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Abstract
Path finding models attempt to provide efficient approaches for finding shortest paths in networks. A well-known shortest

path algorithm is the Dijkstra algorithm. This paper redesigns it in order to tackle situations in which the parameters of the

networks may be uncertain. To be precise, we allow that the parameters take the form of special picture fuzzy numbers. We

use this concept so that it can flexibly fit the vague character of subjective decisions. The main contributions of this article

are fourfold: ðiÞ The trapezoidal picture fuzzy number along with its graphical representation and operational laws is

defined. ðiiÞ The comparison of trapezoidal picture fuzzy numbers on the basis of their expected values is proposed in terms

of their score and accuracy functions. ðiiiÞ Based on these elements, we put forward an adapted form of the Dijkstra

algorithm that works out a picture fuzzy shortest path problem, where the costs associated with the arcs are captured by

trapezoidal picture fuzzy numbers. Also, a pseudocode for the application of our solution is provided. ðivÞ The proposed

algorithm is numerically evaluated on a transmission network to prove its practicality and efficiency. Finally, a com-

parative analysis of our proposed method with the fuzzy Dijkstra algorithm is presented to support its cogency.

Keywords Picture fuzzy number � Trapezoidal picture fuzzy number � Score function � Shortest path problem �
Dijkstra algorithm

1 Introduction

The shortest path problem (SPP) is inspired by a natural

question on graphs, which may represent networks of

various kinds (e.g., transport networks, inventory systems,

or manpower allocation). The optimum paths minimize the

sum of ‘weights’ associated with its edges. These ‘weights’

may represent amounts like distances or lengths, and then,

the problem becomes a question on finding a shortest way

to travel from one point to another. This interpretation

justifies the name given to the general problem.

Some standard algorithms for solving SPPs have been

proposed by Dijkstra [16], Bellman [6], Floyd [21], and

Warshall [48]. But there are situations that need to imple-

ment a vague or uncertain knowledge about the ‘weights’

or ‘distances’ between the nodes of a network. For exam-

ple, the next day’s transportation scheme does not have

accurate a priori information. In an electricity market, the

power supply at each departure point, the demand at every

destination, and the transmission capacity need to be

assessed by experts’ judgments or probabilistic analysis. To

handle such type of vague information, Zadeh [51] intro-

duced fuzzy set (FS) theory. The analysis of fuzzy coun-

terparts of the SPP has been a popular topic since the fuzzy

SPP was first proposed by Dubois and Prade [19] in 1980.

TheDijkstra algorithm is amilestone in the analysis of the

SPP with crisp information. When arc lengths are crisp

numbers, it can be easily understood and applied. However,

in networks of ambiguous nature, the optimization methods

designed for crisp lengthsmay not be immediately employed
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when data are fuzzy numbers. The structure of the problem

produces objective values that are fuzzy numbers too. For

this reason, Klein [29] explained that ‘fuzzy shortest paths

(...) are hampered by the possibility that the fuzzy shortest

length may not correspond to an actual path in the network,’

a problem already noted by the pioneering Dubois and Prade

[19]. Therefore, some adaptations are required in order to

resort to the classical approach.We list but a few solutions in

the literature. Liu andKao [31] use a defuzzification function

known as Yager’s ranking index [50]. With the help of this

tool, they transform a problem where the arcs are weighted

by trapezoidal fuzzy numbers into a crisp formulation. Klein

[29] states new models which rely on fuzzy shortest paths

and multiple objectives. Peyer et al. [39] generalize the

Dijkstra’s SP algorithm and apply it to VLSI routing. Shu-Xi

[42] suggests an improved Dijkstra’s SP algorithm with

applications. Still other research papers investigate the fuzzy

Dijkstra algorithm for SPP, so that it can be applied under

several uncertain conditions [15, 26, 31, 38].

In fuzzy set theory, a system of fuzzy numbers (FNs) has

been defined in accordance with the classical system of real

numbers. They were introduced by Zadeh [52] in order to

handle imprecise numerical quantities. Their arithmetic

structure was drafted by Dubois and Prade [18], Ma et al.

[34], Mizumoto and Tanaka [32], and Nahmias [36],

among others.

Atanassov [5] initiated the idea of intuitionistic fuzzy set

(IFS) in 1986. This concept turns out to be more beneficial

than fuzzy sets in dealing with uncertainties and ambigui-

ties. The notion of FNs is extended to intuitionistic fuzzy

numbers (IFNs) by Burillo et al. [7]. The notions of IFNs

by various contexts were examined in [10, 25, 43]. Shu

et al. [43] gave operational laws for intuitionistic triangular

FNs and suggested an algorithm describing fault-tree

analysis in intuitionistic fuzzy environment. Zhang and Liu

[53] made use of triangular FN to indicate membership

functions, which led them to put forward the definition of

triangular IFN. Wang [27] proposed intuitionistic trape-

zoidal fuzzy number (ITFN) and interval ITFN. Wang and

Zhang [47] described the expected values for ITFNs.

Jianqiang and Zhong [28] defined some aggregation oper-

ators on ITFN. In relation with our targets, Rangasamy

et al. [41] proposed a method for finding the shortest

hyperpath in an intuitionistic fuzzy weighted hypergraph.

Mukherjee [35] considered Dijkstra’s algorithm to resolve

shortest path problem in networks with intuitionistic fuzzy

information. Porchelvi and Banumathy [40] proposed a

generalized Dijkstra’s shortest path algorithm with intu-

itionistic fuzzy information. Akram and Arshad [1] defined

bipolar fuzzy number and discussed the trapezoidal bipolar

fuzzy TOPSIS method.

Atanassov’s IFS theory has been effectively imple-

mented in various fields. However, there are real situations

when one also wants to emphasize a neutral part between

two extreme positions (cf., Alcantud and Laruelle [4] for

real motivations in a voting context). It is just natural to

add one more level of freedom to the description of IFSs in

order to achieve that goal. Such a generalization of IFSs,

known as picture fuzzy sets (PFSs), was suggested by

Cuong [12, 13], and published in 2013 [14]. Substantially,

PFS-based models are useful when one needs to incorpo-

rate the opinion of experts that provide vague answers in

the way: yes, abstain, no, and refusal. So far, some

development has been done in PFS theory. Singh [44]

examined the correlation coefficients for PFS and employ

them in clustering analysis. Son and Thong [45] gave a new

hybrid forecast method based on PF clustering. Thong and

Son [46] used PF clustering and the PF rule interpolation

technique to discuss multivariable fuzzy forecasting. For

additional notations and applications, the readers are

referred to [22, 33, 37]. Akram and Zafer [2] presented a

remarkable contribution for the interested readers.

