other hand, machine learning (ML) is a part of AI, which is

performed based on the techniques that make the com-

puters to discover things from input data. In this concern,

deep learning (DL) is a modern topic of ML. DL has

learning numerous levels, which supports to deliver sense

of data such as images [24–26], sound [27], and text [28].

The most common use of DL is the modeling process of the

nonlinear systems.

1.1 Literature review

In [29], the DL framework was proposed for modeling the

nonlinear systems. It learns deep reconstruction model,

which is performed based on Elman neural network (ENN)

and RBM (ENN-RBM) for initializing only the first layer.

In [30], the regression and classification issues can be

solved using the randomized algorithms and DL tech-

niques. In this concern, these algorithms are used for

constructing the statistical features and training the hidden

weights. In [31], deep belief network (DBN) with partial

least square regression (PLSR) was investigated for the

nonlinear system modeling, where the problem of the

weights improvement for DBN is performed based on

PLSR. In [32], this work was tried for the prediction traffic

speeds of multiple road links simultaneously by con-

structing a DL based on multitask learning model. In [33],

the researcher proposed a new method for the optical

identification of parts without specific codes, which is

performed based on inherent geometrical features with DL.

Finally, in [34–37], the researchers cover some DL tech-

niques, which already are applied in radiology and identify

radiogenomic associations in breast cancer for image

processing.

1.2 Motivation

From the previous studies, it is clear that the application

field of DL was limited only for modeling systems and

image processing and it does not cover the control area.

Besides, the nonlinear systems suffer from uncertainties

and external disturbance. So, the main target of the present

study is to shed further light on designing a stable feed-

forward neural network deep learning controller

(FFNNDLC), to be applied for controlling the nonlinear

systems to overcome the problems of system uncertainties.

The proposed FFNNDLC uses the RBM to initialize the

weight values. Lyapunov stability method is used for

updating the adaptation parameters laws. The FFNNDLC is

learned swift to keep a track of trajectory and to overcome

the outside disturbances and the changes in the system

parameters. In this concern, FFNNDLC is utilized to the

uncertain nonlinear systems in order to guarantee the

optimum controlling and decreasing the influence of

uncertainties and outside disturbances. Of course, these

advantages of FFNNDLC make it sturdier than FFNNC

under the same conditions. On the other hand, the proposed

controller is implemented practically for controlling a real

system.

1.3 Novelties and contributions

The major target of the present paper is summed up as:

• A new controller is proposed in the control field based

on DL technique.

• Developing the adaptation law for the proposed

controller parameters based on Lyapunov theorem to

warranty a stable controller.

• Implementing practically the proposed controller based

on an ARDUINO DUE kit for controlling a real system.

• The proposed controller has the ability to reduce the

uncertainties influence and outside disturbances com-

pared to other controllers under the same conditions.

The paper organization is as follows: Restricted Boltz-

mann machine is explained in part 2. The mathematical

formulation for restricted Boltzmann machine is introduced
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in this section. Feed-forward neural network deep learning

controller and the Lyapunov stability derivation of

FFNNDLC are explained in part 3. The FFNNDL system

and controller training steps are introduced in part 4. The

simulation results for nonlinear systems are introduced in

part 5. The practical results are introduced in part 6.

Finally, part 7 presents the conclusion followed by the

references.

2 Restricted Boltzmann machine

RBM is an energy-based model, which uses two layers:

visible and hidden layers that consists of a group of the

visible nodes; V , and a group of the hidden nodes; H. The

conventional approach was introduced for training RBM

where a linear nature of the neural units was considered the

main drawback in this method [29, 38]. Another approach

to derive RBM training rules and overcome the main

shortcoming of traditional method was introduced in

[39, 40]. It takes into computation nonlinear nature of

neural nodes and minimizing the mean square error (MSE).

The RBM uses three layers as illustrated in Fig. 1.

Based on this approach, contrastive divergence (CD)

was proposed by Hinton for learning RBM [41, 42]. Let

Vðq� 1Þ will be the input data, which shifts to the visible

layer at time ðq� 1Þ. Then, the output of the hidden layer

is determined as follows:

Hj q� 1ð Þ ¼ F
XN

i

Wij Vi q� 1ð Þ þ bj

 !
; i ¼ 1; . . .;N

j ¼ 1; . . .P and q ¼ 1; . . .;K

ð1Þ

where b ¼ b1 � � � bP½ �T is the biases vector for the

hidden nodes, Vi represents the binary state of the visible

node, and Wij represents the weight between the visible

node i and the hidden node j. N and M are the number of

the visible nodes and the hidden nodes, respectively. F

represents sigmoid activation function; F Qð Þ ¼
1= 1þ exp �Qð Þð Þ.

