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Abstract
In this paper, we have proposed a fusion-based context-sensitive Masi energy curve model for multi-level thresholding

exploiting cuttlefish algorithm (CFA). The proposed algorithm is simple and very efficient for the task of color image

segmentation. Although Masi entropy exploits the additive/non-extensive information with the aid of a concordant entropic

parameter, the performance is observed to be poor in the case of color image segmentation. Improved results can be

obtained by using the concept of energy curve with Masi entropy at the cost of increased computational cost while selecting

the suitable thresholds. To overcome the aforementioned drawbacks as well as to increase the quality of the segmented

image, a simple multi-level thresholding method is proposed in this paper. The proposed color image segmentation

scheme exploits the concept of local contrast fusion along with CFA to resolve the aforementioned issues. In order to prove

the effectiveness of the proposed scheme, experimental evaluations on standard daily-life color images have been reported

in this paper. The experimental outputs demonstrate that fusion-based multi-level thresholding is better than the existing

dominant segmentation methods.

Keywords Image fusion � Local contrast � Masi entropy � Energy curve � Cuttlefish algorithm � Multi-level image

segmentation

1 Introduction

The segmentation process is considered as a critical step

within an image processing system due to its effects on the

subsequent image analysis steps. In segmentation, image

pixels are clustered into different regions based on their

intensity levels. The ultimate goal of image segmentation is

to increase the interpretability or to extract relevant infor-

mation within the images for human observers, or to pro-

duce superior input for further computerized digital image

processing systems. Image segmentation is used in several

applications such as object tracking, searching regions of

interest, surveillance, medical imaging and many more

[1–4].

As mentioned earlier, the primary objective of image

segmentation is to divide the pixels into classes based on

their intensity levels. A myriad of schemes have been

proposed over the years for image segmentation. Among

those, thresholding-based segmentation algorithms are

noted to be simple and easy to implement. At the same

time, segmentation based on image thresholding is reported

to be highly effective. This method uses the gray-level

histogram derived from the image for selecting the

thresholds in order to separate out the classes. If only one

threshold value is selected, it is called bi-level threshold-

ing. Bi-level thresholding is primarily used to detect an

object from its background. On the other hand, when an

image is divided into several classes by selecting more than

one threshold, it is known as multi-level thresholding. It is

worth highlighting here that bi-level thresholding is easier

to implement than multi-level thresholding. In the case of

multi-level thresholding, the addition of each new thresh-

old value in the searching approach leads to an increase in

complexity along with a decrease in accuracy [5].
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Thresholding-based segmentation methods are divided

into parametric and nonparametric approaches [6, 7].

Parametric approaches exploit the probability density

function (PDF) for defining each of the classes. At the same

time, the computational cost is high in the case of para-

metric approaches. Nonparametric techniques, on the other

hand, exploit variance between the classes, the entropy and

the error rate for effectively segmenting the images [8–10].

Such methods are generally known for their accuracy and

robustness [11].

In recent years, entropy-based thresholding approaches

have been reported to be highly effective in segmenting

various kind of images such as color images, medical and

satellite images. Among those, thresholding based on

information entropy theory is a fascinating subject of

research. Therefore, entropy-based image segmentation

methodology has enticed the attention of numerous

researchers [12–20] and is reckoned as one of the promi-

nent global thresholding method. The strong theoretical

background and enhanced performance makes entropy-

based thresholding enormously popular in theoretical

research as well as in various applications in image pro-

cessing [21–27]. The mean information produced by a

probabilistic stochastic origin of data defines the entropy.

In the case of entropy-based segmentation approach, the

entropy of the two regions of the image histogram, the

object and the background, are summed. The main

assumption here is that the higher the value of entropy, the

better the separation between the object and background.