In continuation with the prolific lines of research stated

above, this paper extends the traditional Dijkstra algorithm

so that we can find the minimum cost of the picture fuzzy

SPP (PFSPP). The PFSPP aims at providing decision makers

with the PFSP length and the shortest path in a network with

picture fuzzy arc lengths. For traveling each arc, the cost

parameters are assumed to be TPFNs. A pseudocode for this

problem is proposed on the basis of Dijkstra’s methodology.

Some operational laws and expected values of TPFNs and

the comparison between two TPFNs by score and accuracy

functions are explained. Finally, an example is provided to

validate the adopted approach and illustrate its usefulness

and productiveness. Our results are discussed in comparison

with existing models.

The outline of this paper is as follows. Section 2 gives

preliminaries and basic definitions. Picture fuzzy numbers

are the target of Sect. 3. We review their trapezoidal and

triangular formulations, their operations, and the method-

ologies for comparison. Section 4 explains formally the

problem that we investigate. We give the algorithm of

solution and explanations about its performance. Section 5

compares our study with the closest papers in the literature.

Section 6 gives an application to a transmission network. A

comparative analysis is the subject of Sect. 7. Section 8 puts

forward some discussion, and Sect. 9 concludes the paper.

2 Basic concepts and notations

A fuzzy set on a universal set X is a mapping A : X ! ½0; 1�;
where lAðxÞ is assigned to represent the membership degree

of x in A and is called the membership function of A [51].

Let us recall the notion of a fuzzy number. A fuzzy

number ~n; is a normal and convex fuzzy subset of X with
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piecewise continuous membership functions [19]. ‘Nor-

mality’ implies that there exists x 2 R such that
W

x l ~nðxÞ ¼
1 and ‘convexity’ means that for all x1; x2 2 X and

a 2 ½0; 1�;
l ~nðax1 þ ð1� aÞx2Þ� minðl ~nðx1Þ; l ~nðx2ÞÞ:

A triangular fuzzy number ~n [9] can be characterized by

three real numbers a� b� c; denoted by a triplet (a, b, c),

where the membership can be determined as follows:

l ~nðxÞ ¼

x� a

b� a
; a� x\b

c� x

c� b
; b� x� c

0; otherwise:

8
>>><

>>>:

A trapezoidal fuzzy number ~n [9] can be completely

characterized by four real numbers a� b� c� d;, and for

this reason it is often denoted as ~n ¼ ða; b; c; dÞ for brev-

ity— where the membership can be defined as follows:

l ~nðxÞ ¼

x� a

b� a
; a� x\b

1; b� x� c

d � x

d � c
; c\x� d

0; otherwise:

8
>>>>><

>>>>>:

For two arbitrary trapezoidal fuzzy numbers ~n1 ¼
ða1; b1; c1; d1Þ and ~n2 ¼ ða2; b2; c2; d2Þ; the addition [9] of

~n1 and ~n2 is defined as

~n1 þ ~n2 ¼ ða1 þ a2; b1 þ b2; c1 þ c2; d1 þ d2Þ:

To simplify the representation of FNs, some basic features

of FNs might be seen as a point that corresponds to the

typical value of the magnitude that the FN ~n represents. A

parameter utilized for such purpose is the expected value of

the fuzzy number ~n ¼ ða; b; c; dÞ; given by (see [20, 24])

EVð~nÞ ¼ 1

2

Z 1

0

�
f�1
~n ðaÞ þ g�1

~n ðaÞ
�
da;

where f ~n and g ~n are the sides of continuous fuzzy number.

Sometimes its generalization, called weighted expected

value, might be interesting. It is defined as

EVqð~nÞ ¼ ð1� qÞ
Z 1

0

f�1
~n ðaÞdaþ q

Z 1

0

g�1
~n ðaÞda;

where q 2 ½0; 1� (see [23]).

3 Picture fuzzy numbers

Fuzzy sets have been extended in many ways in order to

gain flexibility and applicability. The next interesting con-

cept will be the generalization that inspires our analysis.

Definition 3.1 [14] A picture fuzzy set A on universe X is

defined as

A ¼ fhz; lAðzÞ; gAðzÞ; mAðzÞijz 2 Xg;

where lAðzÞ; gAðzÞ; mAðzÞ 2 ½0; 1� are positive, neutral,

and negative membership functions, respectively, of ele-

ment z in A such that

0� lAðzÞ þ gAðzÞ þ mAðzÞ� 1; for every z 2 X:

Moreover, pAðzÞ ¼ 1� lAðzÞ � gAðzÞ � mAðzÞ is called

refusal membership degree of z to the set A.

Here, we define trapezoidal picture fuzzy numbers

(TPFNs) which capture more flexible information than

intuitionistic trapezoidal FNs. We also discuss their geo-

metric interpretations. First, we recall the concept of pic-

ture fuzzy number.

Definition 3.2 A picture fuzzy number ~n in the set of real

numbers R can be defined as a PFS

~n ¼ fðz; l ~nðzÞ; g ~nðzÞ; m ~nðzÞÞ : z 2 Rg, where

l ~nðzÞ ¼

f L~n ðzÞ; p1 � z\q

a ~n; q� z� r

f R~n ðzÞ; r\z� s1

0; otherwise;

8
>>><

>>>:

g ~nðzÞ ¼

gL~nðzÞ; p2 � z\q

b ~n; q� z� r

gR~n ðzÞ; r\z� s2

0; otherwise;

8
>>><

>>>:

m ~nðzÞ ¼

hL~nðzÞ; p3 � z\q

c ~n; q� z� r

hR~n ðzÞ; r\z� s3

0; otherwise:

8
>>><

>>>:

For each a 2 R, these elements are its positive, neutral, and

negative membership degrees, respectively.

In addition to the above definition, the following

restrictions are worth mentioning:

1. f L~n ðzÞ; gR~n ðzÞ; and hR~n ðzÞ are continuous monotone

increasing functions.

2. f R~n ðzÞ; gL~nðzÞ; and hL~nðzÞ are continuous monotone

decreasing functions.

3. f L~n ðzÞ; f R~n ðzÞ; gL~nðzÞ; gR~n ðzÞ; and hL~nðzÞ; hR~n ðzÞ are

left, right basis functions of positive, neutral, and

negative membership functions, respectively.

