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Abstract
This study presents a novel implementation of evolutionary heuristics through backtracking search optimization algorithm

(BSA) for accurate, efficient and robust parameter estimation of power signal models. The mathematical formulation of

fitness function is accomplished by exploiting the approximation theory in mean squared errors between actual and

estimated responses, as well as, true and approximated decision variables. Variants of BSA-based meta-heuristics are

applied for parameter estimation problem of power signals for identification of amplitude, frequency and phase parameters

for different scenarios of noise variation. Analysis of performance evaluation for BSAs is conducted through exhaustive

statistical observations in terms of mean weight deviation, root mean square error and Thiel inequality coefficient-based

assessment metrics, as well as, ANOVA tests for statistical significance.

Keywords Parameter estimation � Power signals � Evolutionary algorithm � BSA

1 Introduction

In electrical power supply systems, frequency is a signifi-

cant, as well as, fundamental parameter that specifies sta-

bility between power generation and power consumption [1].

Thus, the frequency component can be considered as a

functional gauge to identify anomalous operating conditions

[2]. In order to ensure regulated power supply to the clients

and the utilities, it is mandatory requirement to scrutinize

power quality of electrical grid through parameter estimation

of power signal i.e., amplitudes, phases and frequencies

[3, 4]. Research community has shown considerable interest

in parameter estimation of power signal in power planning

and distribution systems, for instance, Xu and Ding [5]

presented the stochastic gradient (SG) and least squares (LS)

procedures, Xu et al. [6] developed the hierarchical param-

eter estimation method, Li et al. [7] applied the recon-

structing time sample techniques, Cao and Liu [8] gave the

concept of the hierarchical identification approach, Phan

et al. [3] described dedicated state space method, Chen et al.
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[9, 10] provided fast Fourier transform methods and

Chaudhary et al. [11–13] provided the scheme of fractional

adaptive filtering. The parameters ofmodeling power signals

are identified by variety of the procedures introduced

recently [14–20]. These are all deterministic procedureswith

their own perks, benefits and limitations while stochastic

computing paradigm based on bioinspired heuristic looks

promising to be explored exhaustively in the domain of

power signal modeling.

The backtracking search optimization algorithm (BSA)-

based evolutionary computing solvers have been explored

to solving many problems arising in engineering and

technological domains. A few latest applications of these

schemes are in fluid dynamics [21], nanotechnology [22],

wireless networks [23], system identification [24], power

electronics [25], control [26], electric machines [27], eco-

nomic load dispatch problems [28], nonlinear electric cir-

cuits [29], signal processing [30], biomedical [31],

bioinformatics [32], finance [33]. All these contributions

motivate authors to explore in meta-heuristic paradigm of

BSA for accurate, reliable and robust system identification

problems arising in power signal models. The aim of this

research study is to exploit the well-known strength of

BSA for parameter estimation of power signal systems.

The prominent features of the proposed scheme are:

• A novel application of evolutionary computational

heuristics through BSA is presented for effective,

viable and reliable estimation of parameters in power

signal modeling problems.

• Approximation theory is exploited for formulation of

fitness function in terms of mean squared errors of

actual and approximated parameters as well as

responses for power signal models.

• Variants of BSA are implemented for parameter

estimation of power signals with different degrees of

freedom based on amplitude, frequency and phase for

number of noise variances.

• Performance verification is ascertained through statis-

tical results in terms of mean weight deviation, root

mean square error and Thiel inequality coefficient-

based evaluations metrics. Further, significance of the

model is evaluated on the basis of ANOVA test.

Rest of the paper is organized as follows: Sect. 2 pre-

sents the necessary details of power signal modeling

problem, designed methodology for parameter estimation

is provided in Sect. 3, simulation of experimentation with

interpretations is given in Sect. 4, while the conclusions

and future recommendations are listed in Sect. 5.

2 System model: power signals

A distorted electric signal s(t) from an AC power system

can be expressed in the form of Fourier series [6, 34]:

1. Problem

Parameter Estimation Of 
Power Signal Modeling

2. Modeling

Fitness Function Formulation  
Mean Square Sense

4. Adaptive Variables

Estimated Parameters for 
Power Signal Models

5. Performance Metrics

Estimated Parameters for 
Power Signal Models

Performance Measures using 
MAE, RMSE, TIC metrics

3. Optimization
s(
t)

Start

Set general data of BSA 
and problem parameters

End

Initialization

Selection-I

Selection-II

Mutation

Crossover

Boundary Control

Stopping
Criteria

YesNo

Fig. 1 Graphical flow diagram of parameter estimation of signal modeling problem
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Table 1 Pseudocode for BSA algorithm for optimization of periodic signal modeling
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sðtÞ ¼
XK

k¼1

ck cos kxt þ dksin kxtð Þ þ vðtÞ ð1Þ

here, c and d are the Fourier coefficients, K is the har-

monics index and x is the fundamental frequency of the

AC system.