During the last few years, newer methods employing the

difference in entropies have been developed to separate the

objects from the background. Some of those are Renyi

entropy [28], Shannon entropy [29], Tsallis entropy [30],

cross-entropy [31] and fuzzy entropy [32]. It is well known

that the information existing in the pixels of an image has

either the additive or non-additive property. The entropy-

based segmentation approaches exploit this fact. A maxi-

mum entropy method was proposed based on non-exten-

sive Tsallis entropy [30]. Tsallis entropy is the

generalization of Shannon entropy. The pseudo-additivity

property of Tsallis entropy with entropic parameter q can

handle non-extensive information for statistically inde-

pendent subsystems. Sahoo et al. [28] proposed a method

for thresholding based on Renyi’s entropy. Renyi’s entropy

can handle the additive property using the tunable entropic

parameter a [28, 30, 33]. However, Renyi’s and Tsallis

entropies cannot handle the additive and non-additive

information simultaneously.

On the other hand, Masi [33] has introduced a new

entropic measure, which is based on the analysis of ther-

modynamic entropies that utilizes the complete probability

distribution for image segmentation. This method incor-

porates an entropic parameter r, which, when defined as

r = 1, reduces the Masi’s entropy to the Shannon entropy,

i.e., the Boltzmann–Gibbs entropy. Fundamentally, Masi

entropy combines the additivity of Renyi entropy and the

non-extensivity of Tsallis entropy. The main argument that

differentiates Renyi and Tsallis entropy from Masi entropy

is the concordant parameter r. Unlike probability functions

of Renyi’s and Tsallis entropy, where each state-proba-

bility is raised to the power of their entropic parameters a
and q, respectively, in the case of Masi, the entire proba-

bility function is raised to the power r [21, 33]. The

parameter r represents a measure of the degree of exten-

sivity or non-extensivity that might be existent in the sys-

tem. The entropy-based thresholding methodology

developed on the entropic measure was employed for gray-

level image segmentation in [21, 33]. All the entropies are,

directly or indirectly, some kinds of generalization of the

well-established Shannon entropy [34, 35]. The entropic

parameter gives the flexibility to easily achieve the desired

result. However, the image segmentation approach based

on Masi entropy does not give satisfactory results, espe-

cially in the case of color images. Motivated by this fact,

we have exploited the concept of energy curve within the

Masi entropy framework.

Employing the concept of the energy curve of an image

instead of histogram for segmentation, enhanced results

can be obtained. Histogram utilizes the intensity of the

pixel whereas the energy curve uses the spatial content of

the image. In the case of energy-curve-based segmentation,

valleys and peaks are smoother than that obtained with

histogram-based segmentation. At the same time, the

image characteristics are better preserved in the case of

former. In the context of energy curve, each of the modes

represents an object. Further, a valley exists in between the

two adjacent modes. For thresholding any image, the

optimal thresholds are obtained in the center of the valley

regions of the energy curve. Therefore, energy-curve-based

method yields more accurate threshold values when com-

pared to those obtained via histogram-based segmentation

approach. This, in turn, leads to improved results. For

further improvement in the quality of the segmented ima-

ges, the concept of fusion based on local contrast can be

employed. Interestingly, the fusion-based Masi energy

curve approach dominates energy-based Masi entropy.

Motivated by the aforementioned facts, in this paper, a

local-contrast-based fusion method [36] for segmentation is

coupled with energy-based Masi entropy along with cut-

tlefish algorithm to get better thresholding results. Local

contrast depends upon the difference in the intensity value

within a small local space within an image. Besides, there

are other expressions for local contrast as well, such as the

one used in the logarithmic image processing [37]. In the

case of image enhancement, the outcomes of local-con-

trast-based fusion method are much better than each of the
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individual enhancement methods. The complete details of

image fusion based on the local contrast for image

enhancement are described in [36, 38]. In this paper, the

same concept is adopted and introduced for image seg-

mentation, where a fusion of the original and segmented

images is coupled in order to enhance the quality of the

segmented image.

The fusion-based Masi energy curve technique is

observed to be highly effective. At the same time, the said

approach consumes more time and the complexity level for

selecting suitable thresholds is high. In order to overcome

these drawbacks, we have coupled the fusion-based Masi

energy curve method with the meta-heuristic cuttlefish

algorithm during segmentation. Cuttlefish optimization

algorithm (CFA) is an emergent meta-heuristic optimiza-

tion algorithm [39, 40]. The CFA algorithm was proposed

after observing, mimicking and modeling the camouflage

feature of cuttlefish. The effectiveness and suitability of

this algorithm were demonstrated by employing it to

traveling salesperson problem [41] and intrusion detection

systems [42]. In order to compare the efficacy of CFA,

effectiveness of several other nature-inspired algorithms is

also explored in this paper. Those are lightening search

algorithm (LSA) [43] inspired from natural phenomena of

lightening, sine cosine algorithm (SCA) [44, 45], dragonfly

algorithm (DA) [46] and selfish herd optimizer (SHO) [47].