Thus, a PFN has three parameters: a positive membership

function l ~nðzÞ which shows the extent by which an expert

guesses that the element belongs to ðp1; q; r; s1Þ; a neutral

membership function g ~nðzÞ which expresses the extent to

which an element abstains to be in ðp2; q; r; s2Þ; and a
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negative membership function g ~nðzÞ which indicates the

extent of element to be not in ðp3; q; r; s3Þ; where

p1; p2; p3; q; r; s1; s2; s3 2 R: Also,

p ~nðzÞ ¼ 1� l ~nðzÞ � g ~nðzÞ � m ~nðzÞ

implies the extent of refusal of PFN. The smaller the p ~nðzÞ;
the more certain is the PFN. A PFN is represented graph-

ically in Fig. 1.

3.1 Trapezoidal picture fuzzy numbers

A PFN is of trapezoidal type if for each element z, the

shape of its three associated membership functions is

trapezoidal. Figure 2 displays a trapezoidal picture fuzzy

number. In formal terms, when

f L~n ðzÞ ¼
z� p1
q� p1

aq~n; f R~n ðzÞ ¼
s1 � z

s1 � r
a ~n;

gL~nðzÞ ¼
q� zþ b ~nðz� p2Þ

q� p2
; gR~n ðzÞ ¼

z� r þ b ~nðs2 � zÞ
s2 � r

;

hL~nðzÞ ¼
q� zþ c ~nðz� p3Þ

q� p3
; hR~n ðzÞ ¼

z� r þ c ~nðs3 � zÞ
s3 � r

;

for 0� a ~n; b ~n; c ~n � 1 satisfying a ~n þ b ~n þ c ~n � 1; the PFN

is called trapezoidal picture fuzzy number, denoted as,

~n ¼ hð½p1; q; r; s1�; a ~nÞ; ð½p2; q; r; s2�; b ~nÞ; ð½p3; q; r; s3�; c ~nÞi:

Remark 3.1.1 The trapezoidal picture FNs generalize

picture fuzzy intervals. In a TPFN ~n, sometimes we

observe

½p1; q; r; s1� ¼ ½p2; q; r; s2� ¼ ½p3; q; r; s3�:

Under such circumstances, it can be characterized as ~n ¼
h½p; q; r; s�; a ~n; b ~n; c ~ni: Therefore, ~n is in fact a picture fuzzy

interval [q, r], and p and s are the left and right extremes of

its spread, respectively. Observe also that the increase and

decrease in its membership functions are linear from p to

q and from r to s.

Example 3.1.1 Consider a trapezoidal picture fuzzy

number

~3 ¼ h½�1; 2; 4; 6�; 0:5; 0:1; 0:2i:

When z ¼ 2; its positive membership degree to be the

fuzzy number ~3 is 0.5, its neutral membership to be fuzzy

number ~3 is 0.1, its negative membership to be the fuzzy

number ~3 is 0.2, and its refusal membership to be the

fuzzy number ~3 is 0.2.

3.2 Triangular picture fuzzy numbers

A trapezoidal picture FN where q ¼ r reduces to a trian-

gular picture FN. Thus, the membership functions in a

triangular picture fuzzy number

~n ¼ hð½p1; q; r1�; a ~nÞ; ð½p2; q; r2�; b ~nÞ; ð½p3; q; r3�; c ~nÞi

can be defined as:

l ~nðzÞ ¼

a ~nðz� p1Þ
q� p1

; p1 � z� q

a ~nðr1 � zÞ
r1 � q

; q� z� r1

0; otherwise;

8
>>>>><

>>>>>:

g ~nðzÞ ¼

q� zþ b ~nðz� p2Þ
q� p2

; p2 � z� q

z� qþ b ~nðr2 � zÞ
r2 � q

; q� z� r2

0; otherwise;

8
>>>>><

>>>>>:

m ~nðzÞ ¼

q� zþ c ~nðz� p3Þ
q� p3

; p3 � z� q

z� qþ c ~nðr3 � zÞ
r3 � q

; q� z� r3

0; otherwise;

8
>>>>><

>>>>>:

for each z, where 0� a ~n; b ~n; c ~n � 1 such that

a ~n þ b ~n þ c ~n � 1:

Fig. 1 Picture fuzzy number ~n ¼ fðz;l ~nðzÞ; g ~nðzÞ; m ~nðzÞÞ : z 2 Rg

Fig. 2 Trapezoidal picture fuzzy number ~n ¼ fðz;l ~nðzÞ;
g ~nðzÞ; m ~nðzÞÞ : z 2 Rg in its compact representation ~n ¼ hð½p1; q;
r; s1�; a ~nÞ; ð½p2; q; r; s2�;b ~nÞ; ð½p3; q; r; s3�; c ~nÞi:
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Remark 3.2.1 The triangular picture fuzzy numbers can be

denoted by ~n ¼ h½p; q; r�; a ~n; b ~n; c ~ni; whenever
½p1; q; r1� ¼ ½p2; q; r2� ¼ ½p3; q; r3�;

where q is the mean value and p ¼ p1 ¼ p2 ¼ p3 and r ¼
r1 ¼ r2 ¼ r3 are the left and right extremes of its spread,

respectively. Similar to trapezoidal picture fuzzy numbers,

the increase and decrease in the membership functions are

linear from p to q and from q to r.

Intuitively, a PFN is of triangular type if the shape of

each of its membership function is triangular. Figure 3

displays a triangular picture fuzzy number.

Note 3.1 For understanding the concept of PFNs, the

following points are important.

1. In the strict sense of the definition of triangular picture

FN, a PFS having triplet ðl ~n; g ~n; m ~nÞ at more than one

point does not qualify for a triangular picture fuzzy

number. However, a trapezoidal picture fuzzy number

can accept this triplet at more than one point.

2. Membership functions having triangular and trape-

zoidal shapes are most often utilized to depict fuzzy

numbers, but other shapes may be desirable in certain

applications. Membership functions taking bell shapes

are quite typical; their form is displayed in Fig. 1.

3. The membership functions of PFNs are not necessarily

symmetric.

4. The PFN ~n is a normal or traditional PFN, if a ~n ¼
1; b ~n ¼ 0 and c ~n ¼ 0:

3.3 Operations on trapezoidal picture fuzzy
numbers

In this subsection, we discuss some arithmetic operations

on trapezoidal picture fuzzy numbers (TPFNs).