The inverse layer reconstructs the data from the hidden

layer. As a result, V qð Þ is obtained at time; q as follows:

Vi qð Þ ¼ F
XP

j

WjiHj q� 1ð Þ þ ai

 !
ð2Þ

where a ¼ a1 . . . aN½ �T is the biases vector for the

visible nodes, Hj represents the binary status of a hidden

node, Wji represents the weight between the hidden node j

and the visible node i. Subsequently, V qð Þ, which transfers

to the visible layer and the hidden layer output, is obtained

by the next procedure:

Hj qð Þ ¼ F
XN

i

WijVi qð Þ þ bj

 !
ð3Þ

The parameters training rule for the weights and biases

of nonlinear RBM in case of CD-K is illustrated as [40]:

Wij �hþ 1ð Þ ¼ Wij �hð Þ

þ a
XK

q¼1

Hj qð Þ � Hj q� 1ð Þ
� �

Vi qð ÞF0 Sj qð Þ
� �

 

þ Vi qð Þ � Vi q� 1ð Þð ÞHjðq� 1ÞF0 Si qð Þð Þ
�

ð4Þ

bj �hþ 1ð Þ ¼ bj �hð Þ

þ a
XK

q¼1

Hj qð Þ � Hj q� 1ð Þ
� �

F0 Sj qð Þ
� �

 !

ð5Þ

ai �hþ 1ð Þ ¼ ai �hð Þ

þ a
XK

q¼1

Vi qð Þ � Vi q� 1ð Þð ÞF0 Si qð Þð Þ
 !

ð6Þ

where a is the learning rate of RBM and �h is the iteration

number.

RBM is the very important part for the deep controller,

which is used for initializing the FFNN based on per-

forming unsupervised pretraining, where all weights are

equal to zero. The stack parameters of RBM also match to

the parameters of the multilayer FFNN. Therefore, once the

stack of RBM is trained, available parameters can be used

to initialize the first layer of FFNN and so on the next

layers.

Fig. 1 Structure of RBM
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3 Feed-forward neural network deep
learning controller

Basically, any ANN with more than two layers is deep. DL

is a relatively new advancement in ANN programming and

represents a way to train deep neural networks [43]. The

DL methods aim to learn feature hierarchies with features

from the higher levels of the hierarchy formed by the

composition of lower-level features. They include learning

methods for a wide array of deep architectures, including

ANN with hidden layers [44]. Merge with the features of

RBM and multilayer FFNN, FFNNDLC is proposed.

3.1 Feed-forward neural network

The typical four-layer FFNN is shown in Fig. 2 [45]. It

contains an input layer, two hidden layers and an output

layer.

Input layer: each node is an external input in this con-

cern, and the inputs are denoted as x1; x2; . . .; xn.

Hidden layer (1): each node is determined as the

following:

net
ð1Þ
j ¼

Xn

i¼1

wjixi þ Tj ; j ¼ 1; . . .; J ð7Þ

y
ð1Þ
j ¼ f net

ð1Þ
j

� �
; j ¼ 1; . . .; J ð8Þ

where wji represents the weights between the input layer

and the hidden layer (1), Tj represents the threshold value

for each node, J is the number of the nodes, y
ð1Þ
j is the

output of each node, and f is a nonlinear activation func-

tion. In this paper, the hyperbolic tangent function is used

and it ranges on the interval [- 1, 1], which is defined as:

f Wð Þ ¼ tanh Wð Þ ð9Þ

and its derivative can be obtained by

d f Wð Þ½ �=dy ¼ 1� f 2 Wð Þ.
Hidden layer (2): each node is determined as the

following:

netð2Þm ¼
XJ

j¼1

wmj y
ð1Þ
j þ Tm ; m ¼ 1; . . .; M ð10Þ

yð2Þm ¼ f netð2Þm

� �
; m ¼ 1; . . .; M ð11Þ

where wmj represents the weights between the hidden layer

(1) and the hidden layer (2), Tm represents the threshold

value for each node in this layer, M is the number of the

nodes in this layer, and y
ð2Þ
m represents the output of each

node.

Output layer: its output is calculated as:

u ¼
XM

m¼1

wm yð2Þm þ T ð12Þ

where u represents the output of the network, wm represents

the weights between the hidden layer (2) and the output

layer, and T represents the threshold value.

The NN is trained to minimize the error between the

reference input and the measured output [46, 47]. The

square of the error is defined as:

Eg �hð Þ ¼ 1

2
yd �hð Þ � ya �hð Þð Þ2¼ 1

2
e2g �hð Þ ð13Þ

where ydð�hÞ represents the reference input and yað�hÞ rep-

resents the actual output.

Fig. 2 Feed-forward neural

network
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3.2 Weights learning based on Lyapunov
stability

A scalar function Vx �hð Þ is chosen as a positive definite

function for all initial conditions of its arguments [48, 49].

