
ORIGINAL ARTICLE

SSNET: an improved deep hybrid network for hyperspectral image
classification

Arati Paul1 • Sanghamita Bhoumik2 • Nabendu Chaki3

Received: 4 October 2019 / Accepted: 3 June 2020 / Published online: 16 June 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Classification is one of the most important task in hyperspectral image processing. In the last few decades, several

classification techniques have been introduced. However, most of them could not efficiently extract features from

hyperspectral images (HSI). A novel deep learning framework is proposed in this paper which efficiently utilises con-

volutional neural network (CNN) and spatial pyramid pooling (SPP) for extracting both the spectral–spatial features for

classification. The proposed hybrid framework uses principal component analysis (PCA), 3D-CNN, 2D-CNN and SPP. The

proposed CNN-based model is applied on three benchmark hyperspectral datasets, and subsequently the performance is

compared with state-of-the-art methods in the same field. The obtained results reveal the superiority of the proposed model

in effectively classifying HSI.

Keywords Convolutional neural networks (CNN) � Hyperspectral image classification � 3D-CNN � 2D-CNN �
Spatial pyramid pooling (SPP)

1 Introduction

Hyperspectral image (HSI) contains more than hundreds of

spectral bands for each pixel [1]. In HSI, for every pixel, a

spectrum of wavelengths is captured, which represents the

material properties, i.e. the spectral signatures. The spectral

information of HSI is added as the third-dimension to the

two-dimensional (2D) spatial image and generating a

three-dimensional (3D) data cube [2]. With the increase in

spectral information, HSI finds its application in various

fields like agriculture [3], land-cover mapping [4],

surveillance [5], physics, mineralogy [6], chemical imag-

ing, environment monitoring, etc. However, HSI process-

ing suffers from many issues, viz. noise, computational

complexity, poor contrast, huge dimensionality and insuf-

ficient training samples. To overcome the dimensionality

problem, preprocessing techniques such as randomised

principal component analysis (R-PCA) [7] and minimum

noise fraction (MNF) [8], are employed that can extract the

top features of HSI. However, the number of features to be

considered for classification of HSI is decided manually.

In the past two decades, HSI classification remained

as one of the active research topics as surveyed by Camps-

Valls et al. [9]. The main aim of classification of HSI is to

assign a label to each pixel. The HSI classification has been

mainly performed using handcrafted features viz. multi-

scale joint collaborative representation with locally adap-

tive dictionary (MLJCRC) [10], feature extraction by local

covariance matrix representation (LCMR) [11], histograms

of directional map (HoDM) [12] approach and learning-

based techniques. Many machine learning techniques have

been proposed till date for pixel-wise spectral classifica-

tion, viz. support vector machines (SVM) [13] and random

forests [14]. However, these methods are very much sen-

sitive to the number of training samples and they only

take the spectral information into consideration for classi-

fying HSI. To improve the classification performance,

many spectral–spatial classification methods, which jointly

utilise both the spectral and spatial information, have been

proposed till date. This category of method includes
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extended morphological attribute profile (EMAP) [15] to

model the spatial information according to different attri-

butes, edge-preserving filtering (EPF) to construct the

spectral–spatial features of HSIs [16] and extended random

walker (ERW) to optimise the results of SVM [17].

However, the limitation of this method is that it extracts the

spectral–spatial features of the HSI in a shallow fashion

and the classification result is also reliant on the segmen-

tation scale.

Recently, deep learning (DL) techniques have gained

immense popularity in HSI processing due to its efficient

feature extraction and classification ability that could

effectively outperform the traditional techniques [18]. The

widely used deep neural network (DNN) [19] architecture

includes deep convolutional neural networks (CNNs) [20],

stacked autoencoder networks (SAEs) [21], deep Boltz-

mann machines (DBMs) [22], deep belief networks

(DBNs) [23] implemented as in capsule network [24], deep

laboratory [25], deep pyramidal residual networks (DPRN)

[26] and deep deconvolution using skip architecture [27].