The generic description of alternating current electrical

signal can be derived from Eq. (1) and given below in

terms of amplitudes, frequencies and phases as [8]:

sðtÞ ¼
Xk

i¼1

ri sin xiðtÞð Þ þ vðtÞ; ð2Þ

for xi(t) = xit ? ui.

The amplitudes, the frequencies and phases (in radians)

are represented as r ¼ ½r1; r2; . . .; rk�, x ¼ ½x1;x2; . . .;xk�;
and u ¼ ½u1;u2; . . .;uk�;, respectively. For all non-zero

magnitudes of u, the whole signal waveform appears to be

shifted in time scale by u=x seconds. A positive magnitude

of u indicates an advance while a negative value is for a

delay in the electric signal. Eqs. (1)–(2) have been reported

from many studies of electrical and electronic engineering

[35–38] and reference therein.

In this experimental procedure, tn ¼ nh is the sampling

whose sampling period is h. The observed data are

tk; sðtkÞf g. Let rn ¼ sðtnÞ for inference, then, the discretized
electrical signal on the basis of sinusoidal function is for-

malized as:

sn ¼
XK

k¼1

ck cos kxtn þ dksin kxtnð Þ þ mn

for n ¼ 1; 2; . . .N:

ð3Þ

The expression for the power signal (2) in discrete form

as:

sn ¼
Xk

i¼1

ri sinðxitn þ uiÞ þ mn for n ¼ 1; 2; . . .N: ð4Þ

Amplitudes, frequencies and phases are components of

the electrical signals described in Eqs. (1)–(4). In addition

to individual any arbitrary combination of these parameters

based on can be formulized for the parameter estimation

problems. The unknown fundamental components of

power signal to be estimated are given as:

#cd ¼ cd ¼ c1; c2; . . .; ck; d1; d2; . . .; dk½ �T2 Rk ð5Þ

#r ¼ r ¼ r1; r2; . . .; rk½ �T2 Rk ð6Þ

#x ¼ x ¼ x1;x2; . . .;xk½ �T2 Rk ð7Þ

#u ¼ u ¼ u1;u2; . . .;uk½ �T2 Rk ð8Þ

#r;x ¼ ½r;x� ¼ r1; r2; . . .; rk; x1;x2; . . .;xk½ �T2 R2k ð9Þ

#r;u ¼ ½r;u� ¼ r1; r2; . . .; rk; u1;u2; . . .;uk½ �T2 R2k ð10Þ

hx;u ¼ ½x;u� ¼ x1;x2; . . .;xk; u1;u2; . . .;uk½ �T2 R2k

ð11Þ
#r;x;u ¼ ½r;x;u�

¼ r1; r2; . . .; rk; x1;x2; . . .;xk; u1;u2; . . .;uk½ �T2 R3k:

ð12Þ

The individual parameter estimation problems are given

in Eqs. (6)–(8), while parametric Eqs. (9)–(12) indicate the

integrated parameter estimation systems.

3 Proposed methodology

In this section, proposed methodology for parameter esti-

mation of signal modeling problem is presented in two

steps; fitness function formulation and learning procedure

by exploitation of meta-heuristics of BSA. The framework

of the proposed methodology is presented graphically in

Fig. 1.

3.1 Construction of fitness function

In the first step, the fitness/merit function e is constructed

in mean square sense as:

e ¼ e1 þ e2; ð13Þ

where e1 is the difference actual s and estimated ŝ response

and is expressed as:

e1 ¼
1

N

XN

n¼1

sn � ŝnð Þ2; ð14Þ

while e2 is an error term associated with parameter vector,

e2 ¼
1

N

XN

n¼1

#n � #̂n

� �2

: ð15Þ

Table 2 Description of six BSA variants

BSA variant Example 1 Example 2 Example 3

PS GENS PS GENS PS GENS

I 90 500 60 1000 20 500

II 90 1000 60 1500 20 700

III 90 1500 60 2000 20 1000

IV 20 1000 40 1000 10 500

V 40 1000 70 1000 30 500

VI 60 1000 80 1000 40 500
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For example, the fitness function formulation for power

signal model represented in Eq. (3) with decision variables

as given in Eq. (5) in case of e1 is given as:
e1 ¼

1

N

XN

n¼1

PK

k¼1

ck cos kxtn þ dksin kxtnð Þ þ mn

�
PK

k¼1

ĉk cos kxtn þ d̂ksin kxtn
� �

0

BB@

1

CCA

2

:

ð16Þ
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Fig. 2 Convergence graphs of BSA for parameter estimation of power signal modeling problem with noise variation scenarios
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s(
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(a) Comparison of results BSA-III, Exp: 1, SNR 0db
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Fig. 3 Comparison plots of BSA for parameter estimation of power signal modeling problem with noise variation scenarios
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Accordingly, e2 is error function associated with the

parameter vector in case of Eq. (5) is given as:

e2 ¼
1

N

XN

n¼1

#cdn � #̂cdn

� �2

; ð17Þ

using Eq. (5), we have

e2 ¼
1

N

XN

n¼1

c1; c2; . . .; ck; d1; d2; . . .; dkð Þn
� ĉ1; ĉ2; . . .; ĉk; d̂1; d̂2; . . .; d̂k
� �

n

� �2

: ð18Þ

Now, the fitness function e as given in Eq. (13) is

written as:

e ¼

1

N

XK

k¼1

PK

k¼1

ck cos kxtn þ dksin kxtnð Þ

þmn �
PK

k¼1

ĉk cos kxtn þ d̂ksin kxtn
� �

0
BB@

1
CCA

2

þ 1

N

XN

n¼1

c1; c2; . . .; ck; d1; d2; . . .; dkð Þn
� ĉ1; ĉ2; . . .; ĉk; d̂1; d̂2; . . .; d̂k
� �

n

� �2

2
666666664

3
777777775

:

ð19Þ

Similarly, the fitness function formulation for power

signal model represented in Eq. (4) with decision variables

as given in Eq. (11) is given as:

e ¼

1

N

XN

n¼1

Pk

i¼1

ri sinðxitn þ uiÞ þ mn

�
Pk

i¼1

ri sinðx̂itn þ ûiÞ

0
BB@

1
CCA

2

þ 1

N

XN

n¼1

x1;x2; . . .;xk;u1;u2; . . .;ukð Þn
� x̂1; x̂2; . . .; x̂k; û1; û2; . . .; ûkð Þn

� �2

2
666666664

3
777777775

:

ð20Þ

Accordingly, the fitness function formulation for power

signal model represented in Eq. (4) with decision variables

as given in Eq. (11) is given as:

e ¼

1

N

XN

n¼1

Pk

i¼1

ri sinðxitn þ uiÞ þ mn

�
Pk

i¼1

r̂i sinðx̂itn þ ûiÞ

0

BB@

1

CCA

2

þ 1

N

XN

n¼1

r1; r2; . . .; rk;x1;x2; . . .;xk;u1;u2; . . .;ukð Þn
� r̂1; r̂2; . . .; r̂k; x̂1; x̂2; . . .; x̂k; û1; û2; . . .; ûkð Þn

� �2

2

666666664

3

777777775

:

ð21Þ

On a similar pattern, the rest of the fitness functions are

constructed for different power signal models.

Now, objective is optimization of the error functions

given in Eqs. (19)–(21) in such a way that as e approaches

zero, the adaptive parameter vectors of decision variable

#̂cd, #̂x;u and #̂r;x;u matches the desired variables #cd,

#x;u and #r;x;u of the power signal models, respectively.

3.2 Learning method: variants of BSA

The second phase of designed methodology, we introduced

BSA for optimization of decision variable of power signal

model.

BSA is an initial population-based stochastic algorithm

introduced by Civicioglu [39] in 2012 for the solution of

constraint and unconstraint optimization problem. In BSA,

trial population is generated using three basic recombina-

tion operators including selection, mutation and crossover.

BSA employs random mutation process and non-uniform

crossover strategy which is relatively complex than tradi-

tional ones. BSA belongs to the class of global optimiza-

tion technique designed to solve high dimensional

multimodal optimization problems having simple structure,

single control parameter and additional benefit of pos-

sessing a memory. Few recent potential applications of

BSA include beach realignment [40], solving constrained

engineering problem [41], parameter estimation [42], eco-

nomic load dispatch problem [43], wireless communication

[44, 45], photovoltaic models [46] and nonlinear system

identification [47]. Graphical flow chart describing the

procedural steps of BSA is shown in Fig. 1, while neces-

sary further detailed of these steps is provide in the pseu-

docode presented in Table 1.

