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Abstract
Given the rapid development of dehazing image algorithms, selecting the optimal algorithm based on multiple criteria is

crucial in determining the efficiency of an algorithm. However, a sufficient number of criteria must be considered when

selecting an algorithm in multiple foggy scenes, including inhomogeneous, homogenous and dark foggy scenes. However,

the selection of an optimal real-time image dehazing algorithm based on standardised criteria presents a challenge.

According to previous studies, a standardisation and selection framework for real-time image dehazing algorithms based on

multi-foggy scenes is not yet available. To address this gap, this study proposes a new standardisation and selection

framework based on fuzzy Delphi (FDM) and hybrid multi-criteria analysis methods. Experiments are also conducted in

three phases. Firstly, the image dehazing criteria are standardised based on FDM. Secondly, an evaluation experiment is

conducted based on standardised criteria and nine real-time image dehazing algorithms to obtain a multi-perspective

matrix. Third, entropy and VIKOR methods are hybridised to determine the weight of the standardised criteria and to rank

the algorithms. Three rules are applied in the standardisation process to determine the criteria. To objectively validate the

selection results, mean is applied for this purpose. The results of this work can be taken into account in designing efficient

methods and metrics for image dehazing.
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1 Introduction

Over the past decades, much attention has been paid to

dehazing as evidenced in the increasing number of studies

that propose dehazing approaches or investigate the quality

of dehazed images [1]. However, determining how to

objectively assess the performance of these algorithms

remains an open problem that can hinder the development

of advanced image restoration methods. There is a fact that

the algorithms can be evaluated by a wide range and can

also be comparable with each other reliably [2]. The most

reliable approach is subjectively assessing quality by

human observers. However, this approach is often time-

consuming and cannot be integrated into real-time image

processing systems. Therefore, an alternative objective

quality assessment approach needs to be developed [3].

Various foggy scenes have been made available to test

the utility of image dehazing algorithms [4, 5]. Most forms

of assessment are equivalent on several foggy scenes

[6–14]. For example, in [6], the authors considered a

variety of evaluation scenes, including inhomogeneous,

homogeneous and dark foggy scenes, to test the efficiency

of algorithms. However, when evaluating certain algo-

rithms, their efficiency should be tested in consideration of

various characteristics and foggy perspectives. Therefore,

the advantages and demerits of each algorithm should be

considered within each context. Under different hazy sce-

nes, several algorithms can work properly, such as those

proposed in [15–17]. Therefore, comparing these algo-

rithms from only one perspective is unreasonable.

The efficiency of image dehazing algorithms also needs to

be evaluated by using trustworthy approaches [8, 18]. In this

case, how several algorithms can be evaluated and how the

best algorithm is selected through an effective approach

warrant further investigation. From the findings of state-of-

the-art image quality assessment (IQA), two concerns need to

be addressed. Firstly, determining the best enhanced image

and validating the best dehazing results are difficult [4]. For

instance, evaluators may not always have the same response

regarding the quality of an improved image when using a

subjective approach. At the same time, the conventional

objective approach cannot effectively solve these problems.

Second, [6, 19, 14] have reported that no single defogging

algorithm shows an excellent performance across different

foggy scenes. Therefore, selecting a defogging algorithm is

difficult. The selection and benchmarking of a best image

dehazing algorithm based on multiple foggy scenes are

therefore identified as the major problems in this research.

Nevertheless, most objective evaluation methods, such

as those introduced in [4, 8], use different metrics or criteria

to measure the quality of an enhanced image [20]. The

diversity of image dehazing criteria enables us to evaluate

the performance of image dehazing algorithms from several

perspectives. For example, the image visibility (IV) crite-

rion identifies the distortion of hazy images based on edge,

contrast and texture information [6], whereas others identify

the degree of colour distortion in a hazy image based on the

colour restoration (CR) criterion [21]. One requirement for

the evaluation and benchmarking processes in image

dehazing algorithms is the criterion that can indicate the

degree of enhancement presented by a certain algorithm

towards a specific type of distortion [4]. However, the

ability to determine the best alternative under all conditions

of uncertainty must be made obvious to achieve an effective

selection process. The set of criteria and their importance

can also influence the selection process [22]. As stated in

[22–24], to evaluate and select the best alternative, the first

step is to determine the appropriate criteria. For an objective

assessment, several metrics have been proposed in the lit-

erature, but the use of these metrics varies from one study to

another. At the same time, a model for classifying and

recommending the most appropriate measurements is yet to

be developed. Therefore, providing a standard image

dehazing criteria is crucial to the evaluation and selection of

image dehazing algorithms. The standardisation of these

criteria presents a challenge for this study.

The objectives of this study are to (1) standardise image

dehazing criteria based on the fuzzyDelphimethod (FDM), (2)

develop a new framework for benchmarking image dehazing

algorithms based on hybrid multi-criteria decision analysis

methods and (3) validate the proposed framework by using

statistical validationmethods. The rest of this paper is arranged

as follows: ‘Introduction’ defines image dehazing evaluation

and benchmarking. ‘Literature Review’ reviews the related

studies. ‘Methodology’ reports the methodological standardi-

sation and decision-making steps. ‘Results and Discussion’

illustrates and discusses the results. ‘Validation’ validates the

results of the proposed framework, whereas ‘Limitations’

presents the restrictions of this framework. ‘Recommendations

for FutureWork’ provides several recommendations for future

study, and ‘Conclusion’ concludes the paper.

2 Background and related works

Any new algorithm should be compared according to its

perceived quality and time complexity (TC), which are

considered main indicators for any comparison scenario.

Particularly, image dehazing evaluation is based on quality

criteria group from one side and on other side time com-

plexity criteria. In the image dehazing domain, quality

refers to the capability of a process to remove unwanted

effects from a degraded image and restore its quality back

to its original state [2]. However, image dehazing
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algorithms focus on enhancing the visual quality of a foggy

image to make it recognisable by the human eye [25–27].

