
ORIGINAL ARTICLE

NaNOD: A natural neighbour-based outlier detection algorithm

Abdul Wahid1 • Chandra Sekhara Rao Annavarapu1

Received: 3 October 2019 / Accepted: 3 June 2020 / Published online: 23 June 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Outlier detection is an essential task in data mining applications which include, military surveillance, tax fraud detection,

telecommunication, etc. In recent years, outlier detection received significant attention compared to other problem of

discoveries. The focus on this has resulted in the growth of several outlier detection algorithms, mostly concerning the

strategy based on distance or density. However, each strategy has intrinsic weaknesses. The distance-based techniques have

the problem of local density, while the density-based method is recognized as having an issue of a low-density pattern.

Also, most of the existing outlier detection algorithms have a parameter selection problem, which leads to poor detection

results. In this article, we present an unsupervised density-based outlier detection algorithm to deal with these short-

comings. The proposed algorithm uses a Natural Neighbour (NaN) concept, to obtain a parameter called Natural Value

(NV) adaptively, and a Weighted Kernel Density Estimation (WKDE) method to estimate the density at the location of an

object. Besides, our proposed algorithm employed two different categories of nearest neighbours, k Nearest Neighbours

(kNN), and Reverse Nearest Neighbours (RNN), which make our system flexible in modelling different data patterns.

A Gaussian kernel function is adopted to achieve smoothness in the measure. Further, we use an adaptive kernel width

concept to enhance the discrimination power between normal and outlier samples. The formal analysis and extensive

experiments carried out on both artificial and real datasets demonstrate that this technique can achieve better outlier

detection performance.
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1 Introduction

An outlier or outlying observation seems to differ sub-

stantially from the other sample members in which it

occurs. Barnett and Lewis [1] defined an outlier as ‘‘an

observation (or subset of observations) which appears to be

inconsistent with remaining dataset’’. Outlier detection

(also recognized as anomaly detection) relates to identi-

fying trends in data that are inconsistent with defined

normal behavior [2]. Outliers were traditionally detected

based on statistical distribution assumptions. Most of the

techniques used to detect outliers are fundamentally the

same but with different names. For instance, researchers

define their different methods as outlier detection, variation

detection, noise detection, data-defect inspection, novelty

detection, or anomaly detection. In a dataset, outliers have

a significant impact on the data quality and data analysis

results. Therefore, outlier detection has become an essen-

tial pre-processing phase for data mining applications. The

real-world example, where outlier detection gained sig-

nificant attention compared to other discovery problems,

are industrial wireless sensor networks [3], fraud detection

in health insurance [4], anomaly detection in electrocar-

diograms [5], intrusion detection [6], industrial systems [7],

financial applications [8], manufacturing process [9], and

so on.

Recently, various outlier detection algorithms, depend-

ing on the supervised and unsupervised method of learning,

have been suggested. A supervised learning method builds

a predictive model that is used to classify each object of the

dataset. These methods have two drawbacks: first, they
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need labeled samples (as the training set), which is chal-

lenging to get in the real world, and also takes much time,

and second, new types or rare events cannot be detected

with a better performance. On the other hand, in the

unsupervised method, there is no need for labeled data to

learn the underlying generating mechanisms of different

classes and recognizes points as an outlier, which differs

substantially from the rest of the datasets based on specific

pre-determined strategies [10]. Most of the recent methods

for outlier detection address this scenario [11]. In this

paper, we proposed a new outlier detection algorithm,

focusing on the unsupervised method of learning. The

majority of unsupervised outlier detection algorithms have

a standard model parameter, the size of the neighbourhood

around a data point. Because the model parameter is hard

to set appropriately, normal users sometimes suffer from

poor detection results. Also, existing algorithms are vul-

nerable to the parameter selection; the design of parameter-

free techniques is a challenging task. However, in multiple

areas of research, various outlier detection algorithms have

been suggested, but these problems have not yet been

attracted sufficient attention.

To address the weaknesses of the existing techniques

described above, we propose a new and effective unsu-

pervised outlier detection algorithm for measuring the

outlying degree of each item in a data space. The proposed

algorithm uses the concept of natural neighbour (NaN) to

acquire a suitable value of k (the number of neighbours)

without any input parameters. The outlier detection algo-

rithm proposed in this paper uses the k as a parameter to

find the outliers.

1.1 Motivations

In this study, outlier detection is motivated by the fol-

lowing observations:

• The focus of recent research on outlier detection is on

examining the nearest neighbour structure of a data

point to compute its outlier-ness score. This leads to a

problem: the size and predetermination of the nearest

neighbourhood have a substantial impact on the detec-

tion results.

• There are several outlier detection methods in the

literature, but the majority of these methods are highly

parameter sensitive and have a serious issue when

selecting an appropriate parameter when executed on a

dataset. Even small changes in the parameter will result

in a significant difference in outlier detection

performance.

• There is a lack of outlier detection methods that detect

local and global outliers simultaneously.

• The efficiency of the outlier detection algorithm is

another area of concern.

1.2 Contributions

The primary contributions of the article are summarized as

follows:

• A natural neighbour concept is used to obtain the

appropriate parameter adaptively so that the parameter

selection problem can be solved.

• For the better density estimation, kNN and RNN of an

object are used so that outlier detection efficiency can

be improved.

• We have proposed a simple and effective outlier

detection algorithm called NaNOD, to measure the

outlying degree of each object in a dataset.

• The proposed algorithm can simultaneously detect local

and global outliers with better performance.

• Different experiments over both synthetic and real

datasets and comparison with state-of-the-art outlier

detection methods, such as LOF [12], KDEOS [13],

RDOS [14], SDO [15], LGOD [16], and NOF [17]

demonstrate the performance of our proposed

algorithm.

1.3 Roadmap

The paper is organized as follows. Section 2 presents the

existing work associated with density-based outlier detec-

tion algorithms. Section 3 describes a natural neighbour

concept in detail. Section 4 presents a new outlier detection

algorithm based on a natural neighbour concept. Section 5

presents experimental analysis and performance results

over both synthetic and real datasets. Finally, Sect. 6 pro-

vides conclusions and future work of the paper.