Table 3 Comparison of true parameters with the proposed results of

parameter estimation of power signal models model Example 1 for all

noise variances

Method r2 Parameter vector #̂

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

BSA-I 0 1.803 1.903 0.301 0.750 0.680 0.566

70 1.799 1.899 0.293 0.748 0.679 0.561

30 1.803 1.900 0.303 0.751 0.677 0.560

BSA-II 0 1.800 1.900 0.300 0.750 0.680 0.560

70 1.800 1.900 0.300 0.750 0.680 0.560

30 1.800 1.901 0.302 0.747 0.679 0.559

BSA-III 0 1.800 1.900 0.300 0.750 0.680 0.560

70 1.800 1.900 0.300 0.750 0.680 0.560

30 1.798 1.899 0.300 0.747 0.680 0.559

BSA-IV 0 1.800 1.900 0.300 0.750 0.680 0.560

70 1.800 1.900 0.300 0.750 0.680 0.560

30 1.797 1.902 0.303 0.747 0.679 0.560

BSA-V 0 1.800 1.900 0.300 0.750 0.680 0.560

30 1.800 1.900 0.300 0.750 0.680 0.560

10 1.798 1.902 0.303 0.747 0.679 0.560

BSA-VI 0 1.800 1.900 0.300 0.750 0.680 0.560

30 1.800 1.900 0.300 0.750 0.680 0.560

10 1.797 1.902 0.304 0.747 0.679 0.560

True # 1.800 1.900 0.300 0.750 0.680 0.560
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The performance analysis for parameter estimation of

signal modeling problem has also been carried out based on

fitness function, normalizing error calculation, root mean

squared error (RMSE) and Thiel’s inequality coefficient

(TIC). The mathematical definitions of these performance

indices can be seen in [47] for interested readers.

4 Numerical experimentation

Simulations are performed for three different examples of

power signals parameter estimation problems through the

evolutionary computing heuristics of BSA under varying

noise scenarios. The variants of BSA are designed by

means of different population size (PS) and generations

(GENS) as tabulated in Table 2.

Example 1 In this case study, the power signal estimation

problem with known amplitude while, unknown frequency

and phase parameters is taken. The mathematical expres-

sions for Example 1 are written as [8]:

sðtÞ ¼ r1 sinðx1t þ u1Þ þ r2 sinðx2t þ u2Þ þ r3 sinðx3t þ u3Þ
# ¼ x1;x2;x3;u1;u2;u3½ �T

# ¼ ½0:07; 0:1; 0:2; 0:95; 0:8; 0:76�T:
ð22Þ

Example 2 The power signal modeling problem with

unknown amplitude, frequency and phase in the parameter

vector is taken. The mathematical expressions for Example

2 are given as [8]:

sðtÞ ¼ r1 sinðx1t þ u1Þ þ r2 sinðx2t þ u2Þ þ r3 sinðx3t þ u3Þ
# ¼ r1; r2; r3;x1;x2;x3;u1;u2;u3½ �T

# ¼ ½0:07; 0:1; 0:2; 0:95; 0:8; 0:76�T:
ð23Þ

Example 3 The power signal modeling problem with

unknown amplitude in the parameter vector is presented

mathematically as [34]:

Table 4 Comparison of true parameters with the proposed results of parameter estimation of power signal models model Examples 2 and 3 for all

noise variances

Method r2 Example 2

Parameter vector #̂

Example 3

Parameter vector #̂

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 1 i = 2 i = 3 i = 4

BSA-I 0 0.697 0.799 0.301 0.060 0.400 0.100 0.855 0.696 0.663 300.0045 40.0000 20.0000 10.0008

70 0.704 0.801 0.302 0.060 0.400 0.099 0.858 0.698 0.668 300.0546 39.9972 20.0756 9.5891

30 0.708 0.797 0.299 0.060 0.400 0.100 0.853 0.701 0.667 300.0466 40.0981 20.0003 10.5677

BSA-II 0 0.700 0.800 0.300 0.060 0.400 0.100 0.850 0.700 0.660 300.0000 40.0000 20.0000 10.0000

70 0.700 0.800 0.300 0.060 0.400 0.100 0.850 0.700 0.660 300.0000 40.0000 20.0000 10.0000

30 0.699 0.798 0.299 0.060 0.400 0.100 0.851 0.701 0.660 299.9998 40.0000 19.9998 10.0000

BSA-III 0 0.700 0.800 0.300 0.060 0.400 0.100 0.850 0.700 0.660 300.0056 40.0045 20.0006 10.0010

70 0.700 0.800 0.300 0.060 0.400 0.100 0.850 0.700 0.660 300.0000 40.0000 20.0000 9.9998

30 0.699 0.798 0.300 0.060 0.400 0.100 0.851 0.700 0.660 300.0001 39.9992 20.0003 10.0050

BSA-IV 0 0.700 0.800 0.300 0.060 0.400 0.100 0.850 0.700 0.660 300.0000 40.0000 20.0000 10.0000

70 0.700 0.800 0.300 0.060 0.400 0.100 0.850 0.700 0.660 300.0000 40.0000 20.0000 10.0000