Now, if the two conditions, which are described in Eqs. (14

and 15), are get together, the given system is considered

asymptotic stable.

Vx �hð Þ[ 0lfor all �h except �h ¼ 0 ð14Þ
DVx �hð Þ ¼ Vx �hþ 1ð Þ � Vxð�hÞ� 0 ð15Þ

To put the basis of the weight learning algorithm, the

weight update equation in a general form can be expressed

as:

Wg �hþ 1ð Þ ¼ Wgð�hÞ � gDWgð�hÞ ð16Þ

where Wg �hð Þ is the generalized weight vector and g is the

learning rate. DWg Bð Þ indicates the desired weights

modification.

Theorem 1 The parameters of the FFNNDLC, which

warranty the stability, are obtained based on the following:

Wg �hþ 1ð Þ ¼ Wg �hð Þ þ g
b a

b eg �hð Þ oeg �hð Þ
oWg �hð Þ þWg �hð Þ

� �

2d
ð17Þ

Proof Assume the next Lyapunov function:

Vx �hð Þ ¼ Va �hð Þ þ Vbð�hÞ þ Vc �hð Þ ð18Þ

where Va �hð Þ ¼ a
2
eg �hð Þ
� �2

,Vb �hð Þ ¼ b
2
Wg �hð Þ
� �2

,Vc �hð Þ
¼ d

2
DWg �hð Þ
� �2

,a; b and d are constants. DVa �hð Þ, DVb �hð Þ
and DVc �hð Þ are defined as:

DVa �hð Þ ¼ Va �hþ 1ð Þ � Vað�hÞ

¼ a
2

eg �hþ 1ð Þ
� �2� a

2
eg �hð Þ
� �2 ð19Þ

DVb �hð Þ ¼ Vb �hþ 1ð Þ � Vbð�hÞ

¼ b
2

Wg �hþ 1ð Þ
� �2� b

2
Wg �hð Þ
� �2 ð20Þ

DVc �hð Þ ¼ Vc �hþ 1ð Þ � Vcð�hÞ

¼ d
2

DWg �hþ 1ð Þ
� �2� d

2
DWg �hð Þ
� �2 ð21Þ

The term a
2
eg �hþ 1ð Þ
� �2

can be formulated based on the

Taylor series as [2, 6]:

a
2

eg �hþ 1ð Þ
� �2¼ a

2
eg �hð Þ
� �2þ

o a
2
eg �hð Þ
� �2� �

oWg �hð Þ DWg �hð Þ

þ higher order terms ðHOTÞ ð22Þ

where HOT can be ignored. Therefore, Eq. (22) can be

reformulated as:

a
2

eg �hþ 1ð Þ
� �2� a

2
eg �hð Þ
� �2¼ aeg �hð Þ

o eg �hð Þ
� �

oWg �hð Þ DWg �hð Þ

ð23Þ

Similarity,

eg �hþ 1ð Þ ¼ eg �hð Þ þ oeg �hð Þ
oWg �hð ÞDWg �hð Þ ð24Þ

Equation (24) can be reformulated as:

eg �hþ 1ð Þ � eg �hð Þ ¼ Deg �hð Þ ¼ oeg �hð Þ
oWg �hð ÞDWg �hð Þ ð25Þ

Then, by replacing
oeg �hð Þ
oWg �hð ÞDWg �hð Þ in Eq. (23), we obtain

DVa �hð Þ ¼ a
2

eg �hþ 1ð Þ
� �2� a

2
eg �hð Þ
� �2¼ a eg �hð ÞDeg �hð Þ

ð26Þ

Similarity, DVb �hð Þ ¼ bWg �hð ÞDWg �hð Þ and

DVc ¼ d DWg �hð Þ
� �2

The second stability condition is obtained as:

DVx �hð Þ ¼ a eg �hð ÞDeg �hð Þ þ bWg �hð ÞDWg �hð Þ
þ d DWg �hð Þ

� �2 � 0 ð27Þ

Equation (27) can be reformulated as:

DVx �hð Þ ¼ a eg �hð ÞDeg �hð Þ þ bWg �hð ÞDWg �hð Þ
þ d DWg �hð Þ

� �2

¼ �Z ð28Þ

where Z� 0 so as to achieve the condition, DVx �hð Þ� 0

So

d DWg �hð Þ
� �2þbDWg �hð Þ a

b
eg �hð Þ Deg �hð Þ

DWg �hð Þ þWg �hð Þ
� �

þ Z

¼ 0

ð29Þ

In this concern, suppose a general quadratic equation,

which is defined as:

aX2 þ bX þ c ¼ 0 ð30Þ

The roots of Eq. (30) are calculated as:

x1;2 ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
ð31Þ

From Eqs. (29) and (30), obviously, DWg �hð Þ acts as X in

Eq. (30) and the values of a; b and c in Eq. (29) are

obtained as:
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a ¼ d; b ¼ b
a
b
eg �hð Þ Deg �hð Þ