2 Background and related work

In Sect. 1, we mentioned that the outlier detection involves

the supervised and unsupervised methods of learning, and

our technique concentrates on the latter. In this section, we

present a brief description of some unsupervised methods

for outlier detection. The most unsupervised methods for

outlier detection calculate the outlier-ness score of each

object in a dataset and sort it according to the calculated

values. This section provides a brief overview of various

outlier detection algorithms based on density, which allows

readers to understand their properties better. They all have

a standard model parameter, neighbourhood size k, which

defines outlining characteristics of an object [18]. Since the
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size of the neighbourhood has a significant influence on a

detection approach, Zhu et al. [19] have suggested a new

method called the natural neighbour, which selects the

number of neighbours without any input parameter.

In density-based approaches, it is assumed that the

density around an outlier varies significantly from its

neighbours. The methods based on density detect an outlier

if the local density of an object differs from its neigh-

bourhood. For implementing this idea, various outlier

detection algorithms have been proposed. The outlier

detection algorithms vary as they measure the density of an

object in various ways. One of the most popular and fre-

quently used outlier detection method is the Local Outlier

Factor (LOF) [12]. The LOF is an outlier-ness score, which

indicates how the object differs from its locally reachable

neighbourhood. In this approach, the authors used the

concept of reachability distance between two objects for

the density estimation around an object and the outlying

degree of an object is assigned in terms of relative density

of the test point with respect to its neighbours. In [12], it

has been shown that points which have higher LOF score

compared to threshold are more accurate to consider as

outliers. Later, many LOF variants have been proposed.

Tang et al. [20] have developed a new algorithm, called

COF, concerning the underlying data patterns. The Set-

based Nearest (SBN) route has been chosen in the COF to

obtain the number of nearest neighbours. Further, it is used

to calculate the relative density over the average chain

distance of a test point. The approaches based on LOF and

COF detect outliers by relative density distributions. Jin

et al. [21] made an improvement in the LOF and proposed

a new density-based outlier detection algorithm called

INFLO. In this method, the relative density is estimated

using the influence space, which is the combination of both

neighbours and reverse neighbours of an object.

In recent years, kernel-based methods have attracted

much attention in the areas of outlier detection [13, 22, 23],

and pattern recognition [24, 25]. The kernel function and

its parameters have a major impact on kernel-based

method. In [24], authors used kernel optimization to

enhance the performance of kernel discriminant analysis

and proposed a so-called Kernel Optimization-based Dis-

criminant Analysis (KODA) for face recognition. In [13],

the authors proposed a density-based outlier detection

method (KDEOS), which includes kernel density estima-

tion (KDE) into the LOF framework. The KDEOS stan-

dardized the KDE densities as a z score compared to the

KDE densities of the kNN set in the various sizes of the

neighbourhood kmin. . .kmax, in comparison to neighbouring

densities.

The works most similar to ours are RDOS [14], defined

as the proportion of the average neighbourhood density to

the density of the test point, and a density-based non-

parametric outlier detection algorithm based on natural

neighbour called the Natural Outlier Factor (NOF) [17]. In

NOF, the authors have brought together the idea of nearest

neighbours and reverse nearest neighbours to propose a

natural neighbour concept, in which the natural values and

Natural Outlier Factor (NOF) are measured to identify

outliers.

Vzquez et al. [15] have proposed a new outlier detection

algorithm called Sparse Data Observers (SDO). In this

algorithm, they build a low-density data model with the

help of observers. An observer is a data object placed at a

equidistant from other observers in a data cluster. It cal-

culates an outlying degree of an object by computing the

distance from its nearest observers. SDO algorithm per-

forms well on cluster-type dataset which is composed with

highly complex structures. It is a fast learner and signifi-

cantly reduced the cost of computation. Recently, Jiang

et al. [16] have suggested a gravitational force-based

concept for outlier detection, where they consider each data

point as an object with both mass and local resultant force

(LRF) generated by its neighbours.The proposed model

uses the difference of the LRF change rate to identify

outliers in a dataset.

In this section, we have discussed several popular outlier

detection algorithms, where we noticed that most of the

techniques have a common model parameter, k (neigh-

bourhood size). As k is pre-defined and has a strong

influence on outlier detection performance, consideration

should be given whether it is part of the distance or density-

based approach. Therefore, we propose a new outlier

detection algorithm based on natural neighbour concept to

deal with these shortcomings. A detailed description of the

natural neighbourhood concept is given in Sect. 3.

3 Natural neighbour concept

Recently, Zhu et al. [19] proposed a new parameter-free

neighbour concept, which is known as natural neighbour.

The concept of natural neighbour is inspired by human

society’s friendship. We all know that friendship is one of

the important relationships in our life. As a human,

everyone must have at least one friend. We can calculate

one’s true friend by considering the number of people he/

she calls friend and they also consider him/her as friend at

the same time. Here, we consider true friends as when we

consider someone as as friend and they also consider you

as a friend.

This friendship’s scenario can be extended to data

objects. Now we can consider object x is natural neighbour

of object y if y considers x as a neighbour and at the same

time x also considers y as a neighbour. It is conventional

that objects located in sparse area usually have fewer
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neighbours, while objects located in dense area have large

number of neighbours. Here, ‘‘sparse’’ and ‘‘dense’’ are

comparative.

In particular, the natural neighbour method can effi-

ciently calculate the neighbourhood in a dataset without

any parameter. The main idea behind the natural neigh-

bours is that we constantly extend neighbour search range,

and each time we compute the number of each object is

considered as neighbour of another object till all objects are

considered as neighbour or the number of objects without

being neighbours of other objects are unchanged.

Due to high search costs of kNN and RNN of an object

in a database, we use the KD� tree [26] in the natural

neighbour search algorithm. The steps involved in natural

neighbour search algorithm are depicted in Algorithm 1.

In Algorithm 1, r represents the search range and NaNðxÞ
defines the times that object x is identified as neighbours by

other objects. NNrðxÞ defines the r neighbourhood of object
x and RNNrðyÞ defines the r reverse neighbourhood of object
y. Supk is natural neighbour eigenvalue. As we applied the

KD� tree in Algorithm 1, the time complexity of this

algorithm reached to Oðn� lognÞ (where n represents the

number of objects in the dataset).