30 0.698 0.799 0.300 0.060 0.400 0.100 0.850 0.701 0.661 300.0000 40.0000 19.9996 10.0000

BSA-V 0 0.700 0.800 0.300 0.060 0.400 0.100 0.850 0.700 0.660 300.0000 40.0000 20.0000 10.0000

30 0.700 0.800 0.300 0.060 0.400 0.100 0.850 0.700 0.660 300.0000 40.0000 20.0000 10.0000

10 0.699 0.798 0.300 0.060 0.400 0.100 0.849 0.700 0.659 300.0056 39.9989 19.9996 10.0000

BSA-VI 0 0.700 0.800 0.300 0.060 0.400 0.100 0.850 0.700 0.660 300.0006 40.0000 20.0002 10.0000

30 0.700 0.800 0.300 0.060 0.400 0.100 0.850 0.700 0.660 300.0034 40.0024 19.9929 9.9964

10 0.699 0.798 0.300 0.060 0.400 0.100 0.851 0.700 0.660 299.9998 39.9924 19.9998 9.9968

True # 0.7 0.8 0.3 0.06 0.4 0.1 0.85 0.7 0.66 300 40 20 10

1486 Neural Computing and Applications (2021) 33:1479–1496

123



A
E

Parameter vector

(a) Absolute error analysis for BSA-I

A
E

Parameter vector

(b) Absolute error analysis for BSA-II

A
E

s

Parameter vector

(c) Absolute error analysis for BSA-III

A
E

Parameter vector
(d) Absolute error analysis for BSA-IV

A
E

Parameter vector

(e) Absolute error analysis for BSA-V

A
E

Parameter vector

(f) Absolute error analysis for BSA-VI

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

Number of runs 
(g) Sorted for each case of Scenario 1

Number of runs
(h) Sorted for each case of Scenario 2

Number of runs
(i) Sorted for each case of Scenario 3

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

Number of runs 
(j) Sorted for each case of Scenario 1

Number of runs 
(k) Sorted for each case of Scenario 2

Number of runs 
(l) Sorted for each case of Scenario 3

Fig. 4 Comparison of the accuracy of BSA variants for parameter estimation of power signal modeling problem with noise variation scenarios in

case of Example 1
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Fig. 5 Comparison of the accuracy of BSA variants for parameter estimation of power signal modeling problem with noise variation scenarios in

case of Examples 2 and 3
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Table 5 Performance comparison of all BSA variants through satistical and complexity operators