In the image dehazing domain, quality focuses on image

visual features instead of signal features. However, under

poor weather conditions, the acquired image shows low

visibility and colour distortion, both of which can influence

analysis and recognition processes [28]. An efficient image

defogging algorithm needs not only enhance the visibility,

edge and texture information of an image but also preserve

its structure and colour [6, 29, 30]. Based on the above

scenario and along with [6], evaluating image quality based

on dehazing algorithms depends on three sub-criteria,

namely IV, CR and image structure similarity (SSIM).

IV is evaluated by measuring the obvious edge, texture

information, image contrast and image gradient [6]. Hazy

images that can be analysed according to these aspects can

be recognised by measuring their degree of visibility. Sev-

eral metrics have also been employed to indicate the level of

enhancement in terms of IV, including blind assessment

indicators (e and r) [21], visual contrast measure (VCM) [31]

and contrast gain [32] (see ‘‘Appendix’’). Meanwhile, CR is

relevant in retrieving the true colour (amount of lost infor-

mation) of a certain image that is usually distorted by haze or

fog effects. CRmeasures the rate of saturated pixels after the

image defogging process or the similarity of histogram

distributions between the foggy and enhanced images [6].

To assess CR performance in an enhanced image, several

parameters need to be considered, including the rate of

saturated pixels (r) [21], histogram correlation coefficient

(HCC) [33] and colour colourfulness index (CCI) [34] (see

‘‘Appendix’’). However, an objective assessment of haze

removal should consider the dehazing effect and distortions

introduced during the haze removal process [5]. Image

structure similarity (SSIM) is an evaluation indicator that

can only measure the degree of distortion that is caused by

the image dehazing process [8]. Although a clear definition

of image structure is yet to be formulated, the measures of

image structure are strongly correlated with subjective

quality ratings, thereby suggesting that high-quality images

are closely linked to their original forms in terms of their

structure contents (object boundaries) [35]. In general,

dehazing algorithms do not change the structural informa-

tion of an image unless they lead to a serious distortion and

edge effect. Moreover, the removal of fog from an image

will change the image structure [6]. Several metrics have

been used to measure the similarity in the structure of hazy

and enhanced images, such as SSIM [36] and the universal

quality index (UQI) [37] (see ‘‘Appendix’’).

The existing methods for image dehazing quality

assessment can be classified into visible-edges aware,

modulated artificial scenes, comprehensive appraisal

models and running speed evaluations [4]. Execution time

or TC is an important measure for evaluating the

computational complexity of an image dehazing algorithm.

The computational cost is determined by calculating the

average time spent on a single image in several experi-

ments. By comparing execution time and quality feedback,

one can easily determine whether an algorithm can be used

as an automatic visual system in real time [4, 10, 38].

Several metrics have also been employed for IQA [39].

According to [6], only 11 metrics have been linked to the 3

previously mentioned criteria. As an extension, this study

includes additional metrics and statistics that are related to

the criteria previously mentioned in the literature. A total of

74 studies were reviewed to determine howmany times these

metrics have been used. Some of these studies have focused

on the evaluation scenario, whereas others have combined

the review and evaluation scenarios. However, most of these

studies have developed new algorithms in real-time condi-

tions. Other metrics, including PSNR and MSE, have been

excluded because they either fail to specify which type of

distortion can be measured or are unable to quantify visual

distortion. Those metrics that are only used in underwater

IQA are also excluded. Following the aforementioned defi-

nitions, these metrics are classified into three groups, and

their frequency of usage is specified (see ‘‘Appendix’’).

As shown in ‘‘Appendix,’’ most of the employed metrics

are classified under the visibility criterion given that the

main distortion caused by haze is decreasing the visibility

of an image. As mentioned above, visibility is evaluated

from multiple perspectives, thereby explaining the number

of metrics classified under this criterion. Meanwhile, only

few metrics have been classified under the other two cri-

teria. In addition, given that a variety of metrics have been

adopted in the literature and that most of these metrics lack

any clear justification, selecting the most appropriate

metric for image dehazing evaluation presents a challenge.

In addition, only few studies have considered IV, CR,

SSIM and TC altogether as evaluation criteria [6], and

some studies have shown differences in how they employ

these criteria. Firstly, some studies, such as [7, 40], have

only used quality criteria. Secondly, other studies have

only measured TC [28, 41, 42]. Thirdly, previous studies

have shown differences in how they use quality sub-crite-

ria. For instance, [43] only used SSIM, [44] only used CR

and SSIM, [33] used both visibility and CR, and [45, 46]

only used visibility. No previous study has used a unified

set of criteria in their evaluation process. Also, most of the

researchers have used evaluation metric based on their

subjective view which have caused a significant conflict to

highlight the most influence evaluation criteria. ‘‘Ap-

pendix’’ highlights the importance of considering IV, CR,

SSIM and TC as criteria in image dehazing evaluation.

Nevertheless, whilst TC has no sub-criteria, which can

create conflict amongst scholars in their criteria selection

process, this study argues that this criterion is important in
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evaluating image dehazing algorithms. Meanwhile, using

any of the other sub-criteria remains a significant challenge

despite their frequent usage in the literature given that no

previous study has defined the maximum or minimum level

of importance of using any metric. Therefore, these image

dehazing criteria need to be standardised.

Ishikawa [47] proposed FDM, which incorporates the

Delphi method into fuzzy theory. FDM is generally

employed when making decisions regarding objective

issues. Despite having unclear parameters, the results of

FDM are deemed appropriate. FDM also provides a flexi-

ble framework that covers many barriers associated with

lack of accuracy and clarity. Making decisions with

incomplete or inaccurate information creates many prob-

lems. Moreover, the decisions made by experts are very

subjective and uncertain. Given that uncertainty in this

situation is possible and that this type of uncertainty is

tailored to the fuzzy set, the data should be expressed in

fuzzy numbers instead of absolute ones, and fuzzy sets

should be used for analysing expert opinion [48]. The

strength of FDM lies in its reduction of the length of the

study period by reducing the number of Delphi rounds [49].

Dealing with a fuzzy context involves imprecise descrip-

tions and human linguistics, and employing fuzzy numbers

can leave the impression of using an appropriate method

for decision making [50]. Nevertheless, FDM is suitable for

assessing the importance of the criteria affecting a phe-

nomenon on a highly flexible scale [50, 51]. Furthermore,

no shortage of useful information will occur because the

membership degree effectively considers all opinions [52].