DWg �hð Þ þWg �hð Þ
� �

and c ¼ Z

ð32Þ

Equation (30) has a single unique solution, ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
¼ 0. So,

b2
a
b
eg �hð Þ Deg �hð Þ

DWg �hð Þ þWg �hð Þ
� �2

�4d Z ¼ 0 ð33Þ

and therefore, Z is determined as:

Z ¼
b2 a

b eg �hð Þ Deg �hð Þ
DWg �hð Þ þWg �hð Þ

� �2

4d
ð34Þ

Since Z� 0 which means

b2 a
b eg �hð Þ Deg �hð Þ

DWg �hð Þ þWg �hð Þ
� �2

4d
� 0 ð35Þ

So, the unique root of Eq. (29) is x1;2 ¼ �b
2a ; similarly,

DWg �hð Þ ¼ �
b a

b eg �hð Þ Deg �hð Þ
DWg �hð Þ þWg �hð Þ

� �

2d
ð36Þ

Equation (36) can be reformulated as:

DWg �hð Þ ¼ �
b a

b eg �hð Þ oeg �hð Þ
oWg �hð Þ þWg �hð Þ

� �

2d
ð37Þ

So, by replacing DWg �hð Þ in Eq. (16), the updating

equation is obtained as illustrated in Eq. (17).

4 FFNNDL controller training steps

In this section, the block diagram of the proposed

FFNNDLC for nonlinear system is shown in Fig. 3. The

output of the nonlinear system, yað�hÞ, is measured, and then

the error signal, eg �hð Þ, between the reference input, ydð�hÞ,
and the measured output is calculated. The proposed

FFNNDLC is received the error signal, and it calculates the

control signal, u �hð Þ, which feeds to the nonlinear system.

Figure 4 shows the structure of the proposed FFNNDLC

block in details. The first layer of the controller network

consists of three nodes; the first node is the measured error

signal, e1 �hð Þ ¼ eg �hð Þ. The second node is the change of the

error signal, e2 �hð Þ ¼ eg �hð Þ � eg �h� 1ð Þ, and the third node

is the change of the change of error signal,

e3 �hð Þ ¼ eg �hð Þ � 2eg �h� 1ð Þ þ eg �h� 2ð Þ, and the output

layer consists of one node, which is the control signal, u �hð Þ.
The proposed network consists of two parts: the first part is

the feed-forward neural network and the second part is the

RBM, which is used to perform the initial values for the

weights of the feed-forward neural network as shown in

Fig. 4. The overall procedures of the proposed FFNNDLC

are illustrated as:

Step 1 Enter the reference input for the nonlinear system

and calculate the controller inputs, e1 �hð Þ, e2 �hð Þ and

e3 �hð Þ. In this paper, we set, n ¼ 3; J ¼ 10 and M ¼ 10.

Step 2 Choose the number of RBM weights, which are

exactly like the weights between the input layer and the

hidden layer (1). In this paper, we set N ¼ 3; P ¼ 10 and

q ¼ 1.

Step 3 Choose the appropriate value for the learning rate

of RBM, a. Initialize the weights parameters of the RBM

with zero. The number of the RBM inputs equals the

number of the controller inputs.

Step 4 According to Eqs. (4), (5) and (6), update the

RBMs weights parameters.

Step 5 Set the initial values of the FFNN weights matrix;

wji (between input layer and hidden layer (1)) as the

values of the RBM weights matrix.

Step 6 Calculate the outputs of the hidden layer (1); y
ð1Þ
j .

Step 7 Call RBM again where the number of the RBM

weights is exactly like the weights between the hidden

layer (1) and the hidden layer (2). In this paper, we set

N ¼ 10 and P ¼ 10. The number of the RBM inputs

equals the number of the outputs of the hidden layer (1);

y
ð1Þ
j .

Step 8 Update the RBMs weights parameters based on

Eqs. (4), (5) and (6).

Step 9 Set the initial values of the FFNN weights matrix;

wmj (between the hidden layer (1) and the hidden layer

(2)) as the values of the RBM weights matrix.

Step 10 Calculate the outputs of the hidden layer (2);

y
ð2Þ
m .

Step 11 Call the RBM again where the number of the

RBM weights is exactly like the weights between the

hidden layer (2) and the output layer. In this paper, we

Fig. 3 Block diagram of the

FFNNDLC with nonlinear

system
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set N ¼ 10 and P ¼ 1. The number of the RBM inputs

equals the number of the hidden layer (2); y
ð2Þ
m .