Definition 1: Natural neighbour. Based on the natural

neighbour search algorithm, if x is the neighbour of y and

y is the neighbour of x at the same time, then x and y are

natural neighbours of each other. Compared to the com-

monly used neighbour definition, kNN, natural neighbour is

a scale-free neighbour concept, and the main advantage is

that the search method of natural neighbour can be fulfilled

without any parameters. By scale free, we mean that the

number of neighbours for each object is not necessarily

identical. But in the concept of kNN, the number of

neighbours for each object is equal, i.e., k.

Definition 2: Natural neighbour eigenvalue (supk).

According to the natural neighbour search algorithm, each

point x can have a different number of neighbours NaNðxÞ.
Also, there is an average number of neighbours, Supk,

which can be computed as

supk ¼ minfr j 8x9yðy 6¼ x \ x 2 NNrðyÞÞ

or8xðjj RNNrðxÞ j¼ 0 j¼jj RNNr�1ðxÞ j¼ 0 jÞg;
ð1Þ

where x and y are data points. NNrðyÞ represents the

r neighbourhood of object y and RNNrðyÞ defines the

r reverse neighbourhood of object y. This equation implies

that the minimum r value, which fulfills one of the fol-

lowing conditions, is supk: (i) if each point has at least one

other point considering it as a neighbour, (ii) if num does

not change in two successive iterations. The num is the

number of data points which have no other point consid-

ering them as a neighbour. According to the graph theory,

given a dataset X consisting n points, we know that

n� Supk ¼
P

x2X NaNðxÞ, thus, Supk is the average num-

ber of neighbours.

Using Algorithm 1, we can obtain two values NaNðxÞ
and supk. Thus, by connecting each point differently, we

can define different neighbourhood graphs.

Algorithm 1: Natural Neighbour Search Algorithm
Input: Dataset X
Output: Natural Value NV, supk

1 initialization: r = 1, f lag = 0, NaN(x) = 0, NN0(x) = φ, RNN0(x) = φ
2 Create a KD − tree T from dataset X
3 while flag==0 do
4 for each point x∈X do
5 (i) Use KD − tree T to find it’s rth neighbour y
6 (ii) NaN(y) = NaN(y) + 1
7 (iii) NNr(x) = NNr−1(x) ∪ {y}
8 (iv) RNNr(y) = RNNr−1(y) ∪ {x}
9 end

10 num = count(NaN(x) == 0)// Compute the number of data point with no
neighbour.

11 if the num doesn’t change then
12 flag==1;
13 end
14 r = r + 1;
15 end
16 supk = r, and NV = max(NaN(x));
17 Output the NV , and supk;
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Definition 3: Natural neighbourhood graph. A graph

which is constructed by connecting each point x to its

natural neighbours is called a natural neighbourhood graph.

Definition 4: Maximum neighbourhood graph. A graph

that is constructed by connecting each point x to its

maxðNaNðxÞÞ nearest neighbours is called a maximum

neighbourhood graph.

In the natural neighbourhood graph, points may have a

different number of natural neighbours, while in the max-

imum neighbourhood graph, all points have an equal

number of neighbours like kNN graph, but the value of k is

maxðNaNðxÞÞ. The value of maxðNaNðxÞÞ, called natural

value (NV), is adaptively obtained by Algorithm 1. Based

on the maximum neighbourhood graph, we propose a new

outlier detection algorithm discussed in the following

section.

4 Natural neighbour-based outlier detection

As the population grows, the social structure is becoming

extremely complex. It is, therefore, becoming difficult for

all society participants to work together to handle social

issues. The better concept is to select officials, and they

have more power than the other members. The power

comes from its neighbours and also, in turn, it acts on its

neighbours. Similarly, when analyzing the data, objects

with a maximum local density can be chosen as officials.

Inspired by this concept, we proposed a new algorithm

based on a natural neighbour to solve the weaknesses of

current outlier detection algorithms.

4.1 Density estimation

An outlier is characterized as an observation that differs

significantly from other findings. In the outlier detection

problem, it is more reliable to assign an outlying degree to

each object rather than classifying data objects as inlier or

outlier.

Let X ¼ fx1; x2; x3; . . .xng be a specified collection of

data in the Euclidean space of dimension d, in which

n relates to the number of samples in a given dataset. We

present an algorithm for calculating the degree of deviation

to which data points differ in their locality. In the mea-

surement of the local outlining metric, the proposed tech-

nique initially conducts a density estimation. As we do not

assume the distribution type, we use a non-parametric

weighted Kernel density estimation (WKDE) to estimate

the density at a given point. Further, we use an adaptive

kernel width concept [27] to improve the discrimination

power between outliers and inliers. The proposed approach

estimates the density using KDE in which sample weights

are connected to each object of a dataset. A WKDE with

adaptive width of the kernel on a random sample

x1; x2; x3; . . .xn, where xi 2 Rd for i ¼ 1; 2; 3; . . .; n and

weight associated with each sample is w1;w2;w3. . .;wn; so

that
Pn

j¼1 wj ¼ 1, can be computed as

qðxiÞ ¼
Xn

j¼1

wj

ðhjÞd
K

xi � xj
hj

� �

; ð2Þ

where Kð�Þ is the ‘‘kernel function’’, hj is a ‘‘kernel width’’
to control the smoothness of the estimator and wj is the

weight associated with each sample, computed as

wj ¼
ðs�

Pn
j¼1 Euclideanðxi; xjÞÞ

s
; ð3Þ

where ‘‘s’’ is the highest Euclidean distance between our

data point samples and used for normalizing, including

outliers. The Euclidean distance sum from xj to jth Gaus-

sian at xi is represented by
P

Euclideanðxi; xjÞ. A Gaus-

sian, Tri-cube, Laplace, and Uniform kernels are some

examples of commonly used kernel functions. A smoothing

kernel is required to make smoothness in density estima-

tion. The function of the smoothing kernel is an argument

which satisfies the following features:
Z

KðzÞdz ¼ 1;

Z

zKðzÞdz ¼ 0; and

Z

z2KðzÞdz[ 0:

ð4Þ

Here Kð�Þ is a multivariate d�dimensional Gaussian

function of zero mean and unit standard deviation, for-

mulated as

K
xi � xj
hj

� �

Gaussian

¼ 1

ð2pÞd
exp

�jjxi � xjjj2

2 � ðhjÞ2

 !