FDM has been widely used for assessment, standardisation

and criteria selection in different domains [24, 47, 52–55].

In this case, this study employs FDM to standardise image

dehazing criteria based on expert opinions.

Numerous criteria have been applied in evaluating

algorithms, but selecting the best algorithm remains diffi-

cult [4, 6, 19]. These obstacles create problems in MCA

[56–59]. Four practical problems should be considered

when selecting the best algorithm, namely the multiple

evaluation criteria, criterion importance, criteria trade-off

and data variation problems [56, 60–63]. However, when

developing an image dehazing algorithm, the multi-criteria

problem that considers only the colour of an image is not

enough. Other features, including structure and texture [10],

should also be considered in complex scenarios. According

to [9] and [11], the evaluation results greatly depend on the

selection of metrics or criteria. An effective evaluation and

benchmarking scenario is therefore required, and multiple

criteria should be considered to define the complexity of

hazy scenes because an efficient image dehazing algorithm

needs to deal with the characteristics of such scenes.

Multi-criteria decision making (MCDM) is a popular

decision-making method and operational research area that

addresses the decision criteria problem [64–69]. MCDM is

also used for structuring, planning and implementing

decisions [70–76]. Given its ability to improve the quality

of decisions through a highly reliable and reasonable

decision making in contrast to standard procedures,

MCDM has been increasingly employed in the literature

[77–81]. MDCM has three goals, namely: (1) to assist in

the selection of the best possible alternative [82–84], (2) to

identify the practicable alternative amongst a number of

alternatives [85–87] and (3) to rank the alternatives in a

descending order based on their performance [88–92]. The

suitable alternative(s) are given a score [93–95]. The basic

terms of each MCDM ranking, including the decision

matrix (DM) and its criteria, should also be defined

[96, 97].

MCDM employs objective and subjective weighting

methods [98]. The entropy weighting method is an objec-

tive method for criteria weight determination [99]. In the

image dehazing domain, a comprehensive evaluation of

multiple criteria is carried out by using the entropy

weighting method to obtain reliable results [13]. The

entropy test calculates the weight of the criterion based on

the degree of variation in its values and presents a basis for

an exhaustive evaluation [99]. Entropy is a purely mono-

tonous and uncertain function where a lower uncertainty

leads to a smaller entropy, and vice versa. Therefore, by

measuring entropy values, one can determine the degree of

dispersal for each criterion. Increasing the dispersal degree

of the index will affect the entire assessment, thereby

increasing the weight of the index and leading to highly

accurate evaluation results [13].

The VlseKriterijumska Optimizacija I Kompromisno

Resenje (VIKOR) method is commonly employed in

ranking various alternatives that conform to different cri-

teria. Comparing with technique for order of preference by

similarity to ideal solution (TOPSIS) method that does not

take into account the comparative value of distances

between ideal and negative solution [100]. Therefore,

VIKOR is considered the most reasonable approach for

addressing real-life issues and ranking alternatives. VIKOR

method uses a procedure for compromise priority for

numerous response optimisation [101, 102]. The alterna-

tives are initially ranked based on their closeness to the

ideal solution, and then, the best alternative is determined

[101]. Recent studies have outlined multiple integration

instances between VIKOR and entropy to obtain reliable

and consistent objective weights [103]. In this case, reliable

approaches are adopted. The advantages of both the

aforementioned approaches are defined to overcome the

uncertainties of a problem [103–107]. In the evaluation and

benchmarking of image dehazing algorithms, the integra-

tion of entropy and VIKOR is essential. When the weights

are allocated to various sub-criteria according to entropy, a
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foundation for integration is established. However, for

ranking image dehazing algorithms, the VIKOR method is

recommended.

3 Methodology

The adopted methodology is divided into three phases. In

the first phase, the image dehazing criteria are standardised

and determined by using FDM. In the second phase, the

data are presented by performing an evaluation experiment.

In the third phase, the weights for the standardised criteria

are determined by using the entropy method, and the

alternatives are ranked by using VIKOR.

3.1 FDM

FDM is used to standardise the image dehazing criteria in

the following steps:

S1 All criteria relevant to image dehazing evaluation are

described in the previous section. The selected criteria

for FDM are the 26 sub-criteria for IV, CR and SSIM.

S2 The number of experts included in FDM is defined as

shown in Table 3. These experts are interviewed to

determine the importance of the evaluation criteria and

to collect their opinions regarding these criteria by

disseminating expert opinion forms. Linguistic variables

are used in designing these forms.

S3 The input data collected from the previous step are

transferred to a new form (data fuzzification) and used

for further fuzzy data analysis as follows [49]:

1. All linguistic variables (Table 1) are converted into

triangular fuzzy numbers (TFN) with values of m1,

m2 and m3, where m1 represents the smallest value,

m2 represents the most plausible value and m3

represents the maximum value.

2. The average value is calculated based on the number

of each item and is then divided by the number

of experts. The fuzzy numbers are assumed to be

rij variables for each criteria for expert k

for i ¼ 1; . . .;m; j ¼ 1; . . .n; k ¼ 1. . .k and

rij ¼ 1
k �r1ijr2ij � r2ij
� �

.

For every expert, the vertex method is used to

calculate the average distance between rij. The

spacing between two fuzzy numbers, m ¼
m1;m2;m3ð Þ and n ¼ m1;m2;m3ð Þ, is calculated as

dð ~m~nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
ðm1� n1Þ2þðm2� n2Þ2þðm3� n3Þ2
h ir

ð1Þ

where d represents the threshold value of m and n.

3. According to [108], the first precondition for criteria

acceptance is that if the value is less than 0.2, then a

consensus has been reached amongst the experts.

Meanwhile, the second precondition is that the ratio

of expert consensus should be greater than or equal

to 75% [109, 110].