Example Method Noise r2 Accuracy operators Complexity operators

e d MAE RMSE TIC Iterations Time (s) FC

1 BSA-I 0 1.78E-05 2.67E-03 2.24E-03 3.14E-03 1.33E-03 500 1.2734 6060

70 3.84E-05 2.42E-03 2.26E-03 2.84E-03 1.21E-03 500 1.2367 6060

30 6.09E-04 1.87E-03 1.80E-03 2.19E-03 9.33E-04 500 1.1500 6060

BSA-II 0 3.14E-07 1.94E-04 1.74E-04 2.27E-04 9.68E-05 1000 2.2283 12,060

70 8.70E-08 6.01E-05 5.40E-05 7.06E-05 3.00E-05 1000 2.3732 12,060

30 5.69E-04 1.28E-03 1.29E-03 1.51E-03 6.41E-04 1000 2.1849 12,060

BSA-III 0 3.34E-08 2.97E-03 9.69E-05 1.46E-04 6.20E-05 1500 2.1891 12,060

70 2.89E-07 1.24E-03 1.93E-04 2.68E-04 1.14E-04 1500 2.2160 12,060

30 5.77E-04 2.01E-03 1.27E-03 1.55E-03 6.59E-04 1500 2.2175 12,060

BSA-IV 0 2.72E-10 2.38E-05 7.92E-06 9.73E-06 4.14E-06 1000 2.3077 12,040

70 6.60E-08 2.75E-05 9.66E-06 1.23E-05 5.24E-06 1000 2.1440 12,040

30 5.63E-04 2.02E-03 1.95E-03 2.25E-03 9.57E-04 1000 1.5425 12,040

BSA-V 0 1.67E-10 5.61E-05 4.41E-06 5.29E-06 2.25E-06 1000 2.2201 12,040

30 6.78E-08 5.97E-05 1.50E-05 1.87E-05 7.95E-06 1000 2.2503 12,040

10 5.63E-04 1.94E-03 1.92E-03 2.22E-03 9.43E-04 1000 1.6232 12,040

BSA-VI 0 2.56E-10 1.36E-04 7.04E-06 8.94E-06 3.81E-06 1000 4.3601 24,080

30 6.76E-08 1.89E-04 1.50E-05 2.05E-05 8.72E-06 1000 4.5045 24,080

10 5.63E-04 1.95E-03 1.96E-03 2.24E-03 9.54E-04 1000 3.0472 24,080

2 BSA-I 0 3.10E-05 4.40E-03 1.84E-03 2.56E-03 2.20E-03 500 7.3440 45,090

70 1.52E-04 7.07E-03 2.91E-03 4.11E-03 3.53E-03 500 7.9400 45,090

30 9.17E-04 6.97E-03 2.81E-03 4.05E-03 3.48E-03 500 7.2318 45,090

BSA-II 0 2.10E-09 4.26E-05 1.49E-05 2.48E-05 2.13E-05 1000 14.8126 90,090

70 6.68E-08 4.60E-05 1.75E-05 2.68E-05 2.30E-05 1000 15.1012 90,090

30 6.16E-04 1.49E-03 5.89E-04 8.65E-04 7.44E-04 1000 14.5493 90,090

BSA-III 0 8.56E-15 6.84E-08 2.93E-08 3.98E-08 3.42E-08 1500 22.1965 135,090

70 6.14E-08 1.02E-05 3.95E-06 5.93E-06 5.10E-06 1500 23.2409 135,090

30 6.15E-04 1.66E-03 5.52E-04 9.62E-04 8.28E-04 1500 21.9351 135,090

BSA-IV 0 5.94E-10 1.81E-05 6.80E-06 1.05E-05 9.05E-06 1000 6.7722 40,040

70 6.39E-08 5.97E-05 1.87E-05 3.47E-05 2.98E-05 1000 8.7852 40,040

30 6.18E-04 1.37E-03 5.57E-04 7.98E-04 6.87E-04 1000 6.4256 40,040

BSA-V 0 3.44E-10 1.34E-05 4.62E-06 7.78E-06 6.69E-06 1000 7.9962 40,040

30 6.14E-08 1.64E-05 6.93E-06 9.55E-06 8.21E-06 1000 8.5442 40,040

10 6.16E-04 1.41E-03 5.32E-04 8.19E-04 7.05E-04 1000 6.4890 40,040

BSA-VI 0 1.26E-09 3.42E-05 1.36E-05 1.99E-05 1.71E-05 1000 13.5810 80,080

30 6.17E-08 2.63E-05 1.14E-05 1.53E-05 1.31E-05 1000 12.8295 80,080

10 6.15E-04 1.52E-03 5.81E-04 8.81E-04 7.58E-04 1000 12.7947 80,080

3 BSA-I 0 2.27E-19 2.91E-12 3.00E-10 4.41E-10 1.45E-12 1000 6.818 20,040

70 1.04E-07 2.46E-08 1.96E-06 3.73E-06 1.23E-08 1000 6.780 20,040

30 1.02E-03 1.05E-06 7.98E-05 1.59E-04 5.25E-07 1000 6.753 20,040

BSA-II 0 2.52E-20 1.85E-13 1.46E-11 2.81E-11 9.27E-14 2000 13.539 28,040

70 1.04E-07 1.85E-08 1.79E-06 2.81E-06 9.26E-09 2000 10.165 28,040

30 1.05E-03 1.07E-06 1.14E-04 1.62E-04 5.33E-07 2000 10.716 28,040

BSA-III 0 2.51E-20 2.01E-13 1.53E-11 3.06E-11 1.01E-13 3000 13.568 40,040

70 1.04E-07 2.74E-08 2.08E-06 4.16E-06 1.37E-08 3000 13.501 40,040

30 1.02E-03 1.02E-06 7.98E-05 1.60E-04 5.26E-07 3000 13.430 40,040
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sðtÞ ¼ c1 cos xt þ d1sinxt þ c2 cos 2xt þ d2sin 2xt