CNN has come up to the forefront due to its better per-

formance over handcrafted techniques and other DL [28]

techniques. CNN has found its application in remote

sensing research domains like image classification [29],

semantic segmentation [30], etc. CNN is characterised by

its shared weights, local connection and shift invariance

that help in reducing the computational cost. CNN is the

building block of the dual-path network (DPN) [31] which

utilises the properties of both the residual network

(RESNET) [32], i.e. the interconnection between the layers

and the dense convolutional network (DenseNet) [33] for

HSI classification. Deep belief network [34] is proposed to

effectively extract 3D spectral–spatial features of HSI,

which combines Gabor filters [35] with convolutional fil-

ters to mitigate the problem of overfitting. Spectral–spatial

residual network (SSRN) [36] uses identity mapping for

connecting convolutional layers. In all of these techniques,

either 2D or 3D convolution is considered while designing

the model which made the model either very complex or

may suffer from loss of information. 2D-CNN alone cannot

extract features from the spatial dimension. Similarly 3D-

CNN is very much computationally complex and it cannot

accurately classify classes having similar texture.

The HybridSN [37] overcomes such shortcomings as it

combines 3D-CNN and 2D-CNN to extract spectral and

spatial features respectively. This hybrid model utilises

both the spatio-spectral features, thereby producing good

classification result. However, the usage of flatten layer

made the model inefficient both in terms of computation

time and classification accuracy. The spatial pyramid

pooling (SPP) [38] extracts spatial features in different

scales, in contrast to the traditional pooling which can only

extract features of the same scale. Hence, the CNN model

with SPP is more robust to object distortions [39]. There-

fore, in this paper a novel architecture called spectral–

spatial network (SSNET) is proposed by utilising SPP in

hybrid CNN. In SSNET, SPP is placed between the hybrid

convolutional layer and the fully connected dense layer for

extracting the spectral–spatial features effectively.

2 Proposed SSNET model

1D CNN and 2D CNN extract spectral and local spatial

features of each pixel, respectively [40]. Unlike 1D and 2D

CNN, the proposed model is based on 3D local convolu-

tional filters which learn both spatio-spectral contents of

the same channel simultaneously and hence is more effi-

cient in extracting information from HSI. The overall

architecture of the proposed SSNET model is depicted in

Fig. 1. It includes four major components, namely PCA,

3D-CNN, 2D-CNN and SPP. These components are

described in the following subsections.

2.1 PCA

The input of the model is an HSI data cube of dimension

M 9 N 9 D, where M, N and D represent the width,

height and number of bands, respectively. The spectral

redundancy of the HSI data cube is reduced by applying

principal component analysis (PCA) technique. PCA only

reduces the spectral bands so as to condense the whole

image such that only very important information for

recognising any object is present in the resultant image

cube. The reduced HSI cube can be represented as X [
RM9N9B, where B is the number of selected principal

components. When PCA is applied on widely used HSI

dataset, it is experimentally observed that the input

dimension can be reduced up to 15 times while preserving

99.9% of initial information and the first 10 to 30 principal

components contain the maximum amount of information

[16]. A 3D patch of dimension K 9 K 9 B, centred at the

spatial location (i, j) and covering the K 9 K spatial extent,

is generated from X. The total number of such 3D patches

is given by M
K � N

K. The target label is represented as one hot

encoded vector y = (y1, y2,…yC) [ R1919C, where C being

the land-cover classes. As neighbouring pixels of hyper-

spectral image is considered as the input to the model, the

3-D local convolutional filters can learn spectral–spatial

features in the same channel very easily.

2.2 3D CNN

Subsequently, the spectral and spatial features are inte-

grated together to construct a joint spatio-spectral
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classification framework using 3-D CNN. In 3D-CNN, the

value of a neuron, i.e. activation value vxyzij at position (x, y,

z) of the jth feature map in the ith layer is generated using

Eq. 1.

v
xyz
ij ¼ g bij þ

X

m

XPi�1

p¼0

XQi�1

q¼0

XRi�1

r¼0

w
pqr
ijm v

xþpð Þ yþqð Þ zþrð Þ
i�1ð Þm

 !
ð1Þ

where g is the activation function, v is the output variable

in the feature map, m indexes the feature map in the

(i-1)th layer connected to the current (jth) feature map,

and Pi and Qi are the height and the width of the spatial

convolution kernel. Ri is the size of the kernel along the

spectral dimension, wpqr
ijm is the value of position (p, q, r),

i.e. the weight parameter connected to the mth feature map,

and bij is the bias parameter of the jth feature map in the ith

layer. The high dimensionality of the input HSI data may

lead to an overfitting situation so to handle such issue a

regularisation strategy is implemented, i.e. nonlinear

function ReLU (rectified linear unit) is introduced. The

ReLU function (r) is given in Eq. (2).