S4 Average fuzzy numbers are used during the defuzzi-

fication process to obtain the fuzzy score (A). The value

of fuzzy score (A) must be greater or equal than the

mean value (a-cut value) of 0.5 to satisfy the third

precondition [112, 113]. The following equations can be

used to obtain the fuzzy score (A) [49]:

Amax ¼
1

3
� m1 þ m2 þ m3ð Þ ð2Þ

Amax ¼
1

4
� m1 þ m2 þ m3ð Þ ð3Þ

Amax ¼
1

6
� m1 þ m2 þ m3ð Þ ð4Þ

S5 The value of fuzzy score (A) can be used as a

determinant and priority for an element according to

expert opinions. The elements are ranked according to the

average fuzzy score. The ranking can help decide whether

certain objects should be preserved or discarded [51].

3.2 Multi-perspective DM

The multi-perspective DM is an essential part of the pro-

posed framework for the standardisation and selection of

image dehazing algorithms. This matrix comprises decision

alternatives and evaluation criteria based on multiple foggy

perspectives. In addition to the scenario, the evaluation

criteria in DM include the main and sub-criteria, which are

used to measure the quality and TC of image dehazing

algorithms from three perspectives, namely inhomoge-

neous, homogeneous and dark foggy scenes. In other

words, a user can benchmark real-time image dehazing

algorithms based on these perspectives simultaneously

through the proposed DM to determine the best algorithm.

The DM uses the experiment data extracted from the LIVE

Image Defogging Database [114] to evaluate nine algo-

rithms, namely Dehazenet [115], MSCNN [116], Colores

Table 1 Variables for the importance weight of criteria [111]

Variables Crisp value Fuzzy scale

Strongly disagree 1 0.0 0.0 0.2

Disagree 2 0.1 0.2 0.4

Not sure 3 0.2 0.4 0.6

Agree 4 0.4 0.6 0.8

Strongly agree 5 0.6 0.8 1.0
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et al. [117], Zhu [118], multi-band [119], CO-DHWT

[120], Meng et al. [121], Liu et al. [122] and Berman et al.

[123]. The data are generated from the crossover between

nine algorithms and the image dehazing sub-criteria that

are defined based on the literature (TC) and standardisation

process (quality sub-criteria) by FDM. These data, along

with the identified sub-criteria, are used to evaluate each

image dehazing algorithm. The complete data of this

matrix are presented in Sect. 4.2. Nevertheless, to mention

our evaluation criteria, algorithms were yielded by

MATLAB 2018a on a personal computer with Windows 10

operating system, Intel Core (TM) i7, RAM 8 GB.

Table 2 illustrates the multi-perspective DM, who val-

ues are obtained from the evaluation of the quality and TC

of nine image dehazing algorithms.

3.3 Hybrid entropy–VIKOR

To develop a procedure for selecting the best real-time

image dehazing algorithm based on multi-perspective DM,

a hybrid entropy–VIKOR method is introduced, in which

the weight of the criterion from the entropy method is

amalgamated with the other steps of VIKOR (Fig. 1).

VIKOR is applied to address the practical problems related

to the (1) multiple evaluation criteria for each perspective,

and the (2) trade-off and conflicting issues experienced by

the proposed DM. Meanwhile, entropy is utilised to find

the weights of the criteria and to determine (3) the

importance of the criteria used by the proposed DM. The

steps are summarised as follows:

3.3.1 Entropy weights for standardised criteria

Based on the evaluation data in Sect. 3.2, the weights of

various standardised criteria are determined as follows by

using the entropy method [124]:

S1 Normalise the evaluation criteria as

rij ¼
xijPm
i¼1 xij

ð5Þ

A DM of the multi-criteria problem with m alternatives

and n criteria, where

xij ¼ i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nð Þ, shows the perfor-

mance value of the ith alternative to the jth standardised

criteria.

S2 For each standardised criterion, the entropy values ej
are calculated as

ej ¼ �h
Xm

j¼1

rij: ln rij; j ¼ 1; 2; . . .::n ð6Þ

where h is the entropy constant and is equal to lnmð Þ�1
,

and rij: ln rij is equal to 0 if rij ¼ 0 [125]. Ta
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S3 Define the divergence of each criterion as

dj ¼ 1� ej; j ¼ 1; 2; . . .::n ð7Þ

A higher dj indicates the greater importance of the jth

criterion.

S4 Determine the weight of each standardised criterion

as

wj ¼
djPn
j¼1 dj

; j ¼ 1; 2; . . .::n ð8Þ

where wj is the degree of importance of criteria j.

A lower entropy value corresponds to a greater entropy

weight, which in turn suggests that a specific criterion

provides more information and is more significant than

other decision-making criteria [125].

3.3.2 VIKOR for ranking real-time algorithms

In the decision-making process, the weighted matrix is

used as the basis for ranking the available alternatives. In

Multi-perspectives DM

Data 
normalization

S1

Calculate Entropy 
values 

S2

Define divergence of 
criteria

S3 

Calculate Entropy 
Weights

S4

Construction of 
normalized decision
matrix

S1

Construct the 
weighted 
normalized 
decision matrix

S2

Determine ideal  
and negative
ideal solutions

S3

Rank algorithms according to 
the closeness to the ideal 
solution

S5

Calculate separation 
measurements based 
on Euclidean distance

S4

Hybrid Entropy-VIKOR

Entropy

VIKOR

FDM

Extract expert data Defuzzification

Final set of image 
dehazing criteria

Fuzzification

Fig. 1 Standardisation and selection framework for real-time image dehazing algorithms
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Sect. 3.3.1, standardised criteria weights are obtained and

applied for each criterion in the DM to obtain a weighted

DM. Based on this weighted DM, the real-time image

dehazing algorithms are assessed and ranked. The ranking

process is described as follows [126]:

Step 1 Identify the best f �i and worst f�i values of all

criterion functions, i ¼ 1; 2; . . .; n. If the ith function

represents a benefit, then

f �i ¼ max
j

fij; f
�
i ¼ min

j
fij; ð9Þ

where fij is the value of the ith criterion function for

alternative xi. The ideal solution maximises the benefit

criteria and minimises the cost criteria, whereas the

negative ideal solution maximises the cost criteria and

minimises the benefit criteria. The so-called benefits

criteria are the maximisation criteria, whereas the cost

criteria are the minimisation criteria [127].