Step 12 Update the RBMs weights parameters based on

Eqs. (4), (5) and (6).

Step 13 Set the initial values for the FFNN weights

matrix; wm (between the hidden layer (2) and the output

layer) as the values of the RBM weights matrix.

Step 14 Calculate the control signal; u ð�hÞ.
Step 15 Update the FFNN weights parameters according

to the Lyapunov Stability formula, Eq. (17). After then,

set the values for the RBM weights matrix as the values

of the FFNN weights matrix.

Step 16 Calculate the plant output;ya �hð Þ.
Step 17 Go to step 1.

5 Simulation Results

The simulation results for the proposed FFNNDLC are

compared with the results of the FFNNC with the same

conditions and initial values to show the robustness of the

proposed controller. Mean absolute error (MAE) and root-

mean-square error (RMSE) are used to evaluate the per-

formance of the proposed controller. RMSE and MAE are

calculated as [50, 51]:

MAE ¼ 1

kN

XkN

�h¼1

eg �hð Þ
		 		 ð38Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kN

XkN

�h¼1

eg �hð Þ
� �2

 !vuut ð39Þ

where kN represents iterations number.

Neural network output (Control signal)

Neural network inputs

H1 H2

V1

HP

V2
VN

RBM

Weights Learning 
Based on Lyapunov 

Stability

Fig. 4 Structure of the

FFNNDLC block
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5.1 Example 1: Suppose the following
mathematical system that is presented
as [52]

ya �hð Þ ¼ ya �h� 1ð Þya �h� 2ð Þ ya �h� 1ð Þ þ a4ð Þ
a1 þ a2y2a �h� 1ð Þ þ a3y2a �h� 2ð Þ þ u �hð Þ ð40Þ

where the parameters are set as a1 ¼ a2 ¼ a3 ¼ 1 and

a4 ¼ 0:05.

5.2 Test 1: Tracking the reference signal
trajectory

Figures (5 and 6) show the system response and its control

signal for tracking the reference signal trajectory, respec-

tively, for both FFNNC and the proposed FFNNDLC. In

this concern, the reference trajectory signal is illustrated as:

yd �hð Þ ¼ 0:5 sin 0:1�hTð Þ ð41Þ

where T is sampling period.

The FFNNC and the proposed FFNNDLC weights are

considered have zero values. It is clear at the beginning that

there is a difference in tracking the signal in terms of the

FFNNC. On the other hand, the proposed FFNNDLC can

overcome the signal tracking as a result of learning from

RBM, better than FFNNC.

5.3 Test 2: Uncertainty due to disturbance

During the present test, the robustness of the proposed

FFNNDLC is tested after the system output has been

reached the trajectory. This carried out by adding distur-

bance value equals 50% of its desired value to the system

output at �h = 3000 instant. Figures 7 and 8 show the sys-

tem output and the control signal, respectively, for both the

FFNNC and the proposed FFNNDLC with 50% distur-

bances. Also, another test is carried out, at 80% distur-

bances, to ensure the robustness of FFNNDLC (Figs. 9 and

10). From which, it is shown that the response of the

proposed FFNNDLC is recovered very quickly to the

desired value. So, the proposed FFNNDLC is able to

respond the external disturbance compared with the

FFNNC.

5.4 Test 3: Uncertainty in the system parameter

To show the robustness of the proposed FFNNDLC, the

parameters (a1; a2; a3 and a4) of the given plant are

changed from their actual values (1, 1, 1 and 0.05) to (-3,

2.5, 1.5, 0.5) at �h = 3000th instant. The system output for

the proposed FFNNDLC is recovered very quickly rather

than the FFNNC as shown in Figs. (11 and 12). So, the

proposed FFNNDLC is able to reduce the effect of

parameters uncertainty compared with FFNNC.

5.5 Test 4: Uncertainty due to disturbance
and parameter variation

Figures (13 and 14) show the effect of uncertainty due to

disturbance and parameter variation to show the robustness

of the proposed controller. At �h = 3000th instant, the dis-

turbance with 50% from the reference input and the

parameters variation are added to the system output. The

parameters (a1; a2; a3 and a4) are varied to values (-3, 2.5,

1.5, 0.5). The FFNNDLC response is able to respond the

effect of the uncertainty due to the disturbance and system

parameters variation.

The MAE and RMSE values for the proposed

FFNNDLC, the FFNNC and other published schemes such

as DRNNC [16], FFNNC with a hybrid method (FFNNC-

hybrid) [18] and ENN-RBM [29] are shown in Tables 1

and 2. It is obvious that MAE and RMSE values for the

proposed FFNNDLC are smaller than that are obtained for

other controllers. Therefore, the proposed FFNNDLC,

which uses the RBM network to initialize the values of the

FFNN weights, is able to reduce the effect of external

disturbance and system uncertainties compared with other

schemes.