Definition 3.3 Let ~n1 ¼ h½p1; q1; r1; s1�; a ~n1 ; b ~n1 ; c ~n1i; and

~n2 ¼ h½p2; q2; r2; s2�; a ~n2 ; b ~n2 ; c ~n2i be two TPFNs, then

1. ~n1 þ ~n2 ¼ h½p1 þ p2; q1 þ q2; r1 þ r2; s1 þ s2�;
a ~n1 þ a ~n2 � a ~n1a ~n2 ; b ~n1b ~n2 ; c ~n1c ~n2i;

2. ~n1 � ~n2 ¼ h½p1p2; q1q2; r1r2; s1s2�; a ~n1a ~n2 ;

b ~n1 þ b ~n2 � b ~n1b ~n2 ; c ~n1 þ c ~n2 � c ~n1c ~n2i;
3. x~n1 ¼ h½xp1;xq1;xr1;xs1�; 1� ð1� a ~n1Þ

x;

ðb ~n1Þ
x; ðc ~n1Þ

xi; x� 0;

4. ~n1
x ¼ h½p1x; q1x; r1x; s1x�; ða ~n1Þ

x;

1� ð1� b ~n1Þ
x; 1� ð1� c ~n1Þ

xi; x� 0:

We state a theorem which illustrates the calculation

rules between two PFNs. The proof is straightforward and

therefore omitted.

Theorem 3.4 Let ~n1 ¼ h½p1; q1; r1; s1�; a ~n1 ; b ~n1 ; c ~n1i; and

~n2 ¼ h½p2; q2; r2; s2�; a ~n2 ; b ~n2 ; c ~n2i be two TPFNs. Then, the

following properties must hold:

1. ~n1 þ ~n2 ¼ ~n2 þ ~n1;
2. ~n1 � ~n2 ¼ ~n2 � ~n1;
3. xð~n1 þ ~n2Þ ¼ x~n1 þ x~n2; x� 0;

4. x1 ~n1 þ x2 ~n1 ¼ ðx1 þ x2Þ~n1; x1;x2 � 0;

5. ~nx1 � ~nx2 ¼ ð~n1 � ~n1Þx; x� 0;

6. ~nx1

1 � ~nx2

1 ¼ ~nx1þx2

1 ; x1;x2 � 0:

3.4 Comparison of trapezoidal picture fuzzy
numbers based on expected values

Consider the functions

f L~n ðzÞ ¼
z� p1
q� p1

a ~n; z 2 ½p1; qÞ; f R~n ðzÞ ¼
s1 � z

s1 � r
a ~n;

z 2 ðr; s1�

in a positive membership function l ~nðzÞ of PFN ~n; which
are strictly linear monotone increasing and strictly linear

monotone decreasing, respectively. Their inverse functions

f L~n
�1ðhÞ; and f R~n

�1ðhÞ can be defined, respectively, as,

f L~n
�1ðhÞ ¼ p1 þ

h

a ~n
ðq� p1Þ; h 2 ½0; a ~nÞ;

f R~n
�1ðhÞ ¼ s1 þ

h

a ~n
ðr � s1Þ; h 2 ½0; a ~nÞ:

The positive membership degree of TPFN ~n lies in

½a ~n; 1� b ~n � c ~n�:

Definition 3.5 The expected value of TPFN ~n ¼
h½p; q; r; s�; a ~n; b ~n; c ~ni is defined as

Ixð~nÞ ¼
1

2

� Z a ~n

0

�
ð1� xÞf L~n

�1ðhÞ þ xf R~n
�1ðhÞ

�
dh

þ
Z 1�b ~n�c ~n

0

�
ð1� xÞf L~n

�1ðhÞ þ xf R~n
�1ðhÞ

�
dh

�

;

where 0�x� 1: The value of x interprets the expert’s risk

preference; x[ 0:5 indicates the expert’s love risk;

Fig. 3 Triangular picture fuzzy number ~n ¼ fðz; l ~nðzÞ; g ~nðzÞ; m ~nðzÞÞ :
z 2 Rg in its compact representation ~n ¼ h½p; q; r�; a ~n;b ~n; c ~ni with

½p1; q; r1� ¼ ½p2; q; r2� ¼ ½p3; q; r3�
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x\0:5 tells the hate risk of expert; and x ¼ 0:5 expresses

the indifferent risk reference.

Next, we give a theorem which will be used subsequently

in defining score function and accuracy function of TPFNs.

Theorem 3.6 For TPFN ~n ¼ h½p; q; r; s�; a ~n; b ~n; c ~ni; the

expected value is I ~n ¼ 1
8
½ðpþ qþ r þ sÞ � ð1þ a ~n�

b ~n � c ~nÞ�:

Proof Let ~n ¼ h½p; q; r; s�; a ~n; b ~n; c ~ni be a TPFN. The

standard expected value of ~n can be computed as follows.

Ið~nÞ ¼ 1

4

� Z a ~n

0

�
f L~n

�1ðhÞ þ f R~n
�1ðhÞ

�
dh

þ
Z 1�b ~n�c ~n

0

�
f L~n

�1ðhÞ þ f R~n
�1ðhÞ

�
dh

�

¼ 1

4a ~n

� Z a ~n

0

�
p1 þ hðq� p1Þ þ s1 þ hðr � s1Þ

�
dh

þ 1

1� b ~n � c ~n

Z 1�b ~n�c ~n

0

�
p1 þ hðq� p1Þ

þ s1 þ hðr � s1Þ
�

dh

�

¼ 1

4

��

p1 þ s1 þ
q� p1 þ r � s1

2

	

a ~n

þ
�

p1 þ s1 þ
q� p1 þ r � s1

2

	

ð1� b ~n � c ~nÞ
�

¼ 1

8
½ðpþ qþ r þ sÞ � ð1þ a ~n � b ~n � c ~nÞ�:

h

A convenient way for comparing PFNs is by using score

function and accuracy function.

Definition 3.7 Let ~n ¼ h½p; q; r; s�; a ~n; b ~n; c ~ni be a TPFN,

then

Sð~nÞ ¼ I ~n � ða ~n � b ~n � c ~nÞ

is named as score function of ~n; where I ~n is the expected

value of ~n; and Sð~nÞ 2 ½�1; 1�:

Example 3.4.1 It is simple to observe that score function

defined above is imperfect. As an example, consider two

TPFNs ~n1 ¼ h½p; q; r; s�; 0:4; 0:3; 0:2i; and

~n2 ¼ h½p; q; r; s�; 0:4; 0:2; 0:3i. Although they have different
neutral and negative membership values, their score value

coincides. Thus, they are not comparable by means of the

function defined above.