Step 2 Calculate the criteria weights based on entropy. A

set of weights w ¼ w1;w2;w3; . . .;wj; . . .;wn is accom-

modated in the DM and is equal to 1. The corresponding

matrix can be determined as

WM ¼ wi � f �i� fij

f �i� f�i
ð10Þ

which produces the following weighted matrix:

Step 3 Calculate the Sj and Rj values and j = 1, 2,

3,….,m, i = 1, 2, 3,…,n as

Sj ¼
Xn

i¼1

w � f �i� fij

f �i� f�i
ð11Þ

Rj ¼ max
i

wi � f �i� fij

f �i� f�i
ð12Þ

where Sj and Rj denote the utility and regret measures

for alternative fi, respectively, and wi specifies the rela-

tive weights of the criterion.

Step 4 Compute Qj and j ¼ 1; 2; � � � ; jð Þ by using the

following relation:

Qj ¼
v Sj � S�
� �

S� � S�
þ

1� vð Þ Rj � R�� �

R� � R� ð13Þ

where

S� ¼ min
j

Sj; S
� ¼ max

j
Sj

R� ¼ min
j

Rj;R
� ¼ max

j
Rj

v is presented as the strategy weight of ‘the majority of

the criteria’ (or ‘the maximum group utility’), where

v ¼ 0:5.

Step 5 Rank the alternatives based on Qj. A lower Qj

indicates a better alternative. In other words, the

alternative (a0) is identified as the best by the measure

Q (minimum) if the following rules are satisfied:R1.

‘Acceptable advantage’

Qða00Þ � Qða0Þ �DQ ð14Þ

where (a00) is the alternative ranked second according to

Q, DQ ¼ 1= j� 1ð Þ, and j is the number of alterna-

tives.R2. ‘Stability’ is acceptable within the decision-

making context. Alternative a0 should also be determined

as the best by S and/or R. This compromise solution is

stable within the decision-making process and can be

treated as ‘voting by majority rule’ ðv[ 0:5Þ, ‘by con-

sensus’ v ffi 0:5ð Þ or ‘with veto’ (v\0:5), where v rep-

resents the decision-making strategy weight of ‘the

majority of criteria’ (or ‘the maximum group utility’).

The Q value indicates that a certain algorithm has higher

evaluation criteria values compared with the other

algorithms.

4 Results and discussion

This section presents the findings of the proposed stan-

dardisation and selection framework. Section 4.1 presents

the standardisation results based on FDM, Sect. 4.2 pre-

sents the results of multi-perspective DM, Sect. 4.3 pre-

sents the entropy results, and Sect. 4.4 presents the VIKOR

results.

4.1 FDM results

Different decision makers have varying objectives and

expectations, and their judgment is influenced by the

w1ðf �1� f11Þ= ðf �1� f�1ð Þ w2ðf �2� f12Þ= ðf �2� f�2ð Þ . . . wiðf �i� fijÞ= ðf �i� f�ið Þ
w1ðf �1� f21Þ= ðf �1� f�1ð Þ w2ðf �2� f12Þ= ðf �2� f�2ð Þ . . . wiðf �i� fijÞ= ðf �i� f�ið Þ
..
. ..

. ..
. ..

.

w1ðf �1� f31Þ= ðf �1� f�1ð Þ w2ðf �2� f12Þ= ðf �2� f�2ð Þ . . . wiðf �i� fijÞ= ðf �i� f�ið Þ

2

6664

3

7775
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criteria for evaluating image dehazing algorithms from

different perspectives. According to [128], there is no limit

to the number of experts who can participate in FDM.

Meanwhile, [129] suggested that 8 to 12 experts is enough

only if they have homogeneous backgrounds. Nevertheless,

previous studies typically employ 3 to 15 experts [130],

whereas others have employed 16 [131], 20 [132] and 17

experts [50]. Therefore, a panel of 16 experts, which is

within the recommended range, can be considered adequate

for this study. According to [108], if the acceptable value

of d is d\ 0.2, then a consensus is achieved amongst the

experts. Specifically, if the percentage of agreement

amongst experts m 9 n is greater than 75% [109], then one

can proceed with the other FDM steps. Otherwise, a second

round of FDM should be conducted. Data were collected

from these experts after two rounds. The first round

involved 20 experts from different organisations and with

different backgrounds, but their percentage of agreement

on item agreeability was only 68% (less than 75%). In this

case, a second round of FDM should be performed. The

experts’ responses were gathered by interviewing them and

by scaling their responses on hard copies of experts’ forms.

Afterwards, by using information obtained from Google

Scholar, ResearchGate and official university websites,

links leading to the experts’ form were sent to those experts

based overseas or those who prefer to answer this form

online instead of receiving a hard copy.

By revealing their background, previous studies were

categorised into three domains, namely image processing,

image dehazing and IQA. As shown in Table 3, most of the

feedbacks were obtained from decision makers with

experience in image dehazing and processing and from

some experts in the image quality domain. Most of these

experts have work experience of over 15 years, with some

only having 6–10 years of experience. Compared with

those from Iraq, the experts from the USA, UK and China

were from universities or organisations based on Malaysia.

To apply fuzzy operations on the input data, the data

collected from the 16 target experts were converted from

linguistic forms into crisp and fuzzy numbers (Table 4).

The average minimum value (m1), most appropriate value

(m2) and maximum value (m3) should be considered in

each reported answer. TFN aims to illustrate the fuzziness

or vagueness in an expert’s opinion. Each opinion had a

certain amount of uncertainty that could not be measured

by using a Likert scale given its fixed score. An object

called ‘CNR’ was assumed to be given a score of 5

(‘strongly agree’) by an expert. The score is translated into

the lowest, most rational and the maximum 0.6, 0.8 and 1.0

ratings. It specified the expert’s agreement to the element is

60%, 80% and 100%, respectively.