Fig. 5 System output for Test 1
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Fig. 6 Control signal for both

controllers (Test 1)

Fig. 7 System output under

50% disturbances

Fig. 8 Control signal for

response of the system under

50% disturbances (Test 2)

Fig. 9 System output under

80% disturbances (Test 2)
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Fig. 10 Control signal for the

system response under 80%

disturbances (Test 2)

Fig. 11 System output under

uncertainty of the system

parameters (Test 3)

Fig. 12 Control signal for the

system response (Test 3)

Fig. 13 System output under

uncertainty of the system

parameters and 50%

disturbances (Test 4)

1524 Neural Computing and Applications (2021) 33:1515–1531

123



5.6 Example 2: In this test, the following
mathematical system, which is presented
by the three sub-systems, is given as [53]

The first sub-system: for 0\�h\3000

ya �hð Þ ¼ 0:1ya �h� 1ð Þ þ u �hð Þ 0:5þ u2 �hð Þð Þ
1þ 2u2 �hð Þ ð42Þ

The second sub-system: for 3000� �h\6000

ya �hð Þ

¼ ya �h� 1ð Þya �h� 2ð Þya �h� 3ð Þu �h� 1ð Þ½ � ya �h� 3ð Þ � b �hð Þ½ � þ c �hð Þu �hð Þ
a �hð Þ þ y2a �h� 2ð Þ þ y2a �h� 3ð Þ

ð43Þ

The time-varying parameters a �hð Þ; b �hð Þ and c �hð Þ in the

previous equation are defined as: a �hð Þ ¼ 1:2�
0:2 cos 0:1�hTð Þ; b �hð Þ ¼ 1� 0:4 sin 0:1�hTð Þ and

c �hð Þ ¼ 1þ 0:4 sin 0:1�hTð Þ.
The third sub-system: for 6000� �h\9000

ya �hð Þ ¼ 0:2 y2a �h� 1ð Þ þ 0:2 ya �h� 2ð Þ
þ 0:4 sin 0:5 ya �h� 1ð Þ þ 0:5 ya �h� 2ð Þ½ �

: cos 0:5 ya �h� 1ð Þ þ 0:5 ya �h� 2ð Þ½ � þ 1:2 u �hð Þ
ð44Þ

The system output and the control signal for the pro-

posed FFNNDLC and the FFNNC for the three sub-sys-

tems are shown in Figs. (15, 16, 17, 18). It is obvious that

the response of FFNNDLC is reached to the desired output

faster than the FFNNC during the change from sub-system

to another. The MAE and RMSE values for the proposed

controller and other controllers are shown in Table 3.

The main advantages of the proposed FFNNDLC are

summarized as follows: 1) It is a fast-learning controller

because it uses RBM network, which initializes the values

of the FFNN. 2) It has the ability to handle system

uncertainties and external disturbance due to the online

learning for the proposed scheme based in the Lyapunov

stability theorem. In the next section, the proposed

scheme is applied practically to control a real plant.

Fig. 14 Control signal for the

system response under

uncertainty of the system

parameters and 50%

disturbances (Test 4)

Table 1 MAE values (Example

1)
Test 1 Test 2 Test 3 Test 4

50% Disturbance 80% Disturbance

FFNNC 0.5034 0.5062 0.5070 0.5033 0.5103

DRNNC [16] 0.5227 0.5258 0.5274 0.5226 0.5271

FFNNC-hybrid [18] 0.1762 0.1827 0.1859 0.1865 0.1995

ENN-RBM [29] 0.3592 0.3615 0.3629 0.3611 0.4050

FFNNDLC 0.0150 0.0167 0.0175 0.0166 0.0180

Table 2 RMSE values

(Example 1)
Test 1 Test 2 Test 3 Test 4

50% Disturbance 80% Disturbance

FFNNC 1.7156 1.7158 1.7159 1.7158 1.7185

DRNNC [16] 1.7385 1.7189 1.7391 1.7387 1.7408

FFNNC-hybrid [18] 0.6306 0.6321 0.6330 0.6362 0.6574

ENN-RBM [29] 1.3329 1.3330 1.3331 1.3330 1.4175

FFNNDLC 0.0176 0.0202 0.0220 0.0203 0.0236
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6 Practical results

In this section, the proposed FFNNDLC is implemented

practically to show the ability of the proposed controller to

deal with a real system. Figure 19 shows the practical

system. It is the DC machine, which consists of a DC motor

that is coupled with a DC generator to test the load con-

ditions. The feedback signal, which is the measuring speed,

is done based on an optical encoder. The proposed

FFNNDLC algorithm is implemented in ARDUINO DUE

kit, which is a microcontroller board based on Atmel

SAM3X8E ARM Cortex-M3 CPU. To show the ability of

the proposed FFNNDLC in real system, different tests are

performed.