The aforementioned fact consequently leads to define

accuracy function to improve the performance of the score

function:

Definition 3.8 Let ~n ¼ h½p; q; r; s�; a ~n; b ~n; c ~ni be a TPFN,

then

Hð~nÞ ¼ I ~n � ða ~n þ b ~n þ c ~nÞ

is named as accuracy function of ~n; where I ~n is the

expected value of ~n; and Hð~nÞ 2 ½0; 1�:

Based on the score and accuracy functions, we next

propose a comparison law for TPFNs. This procedure is

common to other models of uncertain knowledge [3].

Definition 3.9 Let ~n1 ¼ h½p1; q1; r1; s1�; a ~n1 ; b ~n1 ; c ~n1i; ~n2 ¼
h½p2; q2; r2; s2�; a ~n2 ; b ~n2 ; c ~n2i be two TPFNs with score

functions Sð~n1Þ; and Sð~n2Þ; and the accuracy functions

Hð~n1Þ; and Hð~n2Þ;, respectively, then

1. If Sð~n1Þ[ Sð~n2Þ, then ~n1 [ ~n2;

2. If Sð~n1Þ ¼ Sð~n2Þ, then

(a) if Hð~n1Þ[Hð~n2Þ; then ~n1 [ ~n2;

(b) if Hð~n1Þ ¼ Hð~n2Þ; then ~n1 ¼ ~n2:

Voting context The above definitions can be explained

by taking ‘voting’ as an example. The score function

Sð~nÞ ¼ I ~n � ða ~n � b ~n � c ~nÞ can represent the goal differ-

ence, while the accuracy function Hð~nÞ ¼ I ~n � ða ~n þ b ~n þ
c ~nÞ can be translated as effectual degree of voting. If Sð~nÞ
increases, it can be deduced that majority people will vote

for a ~n: On the other side, if Hð~nÞ increases, it can be

guessed that fewer people will refuse to vote. Thus, Hð~nÞ
indicates the effectual degree of voting.

4 Dijkstra algorithm for the picture fuzzy
shortest path problem

Dijkstra algorithm was first proposed in 1956 by Edsger

Dijkstra and published in 1959 [16]. The problem is to

determine the SP in weighted network from a source node

s to the rest of the nodes, where the weights associated with

links (i, j) are often mentioned as ‘costs.’ To deal with

uncertain circumstances, generalized Dijkstra algorithms

have been discussed by many researchers. In the picture

fuzzy environment, there is a need to deal with two

important issues.

1. The addition of two edges with picture fuzzy arc lengths.

2. The comparison of distance values related to two

distinct paths having edge lengths depicted by PFNs:

Based on their expected values, the fuzzy Dijkstra algo-

rithm can be extended to a picture fuzzy Dijkstra algo-

rithm. We do this in our next subsection. Afterward, we

illustrate our algorithm with a fully developed example.
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4.1 Our extension of the Dijkstra algorithm

The algorithm identifies all nodes with their own states,

where the state of a node consists of two specificities,

namely distance value and status label. The ‘distance

value’ of node represents a measure of its distance from

source s, and the ‘status label’ is a feature specify whether

distance value of a node is equal to the shortest distance. If

yes, status label is permanent; otherwise, it is temporary.

The algorithm retains and upgrades the nodes incremen-

tally. At every step, a single node is assigned as current.

The pseudocode for the proposed method is presented

below in Algorithm 4.1.

The set of notations used in Algorithm 4.1 are explained

in Table 1.

4.1.1 Description and complexity of Algorithm 4.1

At very initial stage, the algorithm specifies the distance

values of all nodes in Lines 2–5; therefore, the time com-

plexity of Lines 2–5 is O(n), where n is total number of

nodes in G. Line 6 assigns labels for starting/source node,

indicating that the node has no predecessor. The temporary

labeled nodes are printed in Line 7 in a set T. The block of

Lines 8�22 is the main nested loop of Algorithm 1. Lines

8�12 compute the temporary labels for each node j,
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provided that it is not yet permanently labeled. This stage

involves the defuzzification of TPFNs based on their

expected values. The for loop on Line 14 runs n times;

therefore, its complexity is O(n). Ignoring the constant, the

running time of if conditional in Lines 10�12 is O(n). Line

15 provides a node with the lowest distance value alt. The

comparison of distance values is calculated in Lines

16�19: Line 20 finally updates the status label of respec-

tive nodes. The running time of block 8�22, which is

nested between two loops of sizes n, is Oðn2Þ: If we still

reach any temporary labeled node, then return according to

Line 23.

4.1.2 Presentation of the algorithm

The algorithm steps are as follows:

1. Allocate distance value of zero to node s and mark as

permanent node, i.e., (0, p), and to every other node,

assign 1 as a distance value and mark them as

temporary, i.e., ð1; tÞ: Nominate node s as current

node.

2. Consider a set T consisting of nodes having temporary

labels which can be attained from current node through

a link (i, j). Upgrade distance values, which is based on

defuzzification of PFNs associated with links. For any

j 2 T ; the node j with dj as distance value is

overwritten as minfdj; di þ cijg: Find out a node

j having lowest distance value within all nodes in T,

name it alt. Upgrade the node alt with permanent label

and designate it as a current node.

3. If we cannot reach any temporary labeled node, then all

of the temporary labels turn into permanent labels and

we are done. Otherwise, we return to step 2.

Thus, using this algorithm, one can find out the cost of the

SP from a sole node to a unique destination node. As soon

as the SP to the target node is evaluated, the algorithm will

be stopped.

5 Significance of the proposed method

This section is devoted to describe a comparison of our

proposed method with other well-established techniques. In

passing, we overview previous approaches to successful

formulations of the shortest path problem in uncertain

environments, a literature that we contribute to with our

study.

5.1 Fuzzy shortest path problem defined
by Okada [38]

Dubois and Prade [17] defined the possibility indices of

comparison. Okada [38] used this concept to provide a

modified definition by means of possibility variables. Then,

he first solved SPP in an uncertain environment. His

approach took interactivity into consideration to compare

fuzzy path lengths. He then introduced the concept of

degree of possibility for each arc on network. Okada’s

algorithm used a-level sets of FNs combined with the

technique of the multiple labeling method.

5.2 Fuzzy shortest path problem defined
by Deng et al. [15]

A canonical representation of operations on triangular

fuzzy numbers was introduced by Chou [11], which is

based on graded mean integration representation. This

technique allowed Deng et al. [15] to give a fresh insight to

the SPP in an uncertain environment. They revisit the fuzzy

Dijkstra algorithm. Their approach determines the addition

of two edges by canonical representation, whose result is a

crisp number. Their way to compare the distance between

two different paths has an advantage in the manner that the

shortest path is obtained without ranking FNs.