# ¼ c1; c2; d1; d2½ �T

# ¼ 300; 40; 20; 10½ �T:
ð24Þ

In the simulations, s(t) is taken as the input signal and

v(t) represents noise signal having zero mean and three

different noise levels i.e., no noise, 30 db and 70 db. The

power signal modeling problem as described in Eqs. (22)–

(24) is executed with the proposed scheme and the objec-

tive function is implemented for N = 20 snap shots. The

meta-heuristic algorithm, BSA together with all its six

variants is performed for 100 independent runs. The results

of each BSA variant against the values of fitness function

are shown graphically in Fig. 2, for all three signal models

given in Examples 1–3 and noise levels. It is observed from

the results presented in Fig. 2 that all the variants of BSA

are convergent for all noise levels, but convergence of the

variant-III of BSA is slightly better than all others. Com-

parison of the actual signals is also made with the

approximated signal, and the resultant graphs are presented

in Fig. 3 for all three examples. The actual and estimation

decision variables are listed in Table 3 for Example 1 in

case of all three noise levels, while these results for

Examples 2 and 3 are provided in Table 4 for each noise

variation. The estimated signals overlap the actual signals

consistently, as well as, relatively small difference between

actual and estimation parameters which prove the accuracy

of the scheme. However, with the rise in the noise level,

Table 5 continued

Example Method Noise r2 Accuracy operators Complexity operators

e d MAE RMSE TIC Iterations Time (s) FC

BSA-IV 0 2.59E-17 3.28E-11 3.75E-09 4.97E-09 1.64E-11 1000 1.838 5010

70 1.04E-07 1.78E-08 1.79E-06 2.70E-06 8.90E-09 1000 2.323 5010

30 1.50E-03 1.07E-06 1.03E-04 1.61E-04 5.30E-07 1000 1.949 5010

BSA-V 0 5.83E-19 1.22E-12 1.27E-10 1.85E-10 6.10E-13 1000 3.972 10,020

30 1.04E-07 1.86E-08 1.79E-06 2.82E-06 9.28E-09 1000 3.737 10,020

10 1.35E-03 1.06E-06 1.03E-04 1.61E-04 5.33E-07 1000 5.249 10,020

BSA-VI 0 4.49E-17 4.18E-11 4.21E-09 6.34E-09 2.09E-11 1000 5.894 15,030

30 1.04E-07 1.84E-08 1.80E-06 2.78E-06 9.18E-09 1000 5.439 15,030

10 1.33E-02 1.04E-06 1.14E-04 1.61E-04 5.32E-07 1000 7.035 15,030

Table 6 Convergence analysis of all examples using BSA variants

Exp Fitness10xx BSA-I BSA-II BSA-III BSA-IV BSA-V BSA-VI

0 70 30 0 70 30 0 70 30 0 70 30 0 70 30 0 70 30

1 -03 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

-04 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

-05 57 56 0 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0

-06 1 4 0 99 98 0 98 98 0 100 100 0 100 100 0 100 100 0

2 -03 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

-04 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

-05 57 56 0 100 100 0 100 100 0 100 100 0 100 100 0 100 100 0

-06 1 4 0 99 98 0 98 98 0 100 100 0 100 100 0 100 100 0

3 -04 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

-05 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

-06 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

08 100 100 30 100 100 30 100 100 30 100 100 30 100 100 30 100 100 30
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Fig. 6 Comparative study of BSA variants on the basis of different performance indices for parameter estimation of power signal modeling

problem

Neural Computing and Applications (2021) 33:1479–1496 1491

123



M
A

E
va

lu
es

M
A

E
 v

al
ue

s

No of Independent runs No of Independent runs
(a) BSA-I, MAE values (b) BSA-II, MAE values

M
A

E
 v

al
ue

s

M
A

E
 v

al
ue

s

No of Independent runs No of Independent runs
(c) BSA-III, MAE values (d)  BSA-IV, MAE values

R
un

s

RMSEvalues

R
un

s

RMSEvalues

R
un

s

RMSEvalues

R
un

s

RMSEvalues
(e) BSA-I, 2 20.010σ = (f) BSA-II, 2 20.010σ = (g) BSA-III, 2 20.100σ = (h) BSA-IV, 2 20.001σ =

R
un

s

RMSEvalues

R
un

s

RMSEvalues

R
un

s

RMSEvalues

R
un

s

RMSEvalues
(i) BSA-V, 2 20.001σ = (j) BSA-V, 2 20.100σ = (k) BSA-VI, 2 20.001σ = (l) BSA-VI, 2 20.100σ =

N
o 

of
 In

de
pe

nd
en

t r
un

s

TIC values
(m) Results for BSA-I and BSA-II

Fig. 7 Comparative study of BSA variants on the basis of different performance indices for parameter estimation of power signal modeling

problem
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there is a decrease in the accuracy level is observed for all

six variants of BSA.

In order to access the minute difference, the values of

absoluter error (AE), i.e., difference between actual and

estimated parameter, is calculated for each case. The values

of AE are plotted in Fig. 4 for Example 1 in case of all six

variants of BSA, while the results for Examples 2 and 3 are

shown in Fig. 5. It is seen that the range of AE values lie

around 10-02 to 10-04 for BSA-I while, for BSA-II, range

is around 10-05 to 10-06 and similar trend for rest of the

variants is observed.