6.1 Test 1: Tracking the different reference
signal trajectory

In this test, different set points are considered. Figure 20

shows the system response and its control signal for

tracking the different reference signal trajectory for the

proposed FFNNDLC and the FFNNC when all the initial

conditions for the weights equal zero for both controllers. It

is clear that the response of the proposed FFNNDLC has

Fig. 15 First sub-system output

Fig. 16 Second sub-system

output

Fig. 17 Third sub-system

output
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fast tracking for the reference signal compared with

FFNNC due to the advantage of the RBM, which is used to

initialize the proposed network. To show the visual indi-

cations and robustness of the control performance, an

objective measure of an error performance is done using

MAE as shown in Fig. 21. It is clear that the MAE for

proposed FFNNDLC is lower than that obtained for the

FFNNC.

6.2 Test 2: Uncertainty due to load

In this test, a load value equals 35% of its desired value is

applied to the system output at time ¼ 18 sec : Figure 22

shows the system output and its control signal, for both the

FFNNC and the proposed FFNNDLC due to the load. It is

clear that the output response for the proposed FFNNDLC

has smaller settling time than that is obtained for the

FFNNC. Figure 23 shows the MAE for both controllers

where the MAE for the proposed controller is lower than

that is obtained for another controller. So the proposed

FFNNDLC is better than the FFNNC, which has fast

learned to overcome quickly the effect of uncertainty due

to the external load.

Fig. 18 Control signal for the

three sub-systems

Table 3 MAE and RMSE values for both controllers

MAE RMSE

FFNNC 0.2397 0.9397

DRNNC [16] 0.2526 0.9411

FFNNC-hybrid [18] 0.1275 0.3163

ENN-RBM [29] 0.17824 0.80335

FFNNDLC 0.0626 0.0918

DC motor 

Speed sensor 

Generator 

ARDUINO DUE 

Drive circuit 

Fig. 19 Practical system
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Fig. 20 System response and its

control signal for tracking the

different reference signal

Fig. 21 MAE for tracking the

different reference signal

Fig. 22 System response and its

control signal due to 35% load
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6.3 Test 3: Uncertainty due to the measurement
error

During this test, the sensor reading error value is consid-

ered with 50% of its value to the system output at time ¼
18 sec : Figure 24 shows the system output and its control

signal, for both the FFNNC and the proposed FFNNDLC

due to uncertainty in the measurement error. Figure 25

shows that the MAE for the proposed FFNNDLC is less

than that is obtained for another controller. So, the pro-

posed FFNNDLC is better than the FFNNC, which has fast

learned to overcome quickly the effect of uncertainty due

to the measurement error.

Fig. 23 MAE for controlled

system due to 35% load

Fig. 24 System response and its

control signal due to 50%

uncertainty in measurement

error

Fig. 25 MAE for controlled

system due to 50% uncertainty

in measurement error
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7 Conclusions

In this paper, the FFNNDLC is proposed, which consists of

two parts. The first part is the FFNN which is the main

network, and the other part is the RBM network, which is

used to initialize the values of the FFNN weights. The

weights of the proposed FFNNDLC are learned online

based on the developed algorithm, which is proved based

on the Lyapunov stability theorem to guarantee the con-

troller stability. To show the robustness of the proposed

network, it is applied to two nonlinear mathematical

models. The performance of the proposed controller is

tested when there is uncertainty in the controlled system

due to the parameters variations and external disturbances.

To show the advantages of the proposed controller, it is

compared with other published schemes by measuring

some performance indices such as MAE and RMSE. The

simulation results show that the performance of the pro-

posed FFNNDLC has fast-learning algorithm compared

with other schemes.

In order to show the ability of the proposed controller to

deal with a real system, it is implemented practically using

an ARDUINO DUE kit for controlling a DC motor-gen-

erator system. The practical results show that the proposed

controller is able to respond the effect of system uncer-

tainty due to the measurement error and external distur-

bances. Thus, the methodology proposed in this study can

be used to realize a robust, practically realizable,

FFNNDLC capable of controlling a real system with sys-

tem uncertainties and environmental disturbances.

Finally, the proposed FFNNDLC has fast-learning con-

troller because it uses RBM network, which initializes the

values of the FFNN. Furthermore, it has the ability to

handle system uncertainties and external disturbance due to

the online learning for the proposed scheme based on the

Lyapunov stability theorem.

Compliance with ethical standards

Conflict of interest There is no conflict of interest between the

authors to publish this manuscript.