5.3 Intuitionistic fuzzy shortest path problem
defined by Mukherjee [35]

The concept of IF value was given by Xu [49]. Mukherjee

[35] considered networks whose cost parameters are IF

Table 1 Set of notations used in

Algorithm 4.1
Notation Description

T Set of temporary labeled nodes

P Set of permanently labeled nodes

i A node which has lowest distance value from source node s

j A variant

dj Updated distance label from s

cij Cost of the link (i, j)

Pprevious[j] Closest node to current j along the shortest path from s

alt Alternative variant of distance employed by way of comparison
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values. For solving the SPP that arises, the methodology of

Mukherjee follows the definition of score function of an IF

value defined byChen and Tan [10] and its accuracy function

as given by Hong and Choi [25]. Based on these two func-

tions, Xu and Yager [49] defined an order relation to rank IF

values. Then, Mukherjee utilized this ranking mechanism

and used the IF hybrid geometric operator introduced by Xu

[49] to aggregate the IF values. He used the above imple-

mentations to search out shortest paths in the IF environment

by following the spirit of the Dijkstra algorithm.

5.4 Intuitionistic fuzzy shortest path problem
defined by Geetharamani and Jayagowri [22]

Hyung et al. [30] defined a similarity measure between

fuzzy sets and elements. With the avail of this tool,

Geetharamani and Jayagowri [22] utilized the highest

similarity degree to identify the shortest path in a network

with intuitionistic trapezoidal FNs. They introduced the

IFSP length formula on two path length by using half-

inverse membership and nonmembership function. The

rankings given to the paths are based on the highest simi-

larity degree, which helps the decision makers to identify

the preferable path alternatives.

5.5 A view of the proposed Dijkstra algorithm

In contrast with the aforementioned approaches, the tech-

nique proposed in this paper is more efficient to find out a

shortest path. The main advantage of using expected values

of FNs is that they produce just a single value. Decision-

making can be done easily without the process of ranking

FNs. This is computationally beneficial for solving SPPs in

an environment with highly uncertain parameters. Table 2

summarizes the features of four types of models that may

be used in the treatment of SPPs.

We argue that picture fuzzy sets have advantages over

intuitionistic fuzzy sets and ordinary fuzzy sets, as they

provide a more realistic picture of practical situation.

Consequently, our technique deals with SPP from a source

node to destination node for a network with trapezoidal

picture fuzzy arc lengths.

The picture fuzzy shortest path analysis proceeds in the

following way. The literature provides a solution to the

problem of generating a single value of a fuzzy variable

V defined by evidence ‘V in fuzzy number’ (Chanas and

Nawakost [8]). Subsequently, Heilpern [24] proved that the

generative expectation of the fuzzy variable V induced by

evidence ‘V in fuzzy number’ is equal to the expected value

of FN. Since then, the concept of expected value of FN has

been studied widely and used in a number of decision-

making approaches. Jianqiang and Zhang [28] evaluated the

expected values of IFNs and applied them to decision-

making.

• Our method first modifies the concept of expected

values to TPFNs. We establish the novel results for

expected values of TPFNs.

• We use this way of implementations to solve a well-

known shortest path algorithm, the so-called Dijkstra

algorithm, in which the process of defuzzification of

TPFNs assigned to arcs of network is done by

computing their expected values.

• In order to determine the shortest distance value, the

comparison of TPFNs is worked out in terms of score

function, based on expected values of TPFNs, which

leads directly to a crisp number.

Hence, our proposed implementation is logically sound,

more efficient and easy to compute when compared with

other fuzzy shortest path approaches.

6 Transmission network application

In this section, we apply the proposed solution to an

example with synthetic data. Consider a small-sized

transmission network whose edges are assigned to TPFNs.

It is displayed in Fig. 4, and the TPFNs with the mem-

bership values corresponding to each arc are given in

Table 3. The shortest path starting with node (1) and whose

Table 2 Comparison with other fuzzy or crisp models

Shortest path problem under

models

Edgesnlinks Positive membership

degree

Negative membership

degree

Neutral membership

degree

Crisp set Crisp number Unable to deal Unable to deal Unable to deal

Fuzzy set Fuzzy number Able to handle Unable to deal Unable to deal

Intuitionistic Intuitionistic Able to handle Able to handle Unable to deal

Fuzzy set Fuzzy number

Picture fuzzy set Picture fuzzy

number

Able to handle Able to handle Able to handle

Neural Computing and Applications (2021) 33:1329–1342 1337

123



terminal node is (7) will be determined by the application

of our Algorithm 4.1.

Let T be the set of temporary labeled nodes, and let

P represent the set of permanent labeled nodes. At the

initial stage, the source node (1) is transferred from set T to

set P, because it has zero distance from (1) to (1) which is

the shortest. The steps to identify the shortest path in the

network described by Fig. 4 and to work out the shortest

distance value among all paths are explained as follows:

Step 1: We calculate the distance from the source node

(1) to its accessible neighbors (2) and (3) (see Fig. 4). So

we have two routes, one is ð1Þ ! ð2Þ and other is ð1Þ !
ð3Þ: The use of expected values of TPFNs in the shortest

path finding problem is explained as follows:

For the first route ð1Þ ! ð2Þ : h½2; 3; 4; 6�; 0:6;
0:1; 0:2i ¼ ~n1; say (see Table 3), the distance value can be

obtained as

I ~n1 ¼
1

8
½ð2þ 3þ 4þ 6Þ � ð1þ 0:6� 0:1� 0:2Þ�

¼ 1

8
ð15� 1:3Þ ¼ 2:4375:

Sð ~n1Þ ¼ I ~n1 � ð0:6� 0:1� 0:2Þ
¼ 2:4375� 0:3 ¼ 0:73125:

For the second route ð1Þ ! ð3Þ :
h½17; 10; 13; 14�; 0:3; 0:15; 0:1i ¼ ~n2; say (see Table 3), the

distance value can be obtained as

I ~n2 ¼
1

8
½ð17þ 10þ 13þ 14Þ � ð1þ 0:3� 0:15� 0:1Þ�

¼ 1

8
ð44� 1:05Þ ¼ 5:775:

Sð ~n2Þ ¼ I ~n2 � ð0:3� 0:15� 0:1Þ
¼ 5:775� 0:05 ¼ 0:28875:

Since the comparison law for TPFNs is based on the score

function, we conclude that ~n2\ ~n1 as Sð ~n2Þ\Sð ~n1Þ;, i.e.,
0:28875\0:73125: Hence, the shortest route in this step is

ð1Þ ! ð3Þ: Thus, node (3) becomes permanently labeled

and moved to the set P.