; ð5Þ

where jjxi � xjjj2 is the squared Euclidean distance from xi
to xj.

We only use its neighbours as kernels to assess the

density at the location of the given object xi, instead of

using all objects present in the dataset. The reasons are

twofold: first, if we consider the whole dataset for density

estimation, it may fail to detect local outliers, and second, it

gives a high computational cost (i.e. Oðn2Þ) when consid-

ering the entire dataset for the calculation of the outlying

degree.

For a better density estimation in the neighbourhood, we

use the k nearest neighbours (kNNs) and reverse nearest

neighbours (RNNs) of an object. The RNNs of object xi are

those points which have xi as one of their k nearest

neighbours, or else we could say x is one of xi’s reverse

nearest neighbours if NNjðxÞ ¼ xi for any j� k. Current

studies have demonstrated that RNN is able to offer better

local distribution information and is used for outlier
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detection successfully [21]. The RNNðxiÞ can contain zero,

one or more objects. With the NNkðxiÞ and the RNNðxiÞ, an
extended neighbourhood space of point xi is created to

estimate the density by incorporating a NNkðxiÞ and

RNNKðxiÞ, denoted as ISðxiÞ ¼ NNkðxiÞ [ RNNkðxiÞ. Note
that k is not an artificially specified parameter, but a natural

value (computed from Algorithm 1).

Thus, Eq. (2) calculates the density at point xi as

qðxiÞ ¼
X

x2ISðxiÞ

wx

ðhxÞd
K

xi � x

hx

� �

: ð6Þ

From Eqs. (5) and (6), density at xi can be estimated as

qðxiÞ ¼
X

x2ISðxiÞ

wx

ðhxÞd � ð2pÞd=2
exp

�jjxi � xjj2

2� ðhxÞ2

 !

ð7Þ

Through Eq. (7), we can note that Euclidean distance may

be small if the object x’s neighbour is very close to object

xi. In this situation, a large density estimation, qðxiÞ, may

give the wrong estimate. To overcome such a case, we

follow the reachability distance discussed in the LOF [12].

This concept for the reachability distance helps to prevent

the distance from xi to x for becoming too small for

neighbourhood space of xi.

Therefore, by replacing the Euclidean distance in Eq. (7)

with the reachability distance, the final density estimation

is defined as

qðxiÞ ¼
X

x2ISðxiÞ

wx

ðhxÞd � ð2pÞd=2
exp

�Rdkðxi; xÞ2

2� ðhxÞ2

 !

; ð8Þ

where Rdkðxi; xÞ is the reachability distance between points

xi and x, which is defined as the maximum value between

diskðxiÞ and dðxi; xÞ (i.e.

Rdkðxi; xÞ ¼ maxfdiskðxiÞ; dðxi; xÞg). Here diskðxiÞ is an

Euclidean distance between point xi and its kth neighbour,

and dðxi; xÞ is the Euclidean distance between points xi and

x.

4.2 Adaptive kernel width

We use KDE with a smooth kernel function to estimate

local density at a test point. In a traditional density esti-

mation problem using KDE, the kernel width (h) is fixed

for all points. But, a larger value of h in the high-density

regions may lead to over-smoothing, whereas a small value

of h may produce noisy estimation in the low-density

regions. So, the fixed value of kernel width in KDE is not

relevant for segregating outliers from normal samples.

Therefore, an optimal value of h is required, which may

depend on the particular locations in the dataset. To obtain

an optimal value of h, we use an adaptive kernel width

concept.

In the context of outlier detection, the ideal kernel width

settings are entirely the opposite of those with density

estimation problems. That is, the high-density regions

prefer a large width, while low-density regions prefer a

small width. First, in the high-density regions, some

interesting patterns may exist; they usually do not concern

us because they are not useful in separating outliers from

normal samples. Further, in high-density regions, the

variance of local outlining of the normal samples can also

be minimized by over-smoothing density estimation, which

is useful for detecting outliers. Secondly, the narrow width

in low-density regions would result in lower density esti-

mation because the contribution from a kernel’s ‘‘long tail’’

is likely to be significantly reduced. This can discern out-

liers and improve the sensitivity of the outlier detection

approach.

Now, we explain how the kernel width can be set

adaptively in our density estimation. For object xi, let

dkðxiÞ is the average distance to its kNNs, i.e.

dkðxiÞ ¼ 1
k �
P

j2NNkðxiÞ dðxi; xjÞ. In addition to this, we let

the maximum and the minimum values in the set

fdkðxiÞji ¼ 1; 2; 3; . . .ng are dk�max and dk�min, respec-

tively. Like [28], dk(x) is used as a rough estimation of

point’s density and a negative relation is formed between

width and dkðxÞ. In view of this, we define the kernel width

(hi) for the ith point as follows:

hi ¼ h½dk�max þ dk�min þ d� dkðxiÞ�; ð9Þ

where h (h[ 0) is a parameter that controls the smoothness

in the measurement, and d is a very small positive value

which ensures that the kernel width does not become zero

(in some situations, the value of dk�min could be zero). The

reasons for introducing the term ‘‘dk�max þ dk�min’’ in

Eq. (9) are as follows: first, the kernel width meets the

positive criterion, and second, the kernel width and the

numerator in the exponent of Eq. (8), even without the

scaling factor (h), would be on the same scale. This way of

setting kernel width in density estimation leads to two

results: (i) improves the discriminating power of the out-

lier-ness measure, which highlights the contrast between

normal and outlier samples, and (ii) smooths out the dis-

crepancy between normal samples.

4.3 NaNOD algorithm

Once the density is estimated at the location of all objects,

we propose a new method (NaNOD) for measuring the

extent to which the density of object x differs from its

neighbourhood, and defined as

NaNODkðxiÞ ¼
P

x2ISðxiÞ qðxÞ
qðxiÞ � jISðxiÞj

: ð10Þ
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The NaNOD algorithm is the proportion of the average

local neighbourhood density to the test point density. The

data points with higher density compared to its neigh-

bourhood are very likely to be surrounded by the dense

neighbours, indicating that point would not be an outlier,

and those with smaller density compared to its neighbours

is likely to be an abnormal point. The steps involved in the

NaNOD algorithm are described in Algorithm 2.