r xð Þ ¼ max 0; xð Þ ð2Þ

2.3 2D CNN

After 3D convolution, the learnt feature 3 (Fig. 1) vector is

sent to the 2D-CNN. In 2D-CNN, the input feature vector

is convolved with the 2D 3 9 3 kernel. The convolution is

computed by the sum of the dot product between input

vector and the kernel. The kernel strode over the input

feature vector to cover full spatial dimension and is then

passed through nonlinear activation function ReLU. In 2D-

CNN, the value of a neuron, i.e. the activation value vxyij , at

spatial position (x, y) of the jth feature map in the ith layer

is expressed in Eq. 3.

vxyij ¼ g bij þ
X

m

XPi�1

p¼0

XQi�1

q¼0

wpq
ijmv

xþpð Þ yþqð Þ
i�1ð Þm

 !
ð3Þ

where m, g, v, Pi, Qi and bij are similar to Eq. 1, and wpq
ijm is

the weight of position (p, q) connected to the mth feature

map. After 2D convolution, the feature vector captured the

spatial information contained in the K 9 K neighbourhood

region of the input feature vector from 3D-CNN.

2.4 SPP

Subsequently, the learned features are fed to the pooling

layers. Then spatial pyramid pooling (SPP) is introduced to

the feature map 4 (Fig. 1) of two-dimensional local con-

volutional filters, so that the proposed model can learn

these spectral–spatial features easily and generate a fixed

feature vector. Three different sizes of pooling windows (l,

m, n) are chosen for SPP and the features so obtained are

concatenated to form a 1D vector which is fed to the input

of the fully connected layer regardless of the size of the

feature maps. To prevent overfitting, dropout is introduced

into the fully connected network. Hence, the total number

of parameters in the proposed model has reduced consid-

erably, thereby reducing the training time. Finally, the

learned features are fed to probabilistic logistic regression

function softmax for classification. The bias and the weight

parameters are trained using supervised approach, i.e. by

using gradient descent mechanism.

In the proposed architecture (Fig. 1), there are three 3D-

CNN layers consisting of kernels of size 8 9 39 3 9 7

(where 8 is the number of 3D kernels of dimension

3 9 3 9 7, K1
1 = 3, K1

2 = 3, K1
3 = 7), 16 9 393 9 5

(where 16 is the number of 3D kernels of dimension

3 9 395, K2
1 = 3, K2

2 = 3, K2
3 = 5) and 32 9 393 9 3

(where K3
1 = 3, K3

2 = 3, K3
3 = 3), followed by one 2D-CNN

layer of size 64 9 393 (where 64 is the number of 2D

kernels for K4
1 = 3,K4

2 = 3). Mainly a spatial dimension of

Fig. 1 Proposed SSNET (spectral–spatial network) model for HSI classification
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3 9 3, 5 9 5 and 7 9 7 convolutional filters are preferred

for a high-dimensional image [41]. So, after an exhaustive

analysis by comparing with multiple filter size, 3 9 3 is

chosen as the height and width, whereas for the depth

varying kernel depths such as (3,5 , 7), (7, 5, 3), (5, 7, 3)

and (3, 7, 5) have been experimented with and (7, 5, 3) is

found to be the best. In order to facilitate a very deep model

with reasonably reduced numbers of parameters, multiple

convolutional layers have been stacked together [42] with

an increasing number (8, 16, 32, 64) of feature maps. The

multiple pooling layers of different scales (viz. 1, 2 and 4

represented as l, m and n, respectively, in Fig. 1) is chosen

such that it can extract features with 1 9 1, 2 9 2, 4 9 4

max pooling. The multiscale filtered feature map contains

rich complementary information which helps to improve

the classification performance [43]. The window size and

the number of principal components (PCs), i.e. the

parameters K 9 K and B in Fig. 1, play an important role

in proposed SSNET, and hence, optimum values of these

parameters are chosen based on sensitivity analysis on real

HSIs as presented in Sect. 4.

3 Dataset

Indian Pines (IN), University of Pavia (UP, Pavia, Italy)

and Salinas Scene (SA) datasets are used for the experi-

mental set-up. 1

A. The IN data (Fig. 3a) were obtained by the Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) in

North-western Indiana in June 12, 1992, by NASA

with 20 m spatial resolutions and 10 nm spectral res-

olutions covering a spectrum range of 200–2400 nm

and 220 bands. The subset used for classification is of

size 145 9 145 9 200, with 16 kinds of ground cover

where most of them are vegetation which are nearly

similar to each other due to the shared spectral char-

acteristic of vegetation. Moreover, several mixed pix-

els are found due to course spatial resolution. In total,

200 bands were left after radiometric corrections and

bad band removal.