Step 2: We consider ð1Þ ! ð3Þ as current path. From

ð1Þ ! ð3Þ to its neighbors (2), (4), and (6), the shortest

distance is computed to each route. The route ð1Þ ! ð3Þ !
ð2Þ has length 1.00875, while in step 1, ð1Þ ! ð2Þ has

length 0.73125, which is smaller. So the status label of the

node (2) is temporary, i.e., (0.73125, t). We notice that

neither of the distance values in this step is smaller than

that of the path ð1Þ ! ð2Þ; calculated in the previous step.

Thus, the node (2) is labeled permanent and moves from

T to P.

Step 3: The path ð1Þ ! ð2Þ is considered as current. In

this step, we have two possible routes ð1Þ ! ð2Þ ! ð4Þ and
ð1Þ ! ð2Þ ! ð5Þ: The status label of node (4) remains

fixed, and the node (5) is assigned by (1.03375, t). Till

now, node (6) has the smallest distance value, so its status

label is permanent, i.e., (0.9486, p).

Step 4: The current path is ð1Þ ! ð3Þ ! ð6Þ: We obtain

single route ð1Þ ! ð3Þ ! ð6Þ ! ð7Þ with length 2.285475.

In this step, node (5) moves from T to P with status label

(1.03375, p).

Fig. 4 Transmission network. See Table 3 for the arc lengths

Table 3 Arc lengths of the

network in Fig. 4
Arc Trapezoidal picture fuzzy number Arc Trapezoidal picture fuzzy number

(1, 2) h½2; 3; 4; 6�; 0:60; 0:10; 0:20i (3, 6) h½17; 20; 22; 24�; 0:40; 0:25; 0:10i
(1, 3) h½7; 10; 13; 14�; 0:30; 0:15; 0:10i (4, 5) h½7; 8; 9; 10�; 0:55; 0:15; 0:25i
(2, 4) h½10; 11; 14; 15�; 0:60; 0:10; 0:20i (4, 6) h½3; 5; 7; 9�; 0:45; 0:00; 0:30i
(2, 5) h½4; 5; 6; 7�; 0:50; 0:40; 0:00i (4, 7) h½12; 13; 15; 17�; 0:60; 0:10; 0:20i
(3, 2) h½1; 5; 7; 11�; 0:50; 0:20; 0:10i (5, 7) h½15; 19; 20; 21�; 0:40; 0:15; 0:20i
(3, 4) h½6; 9; 11; 13�; 0:60; 0:00; 0:40i (6, 7) h½12; 15; 17; 18�; 0:55; 0:25; 0:15i

Fig. 5 Shortest path in the transmission network described in Fig. 4
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Step 5: ð1Þ ! ð2Þ ! ð5Þ is being considered as current

path. The node (7) is allocated with temporary status label

(1.525937, t), and (4) is labeled permanently as

(1.45875, p).

Step 6: The current path is ð1Þ ! ð3Þ ! ð4Þ: Proceeding
in same manner, we conclude that none of the distances

from the current path to its neighbors is shorter than ð1Þ !
ð2Þ ! ð5Þ ! ð7Þ; which has previously calculated with

distance value 1.5259375. Finally, the node (7) is dragged

to the set P.

At the final stage, the set T turns into empty set. Our

search is complete. We display all the computations in

detail in Table 4.

The shortest path ð1Þ ! ð2Þ ! ð5Þ ! ð7Þ found

according to the proposed picture fuzzy Dijkstra algorithm

is highlighted in Fig. . Its length is 1.5259375, which is

smallest among the lengths of all other possible paths.

7 Comparative analysis

In this section, a comparative analysis of our approach with

the shortest path technique suggested by Deng et al. [15] is

presented. We apply our method to the numerical example

of transportation network illustrated in [15, 26]. We com-

pare the results to verify the validity of the proposed

implementation.

Consider a transportation network as displayed in Fig. 6

with 23 nodes and 40 arcs. It is assumed that the arc lengths

of the Network 6 are trapezoidal fuzzy numbers with

membership functions as shown in Table 5. The shortest

Table 4 Steps of the picture fuzzy Dijkstra algorithm 4.1 for the network in Fig. 4

Current path Distance value Temporary status Permanent status

Initial stage T ¼ fð2Þ; ð3Þ; ð4Þ; ð5Þ; ð6Þ; ð7Þg P ¼ fð1Þg

(1) (1)!(2)=0.73125 (2) : (0.73125, t) (1) : (0, p)

(1)!(3)=0.28875 (3) : (0.28875, t) (3) : (0.28875, p)

(1)!others=1
(1)!(3) (1)!(3)!(2)=1.00875[ 0.73125=(1)!(2) (2) : (0.73125, t) (1) : (0, p)

(1)!(3)!(4)=1.45875 (4) : (1.45875, t) (3) : (0.28875, p)

(1)!(3)!(6)=0.9486 (6) : (0.9486, t) (2) : (0.73125, p)

(1)!(3)!others=1
(1)!(2) (1)!(2)!(4)=3.16875[ 1.45875=(1)!(3)!(4) (4) : (1.45875, t) (1) : (0, p)

(1)!(2)!(5)=1.03375 (6) : (0.9486, t) (3) : (0.28875, p)

(1)!(2)!others=1 (5) : (1.03375, t) (2) : (0.73125, p)

(6) : (0.9486, p)

(1)!(3)!(6) (1)!(3)!(6)!(7)=2.285475 (4) : (1.45875, t) (1) : (0, p)

(1)!(3)!(6)!others=1 (5) : (1.03375, t) (3) : (0.28875, p)

(7) : (2.285475, t) (2) : (0.73125, p)

(6) : (0.9486, p)

(5) : (1.03375, p)

(1)!(2)!(5) (1)!(2)!(5)!(7)=1.5259375\ 2.285475=(1)!(3)!(6)!(7) (4) : (1.45875, t) (1) : (0, p)

(1)!(2)!(5)!others=1 (7) : (1.5259375, t) (3) : (0.28875, p)

(2) : (0.73125, p)

(6) : (0.9486, p)

(5) : (1.03375, p)

(4) : (1.45875, p)

(1)!(3)!(4) (1)!(3)!(4)!(5)=2.191875[ 1.03375=(1)!(2)!(5) (7) : (1.5259375, t) (1) : (0, p)

(1)!(3)!(4)!(6)=1.97625[ 0.9486=(1)!(3)!(6) (3) : (0.28875, p)

(1)!(3)!(4)!(7)=2.1[ 1.5259375=(1)!(2)!(5)!(7) (2) : (0.73125, p)

(1)!(3)!(4)!others=1 (6) : (0.9486, p)

(5) : (1.03375, p)

(4) : (1.45875, p)

(7) : (1.5259375, p)

Final stage T ¼ fg P ¼ fð1Þ; ð2Þ; ð3Þ; ð4Þ; ð5Þ; ð6Þ; ð7Þg
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path starting with node (1) and whose terminal node is (23)

is determined by application of our Algorithm 1. The

computation of distance values requires defuzzification of

the FNs assigned to each arc. This procedure is done by

computing the expected values of FNs.