To check whether a certain criterion is suitable, three pre-

conditions should be satisfied. The d-value specifies the

acceptability of a criterion based on the consensus amongst

experts. By finding the difference between the average fuzzy

number and the fuzzy number given by each expert, the d-value

for each criterion can be determined. The post-data analysis

results in Table 5 show that all sub-criteria have satisfied the

first precondition of acceptability (d-value B 0.2), except for

EBCM, which has obtained a d-value of 0.212. Therefore, this

sub-criterion was discarded given the lack of consensus

amongst experts. A total of 25 sub-criteria remained.

The second precondition for item acceptability is to

achieve an agreement percentage of no lower than 75%.

Table 3 Experts panel

Expert no. Domain Work experience Organisation Country

1 Image processing 10–15 years University of Texas at Austin US

2 Image dehazing and processing More than 10 years Cornell University US

3 Image processing 6–10 years University of Buckingham UK

4 Image dehazing and processing 10–15 years Chinese Academy of Sciences China

5 Image processing More than 15 years Universiti Teknikal Malaysia Melaka (UTeM) Malaysia

6 Image processing 6–10 years UTeM Malaysia

7 Image processing and dehazing More than 15 years UTeM Malaysia

8 Image processing More than 15 years UTeM Malaysia

9 IQA and image processing More than 15 years UTeM Malaysia

10 Computer graphics and image processing More than 15 years Universiti Putra Malaysia Malaysia

11 Image dehazing 10 years Universiti Sains Malaysia Malaysia

12 Image dehazing 6–10 years Universiti Sains Islam Malaysia Malaysia

13 Image dehazing and processing More than 15 years University of Kufa Iraq

14 Image dehazing and processing 10–15 years University of Kufa Iraq

15 Image processing 10 years Al-Nahrain University Iraq

16 Image processing 6–10 years University of Anbar Iraq
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Meanwhile, the third precondition is the defuzzification

process, where each fuzzy number is converted into a crisp

number by obtaining the score and averaging the fuzzy

number of each sub-criteria. However, same sub-criteria

have included in calculation the percentage of agreement.

Table 6 shows the results for these preconditions.

As shown in Table 5, the percentages of agreement on

the image dehazing sub-criteria are 63%, 69%, 88% and

94%, respectively. In other words, the majority of the sub-

criteria, including IVM, VCM, STD, AG, IE, GCF, AMPL,

Loss, CNR, VSNR, WSNR, Sharpness, VIF, CIEDE2000s,

CEF, CCI, MS-SSIM and IW-SSIM, did not reach enough

Table 4 D value condition results

Expert no. e �r IVM CG VCM STD AG IE GCF EBCM AMPL Loss CNR

1 0.2 0.2 0.171 0.088 0.146 0.188 0.055 0.075 0.034 0.125 0.142 0.213 0.229

2 0.2 0.2 0.030 0.088 0.054 0.013 0.055 0.125 0.034 0.075 0.059 0.013 0.030

3 0 0 0.171 0.088 0.146 0.188 0.254 0.125 0.233 0.413 0.258 0.188 0.171

4 0.2 0 0.030 0.113 0.254 0.213 0.055 0.075 0.167 0.239 0.289 0.213 0.171

5 0.2 0.2 0.171 0.088 0.054 0.013 0.146 0.125 0.167 0.154 0.142 0.013 0.171

6 0 0 0.030 0.113 0.054 0.013 0.055 0.125 0.034 0.154 0.258 0.188 0.030

7 0 0 0.030 0.113 0.346 0.188 0.291 0.125 0.167 0.239 0.142 0.013 0.171

8 0 0 0.373 0.088 0.146 0.213 0.146 0.125 0.167 0.154 0.059 0.188 0.171

9 0.2 0 0.030 0.113 0.254 0.188 0.291 0.275 0.167 0.154 0.059 0.013 0.229

10 0.2 0 0.229 0.088 0.146 0.213 0.055 0.125 0.034 0.239 0.059 0.213 0.373

11 0 0 0.229 0.113 0.397 0.188 0.146 0.275 0.313 0.154 0.142 0.188 0.171

12 0 0 0.371 0.288 0.346 0.013 0.254 0.125 0.233 0.413 0.258 0.188 0.229

13 0 0.2 0.171 0.088 0.054 0.213 0.055 0.075 0.034 0.154 0.142 0.013 0.171

14 0 0 0.030 0.113 0.146 0.013 0.055 0.275 0.433 0.154 0.142 0.213 0.171

15 0 0 0.171 0.088 0.054 0.188 0.254 0.325 0.233 0.413 0.258 0.188 0.030

16 0.4 0.4 0.229 0.313 0.254 0.213 0.146 0.275 0.167 0.154 0.142 0.213 0.229

d value 0.100 0.075 0.154 0.123 0.178 0.141 0.145 0.166 0.164 0.212 0.159 0.141 0.172