Algorithm 2 describes the proposed algorithm in detail,

where it employs the kNN graph as an input parameter. The

kNN graph is a digraph where each object is a vertex and is

linked with an outward path to its kNNs. In this graph, an

object has k edge outward to the elements of kNN and can

have zero, one, or more inbound edge. Through kNN

graph, we can easily get the kNNs, as well as the RNNs of

an object x with a computation cost of O(n). We generate a

extended neighbourhood space ISðxiÞ by merging NNkðxiÞ
and the RNNðxiÞ for each object xi 2 X and estimate the

density at the location of a test point on the basis of ISðxiÞ.
Then the NaNOD of each object is computed based on the

densities of objects in ISðxiÞ. As discussed in [29], users are
concerned in detecting top-o outliers by providing o as

their input parameter. The top-o outliers are achieved by

sorting NaNOD in decreasing order.

5 Experimental results and analysis

The purpose of this experimental study is to evaluate the

performance of our proposed algorithm-NaNOD, dis-

cussed in this paper. A comparative study on 3 two-di-

mensional synthetic datasets was conducted to demonstrate

the superiority and effectiveness of the proposed algorithm.

Also, the proposed algorithm was applied to eight real-

world datasets for further verification of the effectiveness of

the proposed method. In the experiment, the results of our

algorithm were compared with six popular outlier detection

algorithms (LOF [12], KDEOS [13], RDOS [14], SDO [15],

LGOD [16], and NOF [17]) since all these outlier detection

algorithms focus on unsupervised method of learning and

share a common parameter k. All algorithms are imple-

mented in R programming language and run on a machine

with an Intel(R) Core(TM) i7-4770 CPU at 3.40 GHz, 6 GB

RAM, and RAM frequency of 799.0 MHz.

5.1 Parameter settings

In almost all comparing algorithms, some hyper-parame-

ters are required. The default values are assigned as sug-

gested in the literature to avoid complications to

parameters in these outlier detection algorithms. For den-

sity estimation, our proposed approach used a Gaussian

kernel function with adaptive kernel width ðhiÞ, where h is

used as a scaling parameter that controls the smoothness of

the estimator, and d is a minimal positive number to ensure

that the kernel width is not zero. The value of h can be

chosen using some heuristic approaches. We followed

‘‘Silvermans rule-of-thumb’’ [28] to choose this parameter

where it shows that the value of h in the problem of density

estimation should be in the range of (0.5–1). We set h ¼
0:5 and d ¼ 10�6 in our experiments. Also, we have tested

our method by changing h ranges from 0.5 to 1 for both

synthetic and real datasets, but the results are not changed

significantly.

5.2 Performance metric

Most of the datasets are highly imbalanced, accuracy and

precision can be inappropriate as performance metrics. We

have used Area Under the Receiver Operating Character-

istic Curve (AUC) as a performance measure in this study

to evaluate the results as it is one of the most commonly

used and useful performance measures in the literature of

outlier detection [30]. The ROC graph can be determined

by evaluation of all possible thresholds, suggesting that the

number of samples correctly classified (abnormal scores)

known to be true-positive changes with the number of

false-positive samples (ordinary or inliers). A graph of the

Algorithm 2: NaNOD Algorithm
Input : Dataset X, number of outlier o and kNN graph
Output: top-o outlier in X

1 Using Algorithm 1 to obtain the k = NV .
2 for each x∈X do
3 Compute the NNk(x) using kNN graph.
4 Compute the RNN(x) using kNN graph.
5 Create a local neighbourhood space (ISk(x)) by combining NNk(p) and RNN(x).
6 Compute local density for x according to Eq. (8).
7 Compute the NaNODk(x) according to Eq. (10).
8 end
9 Sort NaNODk(x) in descending order.

10 Output top-o outlier.
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ROC can be summed up with a given metric called area

under the ROC curve (AUC). The value of AUC is between

0 and 1. A random algorithm would produce a curve close

to the diagonal (AUC score of 0.5), and the best method

produces the highest AUC score.

5.3 Comparative analysis

5.3.1 Results on synthetic datasets

To demonstrate the effectiveness of the proposed approach,

a comparative analysis was performed focused on three
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Fig. 1 Outliers detected by LOF, KDEOS, RDOS, SDO, LGOD, NOF, and NaNOD at k ¼ 16
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synthetic datasets. Different datasets were designed to take

into account the different sizes of the cluster, cluster den-

sity degrees, and cluster models to assess the proposed

approach in a harsh testing environment. Two critical

problems in outlier identification are low-density pattern

[20] and local density pattern [12], both of which are

included in the datasets. In prior studies [31–33], these

datasets were also taken into account. The outliers identi-

fied by each method are coloured red in the subsequent

studies. These datasets are described in detail below.

Data 1: This dataset includes four clusters of Gaussian

distribution with outliers distributed uniformly. Each

cluster has a distinct co-variance structure than others. Data

1 includes a total of 1080 objects, of which 80 are outliers

are distributed randomly. The original data and outliers

detected by each outlier detection algorithms are shown in

Fig. 1. From this figure, we can see that the outlier patterns

detected by LOF and NOF are similar and outperforms the

KDEOS. Both SDO and LGOD detected almost all global

outliers presented in the dataset. For local outlier detection,

LGOD detected more outliers compared to SDO and

showed a better performance compared to many comparing

algorithms. These results show that NaNOD can detect

both local and global outliers efficiently compared to other

comparing algorithms, and shows superior performance at

k ¼ 16 (i.e., natural value). Table 1 shows the AUC scores

of each algorithm on data 1. From this result, one can

notice that LGOD (at k ¼ 100) performs better than other

methods and shows slightly worse performance than the

best value achieved by NaNOD.

Data 2: This dataset was intended to deal with the local

density problem in which four clusters with significantly

different densities are used. The dataset includes a total of

1048 objects, of which 81 are located in the lower-left

cluster, 144 are in the lower-right clusters, 289 in the

upper-left cluster, 484 in the upper-right cluster, and 50 are

uniformly distributed as outliers. The original dataset and

outliers detected by all methods are depicted in Fig. 2.