The comparative study provides the same shortest path,

with approximately equal shortest distance value, than the

solution in [15]. The results are shown in Table 6.

Hence, the case analysis assures that the decision results

of Deng et al. [15] are consistent with our proposed

approach, which endorses the authenticity of our method.

8 Discussion

Picture fuzzy sets deal with one more level of freedom than

the levels in the description of IFSs. This is done with the

inclusion of a neutral part ðgÞ between two extreme posi-

tions ðlÞ and ðmÞ with the constraint lþ gþ m� 1: To cope

with several physical quantities, we use a number system in

PFS theory, known as PFNs, which can be viewed as a set

of real numbers near a given real number or interval. For

the reasons stated above, PFNs can express uncertainty and

vagueness in parameters more practically than FNs and

IFNs. They can be effectively used for computations too.

The investigation on shortest paths stands high among

the classic problems in graph theory. Many algorithms

have been proposed in the literature [6, 16, 21, 48] in order

to offer a solution for the SPP in a network. A prevailing

algorithm is Dijkstra algorithm [16]. It has been examined

in fuzzy and intuitionistic fuzzy models, where the costs

assigned to the arcs were FNs and IFNs, respectively. The

PF Dijkstra algorithm that we investigate deals with real

situations where the arc lengths are TPFNs. This method

differs from previous approaches not only because of this

reason, but also because it takes into account a neutral

membership grade in addition to the positive and negative

membership values in the evaluation of shortest paths.

Methods that compare FNs and IFNs include the

application of score functions [18, 28, 35, 36], graded mean

Fig. 6 Transportation network. See Table 5 for arc lengths

Table 5 Arc lengths of the

network in Fig. 6
Arc Membership function Arc Membership function Arc Membership function

(1, 2) (12, 13, 15, 17) (7, 10) (9, 10, 12, 13) (15, 18) (8, 9, 11, 13)

(1, 3) (9, 11, 13, 15) (7, 11) (6, 7, 8, 9) (15, 19) (5, 7, 10, 12)

(1, 4) (8, 10, 12, 13) (8, 12) (5, 8, 9, 10) (16, 20) (9, 12, 14, 16)

(1, 5) (7, 8, 9, 10) (8, 13) (3, 5, 8, 10) (17, 20) (7, 10, 11, 12)

(2, 6) (5, 10, 15, 16) (9, 16) (6, 7, 9, 10) (17, 21) (6, 7, 8, 10)

(2, 7) (6, 11, 11, 13) (10, 16) (12, 13, 16, 17) (18, 21) (15, 17, 18, 19)

(3, 8) (10, 11, 16, 17) (10, 17) (15, 19, 20, 21) (18, 22) (3, 5, 7, 9)

(4, 7) (17, 20, 22, 24) (11, 14) (8, 9, 11, 13) (18, 23) (5, 7, 9, 11)

(4, 11) (6, 10, 13, 14) (11, 17) (6, 9, 11, 13) (19, 22) (15, 16, 17, 19)

(5, 8) (6, 9, 11, 13) (12, 14) (13, 14, 15, 18) (20, 23) (13, 14, 16, 17)

(5, 11) (7, 10, 13, 14) (12, 15) (12, 14, 15, 16) (21, 23) (12, 15, 17, 18)

(5, 12) (10, 13, 15, 17) (13, 15) (10, 12, 14, 15) (22, 23) (4, 5, 6, 8)

(6, 9) (6, 8, 10, 11) (13, 19) (17, 18, 19, 20)

(6, 10) (10, 11, 14, 15) (14, 21) (11, 12, 13, 14)

Table 6 Comparative analysis

of the decision results
Methods Shortest path Shortest distance value

FDA by Deng et al. [15] ð1Þ ! ð5Þ ! ð11Þ ! ð17Þ ! ð21Þ ! ð23Þ 52.5001

Proposed method ð1Þ ! ð5Þ ! ð11Þ ! ð17Þ ! ð21Þ ! ð23Þ 52.5
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integration representations based on canonical form [15],

order relations [38], specific comparison indices [50], etc.

In this study, the comparison of TPFNs on the basis of their

expected values is investigated by defining score and

accuracy functions. This advantageous way to compare

PFNs deems the PF Dijkstra algorithm more powerful to

perform qualitative and quantitative studies of different

networks.

Concerning applicability, it should be mentioned that

depending on weather and other unanticipated factors, the

travel time between two cities may be expressed by PF

variables even if their geometric distance remains fixed.

Hence, our approach is more flexible and general, as dif-

ferent PFNs can be chosen by decision makers according to

the different costs associated with arcs of networks.

9 Conclusions and future research

Picture fuzzy sets possess many advantages over IFSs

because their membership functions are inherently

ambiguous, and they can be modeled to minimize the

consequences of uncertainty in intuitionistic fuzzy logic

systems. Dijkstra’s algorithm is widely known and studied

in various disciplines. The introduction described several

research papers that extend its applicability to fuzzy values

[15, 26, 31, 38] and intuitionistic fuzzy values [22, 35, 41].

This paper has enlarged the scope of application of the

Dijkstra algorithm so that it can solve SPPs for networks

with picture fuzzy arc lengths. It can be dutifully employed

for both triangular picture fuzzy numbers and TPFNs. The

operational laws and expected values of TPFNs and the

comparison of two TPFNs by score and accuracy functions

have been introduced. This most general type of FNs has

been used to capture the unreliable costs of traveling across

every arc in networks. TPFNs can accommodate both the

optimistic and pessimistic beliefs of the experts. To illus-

trate and validate the proposed algorithm, we have carried

out a step-by-step practical application to a small-sized

fictitious network and discussed our results by comparing

with existing methods.

Future developments of this study should include the

investigation of more effective solution methods for

PFSPPs and additional work into the extensions and

applications of the proposed method to other domains.
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