Expert no. VSNR WSNR Sharpness VIF
P

HCC CIEDE2000s CEF CCI SSIM UQI MS-SSIM IW-SSIM

1 0.188 0.038 0.089 0.007 0.013 0.125 0.138 0.179 0.265 0.175 0.163 0.117 0.337

2 0.213 0.163 0.114 0.204 0.013 0.125 0.138 0.022 0.117 0.025 0.038 0.117 0.010

3 0.213 0.238 0.288 0.196 0.013 0.125 0.263 0.221 0.283 0.025 0.038 0.283 0.208

4 0.013 0.163 0.089 0.196 0.188 0.125 0.138 0.179 0.117 0.025 0.038 0.283 0.010

5 0.188 0.163 0.257 0.204 0.013 0.075 0.138 0.325 0.117 0.025 0.163 0.117 0.010

6 0.213 0.238 0.089 0.007 0.013 0.125 0.138 0.221 0.283 0.025 0.038 0.283 0.192

7 0.013 0.163 0.114 0.196 0.188 0.075 0.263 0.022 0.117 0.175 0.038 0.084 0.010

8 0.213 0.038 0.089 0.196 0.013 0.075 0.138 0.421 0.117 0.025 0.163 0.117 0.208

9 0.188 0.163 0.089 0.007 0.188 0.125 0.138 0.179 0.117 0.175 0.038 0.117 0.010

10 0.013 0.238 0.114 0.204 0.013 0.275 0.263 0.022 0.084 0.175 0.038 0.117 0.208

11 0.188 0.163 0.257 0.349 0.013 0.075 0.138 0.179 0.117 0.025 0.038 0.283 0.010

12 0.213 0.163 0.288 0.196 0.013 0.125 0.263 0.022 0.283 0.025 0.038 0.117 0.208

13 0.013 0.038 0.089 0.007 0.013 0.075 0.063 0.022 0.084 0.025 0.163 0.265 0.010

14 0.188 0.238 0.257 0.007 0.013 0.125 0.138 0.022 0.117 0.025 0.163 0.117 0.192

15 0.013 0.163 0.089 0.196 0.013 0.075 0.263 0.221 0.283 0.025 0.038 0.084 0.010

16 0.188 0.238 0.114 0.204 0.413 0.275 0.138 0.179 0.117 0.425 0.438 0.117 0.192

d value 0.141 0.163 0.152 0.149 0.070 0.125 0.172 0.152 0.164 0.088 0.102 0.164 0.114

e, increased rate of visible edges; r, ratio of the gradient of visible edges; IVM, IV measurement; CG, contrast gain; VCM, visual contrast

measure; STD, standard deviation; AG, average gradient; IE, information entropy; GCF, global contrast factor; EBCM, edge-based contrast

measure; Ampl, amplification of invisible contrast; Loss, loss of contrast; CNR, contrast-to-noise ratio; VSNR, visual signal-to-noise ratio;

WSNR, weighted signal-to-noise ratio; VIF, visual information fidelity; R, ratio of saturated (black or white) pixels; HCC, histogram correlation

coefficient; CIEDE2000s, colour difference; CEF, colour enhancement factor; CCI, colour colourfulness index; SSIM, image structural simi-

larity; UQI, universal quality index; MS-SSIM, multi-scale image structural similarity; IW-SSIM, information content weighted structural

similarity measure; D value, threshold value where each item should be equal to or less than 0.2
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agreement amongst the experts (less than 75%). In this

case, these criteria were discarded along with EBCM. By

contrast, e, �r, CG,
P

, HCC, SSIM and UQI received

adequate agreement amongst the experts (more than 75%).

Most of these sub-criteria scored 94%, with only HCC

receiving an agreement percentage of 88%. However,

unlike the first round of FDM, the second round achieved

an agreement percentage of 75%, thereby confirming that

the sub-criteria were accepted by all experts. Only seven

sub-criteria successfully satisfied the second precondition

of item acceptability.

A defuzzification analysis was performed to check

whether the sub-criteria satisfied the third precondition. As

shown in Table 5, most of these sub-criteria failed to score

0.5 or above. Only e, �r, CG,
P

, HCC, SSIM and UQI

successfully satisfied this precondition with scores of

greater than 0.5 except for HCC, which scored exactly 0.5.

This result again confirms the consistency of results for

these seven sub-criteria. In the last step of FDM, the target

experts ranked the sub-criteria according to their average

fuzzy numbers. As shown in Table 7, each of those sub-

criteria that satisfied all the aforementioned preconditions

were given high rankings by the experts. UQI ranked the

highest, followed by SSIM,
P

, e, �r, CG and HCC.

Meanwhile, the 19 sub-criteria that failed to meet the

preconditions were given low rankings. On the whole, the

experts have given high priority to SSIM than to IV and

CR.

Table 6 summarises the FDM results and the achieve-

ment of the three preconditions.

Only seven sub-criteria, namely e, �r, CG,
P

, HCC,

SSIM and UQI, were accepted by the panel of experts for

evaluating image dehazing algorithms, whereas the other

19 sub-criteria were rejected.

4.2 Multi-perspective DM data

Based on the evaluation data mentioned in Sect. 3.2 and

the standardised sub-criteria in Sect. 4.1, the data were

generated from the crossover between algorithms and

standardised sub-criteria. Table 7 presents the completed

DM, wherein nine real-time algorithms are evaluated based

on eight evaluation criteria from three evaluation

perspectives.

4.3 Entropy weighting results

Based on the DM data in Sect. 4.2, weighting was per-

formed objectively for eight criteria for each foggy scene

as shown in Table 8.

The entropy values and weights in Table 8 are obtained

by using Eqs. (5)–(8). In the three foggy scenes, HCC and

UQI achieved the maximum and minimum entropy

weights, respectively. The highest entropy weight criteria

were considered the key criteria, whereas the lowest

entropy weight criteria were deemed unimportant.

4.4 VIKOR ranking

The real-time image dehazing algorithms were ranked

based on the multi-perspective weighted DM, which was

obtained by using Eqs. (9) and (10). e, r, CG and HCC

were selected as the benefit criteria, whereas R, SSIM, UQI

and TC were selected as the cost criteria. By using

Eqs. (11) and (12), the distances of the alternatives from

the positive and negative ideal solutions were determined.

Equation (13) was used to calculate the Qi values of nine

real-time image dehazing algorithms. These algorithms

were then ranked, and the optimal one was selected based

on VIKOR. The results are shown in Table 9.

Table 5 Expert agreement and average fuzzy score

No Sub-criteria Percentage

of each item

with d B 0.2

Average

fuzzy score

Rank

1 e 94% 0.600 4

2 �r 94% 0.600 5

3 IVM 69% 0.429 10

4 CG 88% 0.513 6

5 VCM 63% 0.454 9

6 STD 69% 0.413 12

7 AG 69% 0.346 20

8 IE 69% 0.475 8

9 GCF 69% 0.367 18

10 EBCM 63% 0.325 23

11 AMPL 69% 0.342 21

12 Loss 69% 0.413 12

13 CNR 69% 0.429 10

14 VSNR 69% 0.388 16

15 WSNR 69% 0.363 19

16 Sharpness 69% 0.313 26

17 VIF 69% 0.404 14

18
P

94% 0.613 3

19 HCC 88% 0.500 7

20 CIEDE2000s 69% 0.338 22

21 CEF 69% 0.379 17

22 CCI 69% 0.317 25

23 SSIM 94% 0.625 2

24 UQI 94% 0.638 1

25 MS-SSIM 69% 0.317 24

26 IW-SSIM 69% 0.392 15

Total percentage of agreement: 75%
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MSCNN outranks the other algorithms, which have

obtained minimum values for Si, Ri and Qi. Therefore,

MSCNN was selected as the optimal real-time image

dehazing algorithm. The ranking shown in the above

table can be considered the final ranking results that will

serve as the basis of the validation.