From Fig. 2, it can be seen that LOF and other comparing

methods erroneously identify the normal samples in the

green region as outliers and actual outliers, in the area

where the density of its neighbours are significantly dif-

ferent from normal points as inliers. Even both NOF and

NaNOD cannot detect some real outliers too. From this

figure, we can also notice that SDO and LGOD can detect

local outliers with a small value of k, and with a larger

value of k, they can detect more global outliers. Our pro-

posed algorithm shows a better performance here and

achieved an AUC score of 0.9374 at k ¼ 9 (i.e., natural

value), which is highest among all algorithms, as shown in

Table 2. From this table, we can see that the detection

performance of KDEOS is very low compared to NaNOD

when the value of the parameter k is 9.

Data 3: This dataset was designed to address the problem

of low density where two clusters of different densities: a

small circular cluster of 200 objects and a cluster of

L-shaped with 800 objects are included. In this dataset, 80

outliers are distributed randomly. The original dataset and

outliers detected by all methods are shown in Fig. 3.

Table 3 depicts the AUC results for each method. From

this, it can be seen that the detection performance of

KDEOS is weak in comparison with all techniques. The

KDEOS algorithm incorrectly detects the points as outliers

located in the green regions, which belongs to the normal

dataset. Since the dataset has both manifold and spherical

clusters, the LGOD outperforms other approaches and

shows a competitive performance to NaNOD. Moreover,

one can note that the AUC score of our proposed algorithm

is close to 0.95, which is the highest among all algorithms.

5.3.2 Results on real datasets

Further, a series of experiments have been conducted on

eight real datasets to show the effectiveness of our pro-

posed algorithm. These real datasets were taken from the

UCI machine learning repository1. and used in the outlier

detection literature for performance evaluation. In specific,

two different types of datasets: the dataset in the literature

and dataset of semantically meaningful anomalous char-

acteristics are used. In this paper, the results are assessed

using both types of the dataset which brings into

Table 1 AUC scores of eight detection methods on data 1

LOF [12] KDEOS [13] RDOS [14] SDO [15] LGOD [16] NOF [17] NaNOD

k AUC k AUC k AUC k AUC k AUC k=NV AUC k=NV AUC

5 0.7616 5 0.5876 5 0.7059 5 0.7927 5 0.8046 16 0.8766 16 0.9089

16 0.8527 16 0.7294 16 0.8616 16 0.8402 16 0.8683

30 0.8641 30 0.7969 30 0.8473 30 0.8477 30 0.8774

50 0.8654 50 0.8711 50 0.8326 50 0.8681 50 0.8791

100 0.8804 100 0.8644 100 0.8153 100 0.8783 100 0.8827

1 http://www.archive.ics.uci.edu/ml/.
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consideration two pre-processing methods: a transforma-

tion, which uses Inverse Document Frequency (IDF) and a

normalization to transform all categorical values into a

number, normalizing all the values between 0 and 1.

Table 4 summarizes the dataset details showing that the

number of instances, dimensions, and percentage of out-

liers in a dataset differ significantly from others.

In Fig. 4, we present the first two principal components

of four selected datasets to demonstrate normal and outlier

distributions, in which red dots indicate normal points, and

blue dots indicate outliers. It seems that the outlines are

mostly distinct from normal samples in these datasets.

Most of these real datasets were used mainly for the

classification system evaluation. For the outlier detection
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Fig. 2 Outliers detected by LOF, KDEOS, RDOS, SDO, LGOD, NOF, and NaNOD at k ¼ 9
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problem, the minor class in each dataset was taken as

outliers, and the remaining were treated as inliers, for

instance, a dataset of Arrhythmia that is classified as

common or cardiovascular arrhythmias. There are a total of

14 kinds of arrhythmias, and 1 form is present, which

combines all other types. As we can see, the minor class as

outliers; we treat healthy persons as inliers and arrhythmic

patients as outliers. Similarly, in the InternetAds dataset,

where 13.90% of samples are labeled with Ads as outliers,

and remaining samples are regarded as normal or inliers.

The same technical trick was done on the other datasets

too.

In comparative studies, we run outlier detection algo-

rithms on each dataset and ranked the samples according to

their corresponding values. After computing the outlier-

ness score using these methods, we summarize the results

as an AUC score with different values of k on all eight

datasets in Table 5. Bold values in the table show the best

performance among all detection algorithms. For example,

our proposed method has the best AUC value, 0.95, with

the InternetAds dataset, while the highest value computed

by the comparative methods is close to 0.85. Since the

leukemia dataset contains only 72 observations, we show

the AUC results from 5 methods: LOF, KDEOS, RDOS,

SDO, and LGOD on k ¼ 5; 10; 20; 29 and 50 instead of

k ¼ 100 in Table 5. Similarly, we demonstrate the Prostate

dataset results with 84 samples only.

From these experimental results, we can see that com-

pared to widely used outlier detection algorithms, our

proposed approach, NaNOD has a dominant performance.

For example, for most of the datasets, NaNOD gained the

best results. For example, the maximum AUC score of

NaNOD on Musk version 1 is 0.805, which is significantly

higher than all comparative methods. In contrast, the

highest AUC score attained by comparing methods is

0.7268, which is significantly low. The NaNOD approach

for a Parkinson dataset reaches an AUC score of 0.9008 for

k ¼ 11 (i.e., natural value), which is a little worse than

RDOS where the best value, AUC score of a 0.9291 at

k ¼ 100, is obtained. But, it will take a longer time than

k ¼ 11.

Let us look at the Prostate dataset results. For this

dataset, the AUC value is 0.9015, attained by our proposed

approach. As k changes from 5 to 100, the AUC trends

indicate growth in all comparing algorithms. The RDOS

approach, which is based on the local density estimation,

shows a better performance in all comparative detection

methods. For NOF, which is based on the natural neighbour

concept, local outliers are detected with greater precision,

but for global outliers, their performance is not so high as

the NaNOD. A similar trend can be observed in other

datasets too.

The AUC scores obtained by each method over the HAR

dataset are low. The reason is that class distributions differ

insignificantly from one another, making it harder to

identify outliers when the nearest neighbours concept is

used. In this dataset, SDO outperforms with considerable

margin. Since SDO is proposed to face a large volume of

data which varies highly in shape and data patterns where a

lazy learner approach cannot work efficiently. In such a

case, it provides more deterministic results. In scenarios

that manage small samples, the benefit of SDO is not that

much evident. From the results shown in Table 5, it can

also be seen that SDO performances vary depending on the

specific dataset. In most of the datasets, it performs com-

petitive with other methods, and in a few cases, the per-

formance of SDO is below average. The reason is that SDO

is a fast learner model-based approach which makes it

more suitable for a large volume of data or data stream.