The performance indices magnitudes based on fitness e,

normalized error d, MAE, RMSE and TIC for best inde-

pendent run of the scheme are listed in Table 5 for each

noise variation in case of all six variants of BSA. Near-to-

optimal magnitudes of all these metrics achieved for all

three examples of power signal estimation problem which

evidently demonstrate the accuracy of the proposed

scheme. Additionally, the computational complexity

Table 7 ANOVA test results for Examples 1, 2 and 3 of power signal model with 70 dB SNR
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measures in terms of mean execution time, iteration con-

sumed and function counts (FC) during the whole opti-

mization procedure are also tabulated in Table 5 for all

three example for each scenario. The complexity analysis

shows that BSA-III consumed more iterations and time

than other variants but is comparatively accurate from rest

of the methodologies.

The results of each variant of BSA against the fitness

values are graphically presented in Fig. 4g–l for several

independent runs, i.e., 100 trials, all three noise levels in

case of Example 1, while these illustrations for Examples 2

and 3 are shown in Fig. 5g–l. All these graphs are given in

sorted and zoomed plots for better assessment of the

results. It is evident from the plots that all the variants of

the BSA converge but accuracy degrades as noise

increases.

Convergence analysis is performed to evaluate reliabil-

ity of the scheme for attaining the various accuracy levels

on the basis of fitness gauges, i.e., fitness e B 10-03, 10-04,

10-05 and 10-06. The results of percentage independent

runs fulfilling these criterions are listed in Table 6 for each

scenario of all three example of power signal estimation

problem. It is seen that nearly 100% of the independent

runs meet the primary level of the basic fitness measure and

also even a few trials attained relatively tough criteria. The

results are comparatively more accurate and convergent for

BSA-IV and BSA-V for rest of the scheme.

The statistical performances in terms of MAE, RMSE

and TIC metrics are also evaluated and results of these

indices are shown in Figs. 6 and 7 for each scenario of

Examples 1 and 2, respectively. In Fig. 6a–d, MAE mag-

nitudes are plotted for 100 independent trials of all the

variants of BSA algorithm on semi log scale. The results

show that MAE are near 10-3 to 10-2, 10-4 to 10-2, 10-3

and 10-3 to 10-4 for BSA I, II, III and IV, respectively.

Histogram plots are also shown in Fig. 6e–l for all six

variants of BSAs. The smaller magnitudes of RMSE verify

the accuracy of the designed methodology. In Fig. 6m, TIC

magnitudes as stacked bar graph are shown for BSA-III and

BSA-IV each noise variance-based scenario of Example 1.

These results demonstrate that magnitudes of TIC lie

around 10-5 to 10-2. Similarly plots for Examples 2 and 3

are given in Fig. 7a–d, e–l and m in case of MAE, RMSE

and TIC values, respectively. The similar trend of results is

seen as in case of Example 1.

Further evaluation about the performance of the BSA

variants for periodic signals estimation is made using

ANOVA test. The results are computed for all three

examples and presented in Table 7 for SNR 70 dB. With

the consideration of assumption of uniform variances, the

null hypothesis of homogeneous variances at the signifi-

cance level a = 0.05 is accepted, as the respective proba-

bility values i.e., p values, attained for absolute errors for

Examples 1, 2 and 3 are 0.283, 0.811 and 0.828, respec-

tively. The result of ANOVA established that the expected

values show uniformity, and there is no strong evidence

against the null hypothesis. Therefore, it is quite evident

that all the means are equivalent.

5 Conclusions

Evolutionary computational paradigm through variants of

BSA are exploited for effective, viable and reliable solu-

tion of parameter estimation of power signal models with

various noise level-based scenarios. Comparative study of

the designed algorithms for both noise less and noisy

environment, i.e., no noise, SNR = 70 db and 30 db, depict

the accuracy of all six variants of BSA technique. The

study shows that the accuracy level decreases as noise

increases for all variants of BSA; despite, all the results are

quite precise. Analysis based on performance measures,

i.e., normilizing error, AEs, MAD, RMSE and TIC metrics,

demonstrated the efficacy of the proposed scheme. While,

the complexity analysis in terms of time consumed, itera-

tions executed and functions count show that the results of

BSA-III and BSA-IV are relatively higher than the other

variants of the BSA optimization technique; however, their

relatively better accuracy for the rest of scheme overshad-

ows this aspect. Power signal modeling with increase

degrees of freedom slight deteriorates the performance of

the proposed BSA in terms of accuracy and complexity.

One may apply the proposed methodology for solving

real-world complex power and energy-related optimization

problems [48–52]. Recently introduced meta-heuristic

techniques such as firefly, particle swarm optimization and

cuckoo search algorithm along with their fractional vari-

ants can be exploited to improve the accuracy and con-

vergence in power signal estimation problems.
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