References

1. Khater AA, El-Bardini M, El-Rabaie NM (2015) Embedded

adaptive fuzzy controller based on reinforcement learning for dc

motor with flexible shaft. Arab J Sci Eng 40:2389–2406

2. Kumar R, Srivastava S, Gupta JRP, Mohindru A (2018) Diagonal

recurrent neural network based identification of nonlinear

dynamical systems with Lyapunov stability based adaptive

learning rates. Neurocomputing 287:102–117

3. Guclu R, Gulez K (2008) Neural network control of seat vibra-

tions of a non-linear full vehicle model using PMSM. Math

Comput Modell 47:1356–1371

4. Zaki AM, El-Bardini M, Soliman FAS, Sharaf MM (2018)

Embedded two level direct adaptive fuzzy controller for DC

motor speed control. Ain Shams Eng J 9:65–75

5. Chang WD, Shih SP (2010) PID controller design of nonlinear

systems using an improved particle swarm optimization

approach. Commun Nonlinear Sci Numerl Simul 15:3632–3639

6. Khater AA, El-Nagar AM, El-Bardini M, El-Rabaie NM (2018)

Adaptive T-S fuzzy controller using reinforcement learning based

on Lyapunov stability. J Frankl Inst 355:6390–6415

7. Shang C, Yang F, Huang D, Lyu W (2014) Data-driven soft

sensor development based on deep learning technique. J Process

Control 24:223–233

8. Zuo R, Xiong Y, Wang J, Carranza EJM (2019) Deep learning

and its application in geochemical mapping. Earth-Sci Rev

192:1–14

9. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE (2017) A

survey of deep neural network architectures and their applica-

tions. Neurocomputing 234:11–26

10. Qiao J, Wang G, Li X, Li W (2018) A self-organizing deep belief

network for nonlinear system modeling. Appl Soft Comput

65:170–183

11. Sutar MK, Pattnaik S, Rana J (2015) Neural based controller for

smart detection of crack in cracked cantilever beam. Mater Today

Proc 2:2648–2653

12. Medjber A, Guessoum A, Belmili H, Mellit A (2016) New neural

network and fuzzy logic controllers to monitor maximum power

for wind energy conversion system. Energy 106:137–146. https://

doi.org/10.1016/j.energy.2016.03.026

13. Rajan S, Sahadev S (2016) Performance improvement of fuzzy

logic controller using neural network. Procedia Technol

24:704–714

14. Farahani M, Ganjefar S (2015) An online trained fuzzy neural

network controller to improve stability of power systems. Neu-

rocomputing 162:245–255

15. da Silva Ribeiro VDJ, de Moraes Oliveira GF, Cristian M,

Martins AL, Fernandes LD, Vega MP (2019) Neural network

based controllers for the oil well drilling process. J Pet Sci Eng

176:573–583

16. Kumar R, Srivastava S, Gupta JRP (2017) Diagonal recurrent

neural network based adaptive control of nonlinear dynamical

systems using lyapunov stability criterion. ISA Trans 67:407–427

17. Zaineb BM, Aicha A, Mouna BH, Lassaad S (2017) Speed

control of DC motor based on an adaptive feed forward neural

IMC controller. In: 2017 International conference on green

energy conversion systems (GECS), pp 1–7

18. Nasr MB, Chtourou M (2014) Neural network control of non-

linear dynamic systems using hybrid algorithm. Appl Soft

Comput 24:423–431

19. Cai Z, Zhang B, Yu X (2017) Neural network delayed control of

an idealized offshore steel jacket platform. In: 2017 Eighth

international conference on intelligent control and information

processing (ICICIP). IEEE, pp 282–286

20. Shafiq MA (2016). Direct adaptive inverse control of nonlinear

plants using neural networks. In: 2016 Future Technologies

Conference (FTC). IEEE, pp 827–830

21. Son NN, Van Kien C, Anh HPH (2017) A novel adaptive feed-

forward-PID controller of a SCARA parallel robot using pneu-

matic artificial muscle actuator based on neural network and

modified differential evolution algorithm. Robot Auton Syst

96:65–80

22. Upadhyay D, Tarun N, Nayak T (2013) ANN based intelligent

controller for inverted pendulum system. In: 2013 students con-

ference on engineering and systems (SCES). IEEE, pp 1–6

1530 Neural Computing and Applications (2021) 33:1515–1531

123

https://doi.org/10.1016/j.energy.2016.03.026
https://doi.org/10.1016/j.energy.2016.03.026


23. Chen J, Huang TC (2004) Applying neural networks to on-line

updated PID controllers for nonlinear process control. J Process

Control 14:211–230

24. Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep

learning in medical image analysis. Med Image Anal 42:60–88

25. Yuan J, Hou X, Xiao Y, Cao D, Guan W, Nie L (2019) Multi-

criteria active deep learning for image classification. Knowledge-

Based Syst 172:86–94

26. Mohanty SP, Hughes DP, Salathé M (2016) Using deep learning
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