The most recent work related to this problem is LGOD,

which is based on the concept of gravitational force and

uses the LRF change rate to detect outliers. From the

results shown in Table 5, it is clear that the detection

performance of LGOD is better than many other comparing

algorithms. Further, we can notice that LGOD shows a

high average and small variance in AUC scores for most of

the dataset, which implies that LGOD is robust against the

parameter k, which is true. Since LGOD uses local resul-

tant force (LRF) concept and calculates outlying degree as

LRF change rate. More neighbours surround the objects

located in the dense region more uniformly. So the force’s

directions from their neighbours are inconsistent. As a

Table 2 AUC scores of eight detection methods on data 2

LOF [12] KDEOS [13] RDOS [14] SDO [15] LGOD [16] NOF [17] NaNOD

k AUC k AUC k AUC k AUC k AUC k=NV AUC k=NV AUC

5 0.8107 5 0.4680 5 0.85 5 0.8263 5 0.8487 9 0.9113 9 0.9374

9 0.84 9 0.6116 9 0.8650 9 0.8418 9 0.8597

20 0.8529 20 0.7826 20 0.8769 20 0.8607 20 0.8621

50 0.8559 50 0.8176 50 0.8874 50 0.8703 50 0.8683

100 0.8639 100 0.8567 100 0.8948 100 0.8789 100 0.8805
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result, it gives a small value of LRF. As the number of

neighbours increases, the LRF values for objects located in

the dense regions does not change with a significant

amount because of inconsistent directions of forces.

In most of the datasets, the KDEOS approach demon-

strates a comparatively poor performance. Since KDEOS is

a kernel-based approach where a selection of a kernel is

adapted for a particular problem. Further, the KDEOS was

developed as an ensemble technique and evaluated as an

individual here, which put it at a disadvantage (the RDOS

[14] also applied the same trick). In KDEOS, we set kmin ¼
kmax ¼ k for the easy comparison with other techniques.
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Fig. 3 Outliers detected by LOF, KDEOS, RDOS, SDO, LGOD, NOF, and NaNOD at k ¼ 17

2118 Neural Computing and Applications (2021) 33:2107–2123

123



The KDEOS complexity is Oðk:ðkmax � kmin þ 1Þ, which is

quadratic, in our formula, the cost reduces to O(k).

One more observation is that our proposed algorithm

works well in comparison to a similar method (RDOS),

where either they create a cluster of distinct density or the

locations where the density of the neighbourhood varies

significantly. In contrast to the NOF technique, our pro-

posed algorithm, NaNOD, can detect local and global

outliers simultaneously and achieve better performance,

which can be seen in the results shown in Table 5. Thus,

our results do not allow us to say that these techniques are

worst in general than others. If a technique is not com-

peting well with the arbitrary dataset, it does not mean that

it would not work well on some particular domains.

Experimental results in Table 5 show that single outlier

detection algorithms cannot outperform other detection

methods all the time. However, the overall performance of

NaNOD is better than comparing methods. Further, we

used a t test for analyzing the significant difference in the

results.

5.4 Statistical test results

To check a significant difference between the results of

outlier detection algorithms with a 95% confidence level

(a ¼ 0:05), we conducted a paired t � test. The t values for

each pair of methods are shown in Table 6. Each entity in a

paired t test is evaluated twice, which results in pairs of

observations. As with many statistical procedures, the

paired t test also has two competing hypotheses: null

hypothesis (H0) and the alternative hypothesis (H1). The

null hypothesis (H0Þ implies that in a specified metric, the

performance of each algorithm is the same. In contrast, the

alternative hypothesis (H1Þ defines a distinct performance

of at least one technique. If the calculated probability is

low (the value of p is below the level of confidence), then

the hypothesis ðH0Þ is discarded, which indicates that two

or more techniques are considerably different.

Let us assume that the performance score over the ith

dataset (out of N datasets) for two different methods is s1
i

and s2
i. In our study, we considered AUC as a performance

score. For ith dataset, the difference between two perfor-

mance scores can be computed as

di12 ¼ s1
i � s2

i: ð11Þ

Now, the average difference will be

d12 ¼
1

N

XN

i¼1

di12: ð12Þ

Then the t value for two methods will be

t12 ¼
d12

r12=
ffiffiffiffi
N

p ; ð13Þ

where r12 is the standard deviation over N datasets, which

is defined as

r12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

ðdi12 � d12Þ2
v
u
u
t : ð14Þ

This t statistic is distributed following t distribution of

N � 1 degrees of freedom. In Table 7, the associated

p values are given.

The ‘‘þ’’ sign indicates a substantial difference in the

performance and suggests that the row method is superior

to the column method at a 95% confidence level. The ‘‘-’’

sign shows a significant difference in the results at the same

(95%) confidence level and suggests that the column

Table 3 AUC scores of eight detection methods on data 3

LOF [12] KDEOS [13] RDOS [14] SDO [15] LGOD [16] NOF [17] NaNOD

k AUC k AUC k AUC k AUC k AUC k=NV AUC k=NV AUC

5 0.7279 5 0.6619 5 0.8542 5 0.7876 5 0.8159 17 0.9239 17 0.9559

10 0.8587 10 0.6956 10 0.8709 10 0.8468 10 0.8711

17 0.9024 17 0.7361 17 0.9034 17 0.9076 17 0.9263

50 0.9087 50 0.7819 50 0.9104 50 0.9137 50 0.9268

100 0.8797 100 0.8184 100 0.9044 100 0.9252 100 0.9374

Table 4 Description of real datasets for experimental analysis

Datasets Instances Dimensions Outliers

Parkinson’s Disease 756 754 192

Musk version 1 476 166 207

InternetAds 3264 1555 454

Prostate 84 12600 25

Arrhythmia 450 259 206

HAR 10299 561 1406

Leukemia 72 7129 25

Ovarian 202 15154 40
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method is superior to the corresponding row method, and

‘‘0’’ indicates there is no significant difference in the

results. From Table 8, we can see that the proposed method

improved the performance to a significant level. Since

some methods such as RDOS, SDO, and LGOD have a

similar hypothesis, the performance of these methods is

comparable. In conclusion, the proposed approach delivers

better performance for outlier identification than other

approaches for high-dimensional, imbalanced datasets, and

up to some extent, it solves the issues associated with

existing methods.