B. B. The UP data (Fig. 4a) are taken from the flights of

the Reflective Optics System Imaging Spectrometer

(ROSIS) sensor over Pavia in Northern Italy in 2003

with spatial resolution of 1.3 m in the range of

0.43–0.86 lm for 115 bands and with nine kinds of

land cover. After removing low-SNR bands, 103 bands

were used in the present experiment; dimension of the

present dataset is 610 9 340 9 103 pixels.

C. The SA data (Fig. 5a), captured by AVIRIS over

Salinas valley, CA, USA, in 1998, contain 512 9 217

pixels and 224 spectral bands covering from 400 to

2500 nm. The spatial resolution is 3.7 m. Twenty

bands are discarded due to water absorption. In total,

16 classes are labelled as the ground truth, where most

of them are agriculture, mainly vegetable field, vine-

yard and bare soil

4 Experimental results and discussion

In the present experiment, all network weights are ran-

domly initialised and trained using back-propagation

algorithm with Adam optimiser by using the categorical

cross-entropy loss function. Mini-batches of size 256 are

used, and the network is trained for 100 epochs with an

optimal learning rate of 0.001. The window size

K 9 K and number of PCs play an important role in the

results of classification. In [7], it is illustrated that the first

10 to 30 principal components contain the maximum

information of the widely used HSI dataset. Hence, in order

to decide an optimum number of PCs as well as spatial

window size, a sensitivity analysis is carried out with

varying number of PCs and window sizes. Figure 2 depicts

the rescaled values (between 0 and 1) of overall accuracy

(OA) observed in this analysis for three benchmark data-

sets. As the spatial context changes with data, different

datasets performed differently for varying window size and

PC number which is also evident in Fig. 2. Figure 2 shows

that 17 9 17 window size is found to be most suitable for

the proposed method with high classification accuracy

without overburdening the model. A reasonably low test

loss is also observed while using 17 9 17 window size and

first 15 PCs of each dataset which are therefore chosen and

subsequently used. With the window size of

17 9 17 9 15, the convolutional kernel becomes small

[41] that enables efficient processing and learning distinc-

tive features from local regions. Layer-wise detailed

information of the proposed model is illustrated in Table 1

for UP dataset.

In this experiment, state-of-the-art supervised methods,

i.e. SVM [13], 2D CNN [7], 3D CNN [44], SPP [39] and

HybridSN [38], are compared with the proposed model on

the same HSI datasets. Labelled samples are split into

training (30%) and testing (70%), and subsequently,

aforementioned classifiers are trained and HSI scenes are

classified. The experiment is carried out ten times, and the

average classification accuracies are recorded to evaluate

the performance of each method. In order to quantitatively

compare the performance of classifier models, overall

accuracy (OA), average accuracy (AA) and kappa
1 www.ehu.eus/ccwintco/index.php/HyperspectralSensingScenes
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coefficient are measured from the confusion matrix using

Eqs. 4 to 6, respectively, and listed in Table 2.

OA ¼ Total number of correctly classified pixels

Total number of pixels
ð4Þ

AA ¼ Sumof the accuracies of each class

Total number of class
ð5Þ

kappa ¼ Observed accuracy � expected accuracy

1� expected accuracy
ð6Þ

For the IN dataset, the 3D patches of 17 9 17 9 15

input volume are considered. In Table 2 and Fig. 3, the

classification result for different classifier models is

demonstrated. It can be observed that the proposed model

attains a greater accuracy than the other tested models. The

average test loss and test accuracy of the proposed model

are observed as 0.52% and 99.85%, respectively, using the

testing data.

Table 2 and Fig. 4 show the classification result for the

UP dataset with similar spatial window of size. The aver-

age test loss and test accuracy achieved using the SSNET

are 0.08% and 99.98%, respectively.

The classification results of SA dataset given in Table 2

and Fig. 5 clearly reflect the effectiveness of the proposed

model. The spatial window considered is similar to the IN

and UP datasets for a fair comparison. The average test loss

and test accuracy of the proposed model attained using

testing data are 0.027% and 99.99%, respectively. In the

present experiment, it is also observed that as the number

of training and test samples is increasing the test loss is

decreasing along with an increase in the test accuracy.

The experimental results reveal the superiority of the

proposed model among all the compared models which are

commonly used for HSI classification. The training process

for the proposed method on aforementioned dataset nearly

converges in almost 20 epochs as clearly shown in Fig. 6.