Many methods have been introduced recently to deter-

mine the optimal threshold levels for image segmentation.

In 2019, a novel fuzzy type II set-based image thresholding

using evolutionary algorithms was proposed [48].

Recently, in 2020, many new multi-level thresholding

approaches have been proposed in the literature which

includes PSO image thresholding on images compressed

via fuzzy transforms [49], efficient krill herd algorithm for

color image multi-level thresholding [50], improved

emperor penguin optimization-based multi-level thresh-

olding [51], symbiotic organisms search algorithm for

multi-level thresholding of images [52] and a multimodal

particle swarm optimization-based image thresholding

[53]. A modified hybrid bat algorithm with genetic cross-

over-based segmentation approach [54] has also been

proposed recently. In 2018, a novel deviation analysis

based texture segmentation of mammographic images has

been proposed [55]. In the literature, fusion concept has

been exploited in different image processing applications

such as fusion-based image denoising [56, 57]. In recent

years, fuzzy and filtering approaches have played important

role in many image processing applications [58–60]. In

2020, a new fuzzy c-means algorithm- and region salient

color-based image thresholding approach has been pro-

posed [61]. In this paper, optimization algorithm has been

exploited to get optimum threshold, whereas fusion con-

cept has been opted to further improve the segmentation.

The rest of the paper is organized as follows. Section 2

provides a brief discussion of previous thresholding

methods. Section 3 describes a general explanation of Masi

entropy and energy-curve-based thresholding model with a

summary of LSA, SHO, SCA, and DA algorithms. Sec-

tion 4 explains the basic theory of CFA in brief and the

proposed fusion-energy-based multi-level thresholding

scheme. Section 5 discusses experimental setup, results

and comparisons. Finally, the conclusions are drawn in

Sect. 6.

2 Motivation and contributions

As a result of decades of study and research, numerous

thresholding methods have been proposed. Among the

established approaches, image thresholding (TH) is one of

the simplest, robust and effective means of image seg-

mentation. As discussed earlier, the main aim of the seg-

mentation is to divide the pixels into classes based on their

intensity levels. Thresholding-based color image segmen-

tation lacks accuracy in partitioning the ambiguous regions

due to the presence of dense features and small abrupt

changes within the images. However, Masi energy curve

model provides a suitable solution for finding thresholds in

multi-level thresholding in spite of its high computational

cost. Nevertheless, the multi-level image segmentation

performed through conventional techniques poses serious

problems since the execution of those methods require high

processing time in order to obtain optimal solution. The

aforementioned problem with multi-level segmentation can

be resolved to a large extent using meta-heuristic tech-

niques to search for appropriate threshold values without

incurring extra computational cost.

In the last few decades, several new techniques have

been proposed for multi-level thresholding-based segmen-

tation [1, 2, 13, 15, 16, 21]. Exploiting cuttlefish algorithm

[39] as objective function in Masi energy curve model

reduces this cost partially and gives improved results. The

demand for improving the quality of the segmented images

is high. At the same time, this is very challenging task. For

example, if an image is dark, one will be required to per-

form image enhancement followed by segmentation.

Unfortunately, there is no such technique that performs

both of those tasks simultaneously. This fact inspired us to

develop a simple yet effective technique that produces an

enhanced segmented image. In order to enhance the quality

of the segmented images, a novel fusion-based multi-level

color segmentation method is introduced. The use of local-

contrast-based fusion technique for multi-level threshold-

ing has been proposed for color image segmentation for the

first time in this work. Moreover, in order to reduce the

increased complexity due to inclusion of fusion criterion
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and Masi entropy, the proposed method makes an effective

use of the Cuttlefish search algorithm. Furthermore, the

efficacy of proposed approach is contrasted with several

other existing dominant approaches.