6 Conclusion and future work

In this article, we studied the shortcomings associated with

distance and density-based outlier detection algorithms and

proposed a new unsupervised outlier detection algorithm.

The proposed algorithm uses a weighted kernel density

estimation (WKDE) for density estimation at the location

of a test point. Further, we create an extended neighbour-

hood space by combining the k nearest neighbours and

reverse nearest neighbours of an object for modelling dif-

ferent data patterns. For better density estimation and to

improve the discriminating power between outliers and

normal samples, we use a Gaussian kernel function with an

adaptive kernel width. To solve the problem of parameter

selection in outlier detection, we use the concept of natural

neighbour (NaN), where it obtained a parameter (called

natural value) adaptively. The proposed algorithm calcu-

lates the outlying degree as a relative measure of the

average neighbourhood density to the density of a test

point. An object that is higher in density in comparison to

its neighbourhood will be a potential outlier with higher

probability and vice versa. With the use of synthetic and

real datasets, the proposed algorithm confirmed that the

outliers of local density patterns and low-density patterns

are accurately detected, and overcomes the issues in

(a) HAR (b) Leukemia

(c) Parkinson (d) Ovarian

Fig. 4 First two principle components for four selected datasets
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existing methods up to some extent. By comparing with

some state-of-the-art outlier detection algorithms, the pro-

posed algorithm has achieved better results in solving the

problem of outlier detection for different data patterns

(especially for low-density and local-density pattern) and

solve the problem of parameter selection. In the future, we

would like to explore our proposed algorithm in different

directions: first, we plan to create a neighbourhood space

Table 5 AUC results on real datasets

LOF [12] KDEOS [13] RDOS [14] SDO [15] LGOD [16] NOF [17] NaNOD

Dataset k AUC k AUC k AUC k AUC k AUC k ¼ NV AUC k ¼ NV AUC

Parkinson 5 0.8081 5 0.6854 5 0.9091 5 0.7415 5 0.8179 11 0.8309 11 0.9008

11 0.8277 11 0.7020 11 0.9168 11 0.7944 11 0.8583

20 0.8494 20 0.7958 20 0.9187 20 0.8237 20 0.8661

50 0.8820 50 0.8166 50 0.9187 50 0.8615 50 0.8883

100 0.8849 100 0.8183 100 0.9291 100 0.8831 100 0.8927

Musk version 1 5 0.4812 5 0.4607 5 0.7004 5 0.5039 5 0.6614 41 0.6514 41 0.8050

10 0.5137 10 0.4352 10 0.7084 10 0.5311 10 0.6721

20 0.5235 20 0.4253 20 0.7063 20 0.5848 20 0.6984

41 0.5291 41 0.4272 41 0.7111 41 0.6105 41 0.7129

100 0.5311 100 0.4935 100 0.7111 100 0.6461 100 0.7268

InternetAds 5 0.8000 5 0.7287 5 0.8408 5 0.8110 5 0.8010 82 0.9314 82 0.9505

10 0.8600 10 0.6995 10 0.8703 10 0.8188 10 0.8458

50 0.8327 50 0.7498 50 0.8775 50 0.8667 50 0.8962

82 0.8242 82 0.7887 82 0.8664 82 0.8521 82 0.8698

100 0.8085 100 0.7785 100 0.8413 100 0.8402 100 0.8599

Prostate 5 0.5000 5 0.4952 5 0.6201 5 0.5672 5 0.5956 31 0.8314 31 0.9015

10 0.5600 10 0.5415 10 0.6981 10 0.5938 10 0.6201

20 0.6100 20 0.6092 20 0.7887 20 0.6690 20 0.6845

31 0.7800 31 0.7249 31 0.8214 31 0.7251 31 0.7133

50 0.8100 50 0.7401 50 0.8481 50 0.7932 50 0.7682

Arrhythmia 5 0.7633 5 0.5846 5 0.6864 5 0.7465 5 0.7511 40 0.8401 40 0.8956

10 0.7636 10 0.6270 10 0.7086 10 0.7506 10 0.7534

20 0.7558 20 0.6629 20 0.7441 20 0.7547 20 0.7695

40 0.7554 40 0.6810 40 0.7456 40 0.7629 40 0.7970

100 0.7407 100 0.7257 100 0.7505 100 0.7389 100 0.8317

HAR 50 0.4759 50 0.5089 50 0.5335 50 0.5536 50 0.4926 218 0.4985 218 0.5418

100 0.4835 100 0.5184 100 0.5416 100 0.5608 100 0.5034

150 0.4852 150 0.5205 150 0.5433 150 0.5686 150 0.5182

218 0.4989 218 0.5273 218 0.5513 218 0.5843 218 0.5317

300 0.4993 300 0.5314 300 0.5642 300 0.6023 300 0.5785

Leukemia 5 0.4495 5 0.4235 5 0.6972 5 0.5401 5 0.6253 29 0.7734 29 0.8278

10 0.5104 10 0.4880 10 0.6906 10 0.5711 10 0.6377

20 0.6591 20 0.5136 20 0.7585 20 0.6062 20 0.6812

29 0.6808 29 0.5473 29 0.7874 29 0.6139 29 0.7309

50 0.6986 50 0.5814 50 0.7982 50 0.6724 50 0.7998

Ovarian 5 0.5462 5 0.5014 5 0.6210 5 0.5135 5 0.5786 26 0.5827 26 0.8129

10 0.5635 10 0.5112 10 0.6420 10 0.5378 10 0.5841

26 0.5925 26 0.5498 26 0.6529 26 0.5491 26 0.6172

50 0.6074 50 0.5603 50 0.6826 50 0.5925 50 0.6424

100 0.6098 100 0.5981 100 0.7419 100 0.6007 100 0.6975

Bold values indicate the best performance among all detection algorithms
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more accurately for better outlier detection performance.

Second, we will apply our proposed method in various real-

world applications, which incorporates financial fraud,

scientific analysis, advertising structures, web-log analyt-

ics, and so on.
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