5 Validation procedure

Ranking real-time image dehazing algorithms is difficult

because they depend on multiple conflicting criteria. The

results of the framework were validated by using the

objective approach proposed in [60, 61, 126]. Following

[133], the real-time image dehazing algorithms were clas-

sified into several groups, and the results for each group

were expressed in mean values to validate the rankings

provided by the proposed framework. The mean for each

group was calculated as follows by dividing the total per-

ceived results by the amount of results:

�x ¼ 1

n

Xn

i¼1

xi ð15Þ

where xi = all x-values; n number of items.

The first group of algorithms obtained a lower mean

compared with the two other groups. Meanwhile, the sec-

ond group obtained a mean that was lower or equal to that

of the third group yet was higher than that of the first

group. Meanwhile, the mean of the third group was higher

than that of the first group and is equal to that of the second

group. The variance in the mean values of the selected

image dehazing algorithms ensures that the results are

consistently (systematically) ranked [60, 61, 126].

Table 10 presents the results after the normalisation and

weighting of the raw data of the three groups.

Table 10 presents the validation results. Obviously, the

first group had a lower mean than the second group, whilst

the mean of the second group was lower than that of the

third group. Therefore, the ranking of the real-time image

dehazing algorithms is validated, and the algorithms

are systematically ranked.

6 Conclusion

The main contribution of this paper lies in its develop-

ment of a framework for standardising evaluation criteria

based on FDM and its selection of an optimal real-time

image dehazing algorithm based on hybrid MCDM

methods from multi-foggy scenes. A total of 6 main cri-

teria and 26 sub-criteria were identified based on the lit-

erature review. The classification and usage frequency of

these criteria were reviewed, and the sub-criteria were

categorised into three groups. The majority of the 26 sub-

criteria were classified under IV. The e, �r,
P

and SSIM

sub-criteria have been widely used in the literature. FDM

was employed to standardise the sub-criteria according to

expert opinions. All 26 sub-criteria must satisfy the three

preconditions of FDM. e,�r, CG,
P

, HCC, SSIM, UQI

were used as criteria in the multi-perspective DM. The

optimal real-time image dehazing algorithm was selected

based on three foggy scenes. The processes and steps of

the proposed framework were also outlined. The multi-

perspective DM was constructed based on the crossover

between the standardised criteria and the nine real-time

image dehazing algorithms. The selection procedure was

formulated according to the proposed hybrid entropy–

VIKOR method. The final weights obtained from the

entropy method highlighted the importance of each image

dehazing criteria based on three foggy scenes. VIKOR

was adopted to rank and select the best real-time image

dehazing algorithm according to the quantitative infor-

mation of the measured criteria. The results reveal that (1)

Table 6 Summary of findings

No Sub-criteria D value Percentage of

agreement

Average

fuzzy

score

Verdict

1 e 4 4 4 Accepted

2 �r 4 4 4 Accepted

3 IVM 4 9 9 Discarded

4 CG 4 4 4 Accepted

5 VCM 4 9 9 Discarded

6 STD 4 9 9 Discarded

7 AG 4 9 9 Discarded

8 IE 4 9 9 Discarded

9 GCF 4 9 9 Discarded

10 EBCM 9 9 9 Discarded

11 AMPL 4 9 9 discarded

12 Loss 4 9 9 Discarded

13 CNR 4 9 9 Discarded

14 VSNR 4 9 9 Discarded

15 WSNR 4 9 9 Discarded

16 Sharpness 4 9 9 Discarded

17 VIF 4 9 9 Discarded

18
P

4 4 4 Accepted

19 HCC 4 4 4 Accepted

20 CIEDE2000s 4 9 9 Discarded

21 CEF 4 9 9 Discarded

22 CCI 4 9 9 Discarded

23 SSIM 4 4 4 Accepted

24 UQI 4 4 4 Accepted

25 MS-SSIM 4 9 9 Discarded

26 IW-SSIM 4 9 9 Discarded
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FDM effectively solves the challenges in the standardis-

ation of image dehazing criteria, (2) the hybridisation of

the entropy and VIKOR methods can effectively solve the

challenges in the selection of the optimal image dehazing

algorithm, (3) 19 sub-criteria have failed to satisfy the

fuzzy Delphi constraints, and e,�r, CG,
P

, HCC, SSIM

and UQI have successfully satisfied the acceptability

preconditions, (4) the rankings of real-time image

dehazing algorithms obtained from VIKOR identify

MSCNN as the best algorithm, and (5) the ranking results

are valid. Several technical points need to be addressed in

future studies. Specifically, these studies should confirm

the contributions of this work by conducting objective

experiments. Additional criteria also warrant further

examination and need to be included in the multi-per-

spective DM. However, the standardised criteria can be

used in any evaluation and benchmarking scenario in the

image dehazing domain. The observations presented in

this work may also be considered when designing a new

image dehazing metric dedicated to evaluate the perfor-

mance of an algorithm.

Appendix

See Table 11.
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6 Table 9 VIKOR ranking results

Algorithms Si values Ri values Qi values Rank

Dehazenet 0.6896 0.3321 0.9098 8

MSCNN 0.1929 0.0425 0 1

Colores 0.3937 0.1909 0.4218 3

Zhu 0.6313 0.2987 0.8039 5

Multi-band 0.6044 0.2276 0.6590 4

CO-DHWT 0.2216 0.1240 0.1643 2

Meng 0.7990 0.2782 0.9069 7

Liu 0.7177 0.3193 0.9108 9

Berman 0.7517 0.2676 0.8496 6

Si, utility measure; Ri, regret measure; Qi, value used for ranking the

alternatives
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