Therefore, early stopping criteria may be considered during

the training procedure, in order to reduce computational

cost, without deteriorating classification performance.

The computational efficiency of the proposed SSNET in

terms of normalised training and testing time is shown in

Fig. 7a and b, respectively. Figure 7 shows that the relative

training and testing time follow almost same pattern on all

the test datasets and are proportional to the size of the

dataset. Among all compared methods, 3D-CNN takes the

maximum time, whereas SVM takes the minimum time. As

anticipated, the proposed model shows its efficiency over

the HybridSN model both in training and testing phases for
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Fig. 2 Effect of different spatial window sizes and principal compo-

nents on OA in proposed method using a IN, b UP and c SA data

Table 1 Model summary of proposed SSNET architecture with

window size 17 9 17 9 15 on UP Dataset

Layer (type) Output shape Parameters

conv3d_1 (Conv3D) (15, 15, 9, 8) 512

conv3d_2 (Conv3D) (13, 13, 5, 16) 5776

conv3d_3 (Conv3D) (11, 11, 3, 32) 13,856

reshape_1 (Reshape) (11, 11, 96) 0

conv2d_1 (Conv2D) (9, 9, 64) 55,360

spatial_pyramid_pooling_1(SPP) (1344) 0

dense_1 (Dense) (256) 344,320

dropout_1 (Dropout) (256) 0

dense_2 (Dense) (128) 32,896

dropout_2 (Dropout) (128) 0

dense_3 (Dense) (9) 1161

Total number of trainable parameters: 453,881
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all the tested datasets. Hence, from the experimental

results, as given in Table 2 and Fig. 7, it can be concluded

that the proposed SSNET provides more accurate classifi-

cation result with a moderate computation time and is

certainly an improvement over the existing HybridSN

model.

5 Conclusion

Classification is an essential part in remotely sensed HSI

analysis. Therefore, a novel classification architec-

ture, SSNET is proposed that combines spectral–spatial

information of HSI in the form of 3D and 2D convolutions,

respectively that includes SPP for generating spatial

Table 2 Performance

comparison of SSNET with

other tested methods

Methods Indian pines dataset University of Pavia dataset Salinas scene dataset

OA Kappa AA OA Kappa AA OA Kappa AA

SVM 82.86 80.09 86.74 90.71 87.71 92.55 90.0 88.82 95.52

2D-CNN 87.99 91.85 85.75 93.30 94.64 97.04 92.76 91.91 96.70

3D-CNN 91.30 88.21 86.19 96.88 95.19 98.54 93.59 94.26 96.99

SPP 80.62 79.43 73.09 98.85 98.82 98.78 98.97 98.97 98.96

HybridSN 99.76 99.73 99.74 99.96 99.94 99.90 99.67 99.68 99.65

SSNET 99.85 99.86 99.87 99.98 99.97 99.94 99.99 99.99 99.98

Fig. 3 IN dataset. a Colour composite image (bands 29, 19 and 9 as RGB); b ground truth; predicted classification maps using c SVM; d 2D-

CNN; e 3D-CNN; f SPP; g HybridSN and h proposed SSNET; i legend
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features in different scales. As the SPP is more robust to

object distortions, it is introduced in two-dimensional local

convolutional filters for HSI classification. SPP layer gen-

erates a fixed feature vector output that reduces the number

of trainable parameters without adversely affecting the

classification performance. The experiments are carried out

over three benchmark datasets and compared with recent

state-of-the-art methods. Experimental results confirm the

superiority of the proposed SSNET model in terms of

classification accuracy and execution time among other

Fig. 4 UP dataset. a Colour composite image (bands 45, 27 and 11 as RGB); b ground truth; predicted classification maps using c SVM; d 2D-

CNN; e 3D-CNN; f SPP; g HybridSN and h proposed SSNET; i legend

Neural Computing and Applications (2021) 33:1575–1585 1581
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Fig. 5 SA dataset. a Colour composite image (bands 29, 19 and 9 as RGB); b ground truth; predicted classification maps using c SVM; d 2D-

CNN; e 3D-CNN; f SPP; g HybridSN and h proposed SSNET; i legend
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tested methods. This encourages exploration of the pro-

posed model on other hyperspectral datasets in future to

further check its effectiveness. As future work, the pooling

strategy of the SPP layer can be improved and the

parameters used can be more optimised so as to make the

architecture more efficient. The proposed model deals with

remote sensing image classification, particularly for

hyperspectral imagery. However, with a nominal modifi-

cation, the proposed architecture can also be applied in

multispectral image classification.
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