3 Overview of objective functions
and optimization algorithms

In this section, we describe the Masi’s thresholding method

in detail along with other well-known objective functions

used in image segmentation. This is followed by discus-

sions on some of the most commonly used optimization

criteria reported in the literature.

3.1 Masi’s thresholding method

The pixels of a gray scale or colored image are classified

into regions or sets based on their intensity levels (L). This

process of arranging the pixels is referred to as threshold-

ing. In order to classify the pixels of a grayscale test image

into two regions, the pixels are selected using the following

criterion:

C0  i if 0� i\th

C1  i if th� i\L� 1
ð1Þ

where i represents the intensity values of the grayscale

image with L being the maximum intensity level, th refers

to the optimum threshold value, and C represents the

classes into which the pixels of the test image need to be

classified. Similarly, when the pixels need to classified into

several classes, the criterion given in Eq. (1) can be easily

extended to incorporate multiple thresholds as follows:

C0  i if 0� i\th1
C1  i if th1� i\th2
C2  i if th2� i\th3
Cn  i if thn� i\L� 1

ð2Þ

where th1, th2, th3, …, thn represent multiple thresholds.

Segmenting pixels into their respective classes is done

using Eqs. (1) and (2) for bi-level and multi-level thresh-

olding, respectively. In the case of thresholding-based

image segmentation, the most challenging task is to choose

optimal threshold values that can properly classify the

different regions within the image using either bi-level or

multi-level thresholding algorithms.

Let I denote a test image with an extreme of L gray

levels with G = {0, 1…L - 1} denoting the set of intensity

values of the image. Further, let the dimensions of the

image be M 9 N. If ni is the number of pixels with gray-

level intensity i and the total number of pixels in the image

is given by its dimensions, then the probability of gray

level i is estimated as follows:

hi ¼
ni

M � N
where, hi� 0 and

XL�1

0

hi ¼ 1 ð3Þ

The complete probabilistic distribution H of gray levels

is the set of probabilities for each of the gray levels or

H = {h0, h1, h2, …, hL - 1}. When the pixels in the image

are to be separated into two classes [bi-level segmentation

given by Eq. (1)], class C0 consists of the set of pixels with

intensity levels {0, 1, …, th}, while the other set of pixels

with intensity values {th ? 1, th ? 2,…, L - 1} belong to

class C1. In the case of bi-level segmentation, C0 and C1

generally correspond to the background class and object (or

foreground) class or vice versa. Similarly, when the pixels

in the image are divided into more than two classes [multi-

level segmentation given by Eq. (2)], the classes C0, C1, C2

… Cn represent the set of pixels with intensity values {0,

1… th1}, {th1, th1 ? 1… th2}, {th2, th2 ? 1… th3} and

{thn, thn ? 1…L - 1}. Each of the C0, C1, C2 and Cn

corresponds to the different object classes and one of the

class represents the background. The probability of the

classes defined for bi-level and multi-level thresholding is

given by following the equations:

For bi-level thresholding,

w0 ¼
Xth

i¼0
hi; w1 ¼

XL�1

i¼thþ1
hi ð4Þ

and for multi-level thresholding,

w0 ¼
Xth1

i¼0
hi; w1 ¼

Xth2

i¼th1þ1
hi; w2 ¼

Xth3

i¼th2þ1
hi;

wn ¼
XL�1

i¼thn
hi

ð5Þ

The above-defined probability distributions are further

normalized. Consequently, a new set of distributions are

obtained which can be expressed for bi-level and multi-

level thresholding using Eqs. (6) and (7):

DC0 :
h0
w0

;
h1
w0

; . . .;
hth
w0

; DC1 :
hthþ1
w1

;
hthþ2
w1

; . . .;
hL�1
w1

ð6Þ

DC0 :
h0
w0

;
h1
w0

; . . .;
hth1
w0

; DC1 :
hth1þ1
w1

;
hth1þ2
w1

; . . .;
hth2
w1

;

DCn :
hthpþ1

wn
;
hthpþ2

wn
; . . .;

hL�1
wn

ð7Þ

where {DC}s is the new set of a probability distribution.

Based on the above discussion of thresholding-based

segmentation, Kapur [14] proposed a thresholding method

that maximizes the entropic value on the basis of Shannon

entropy. It is one of the objective functions and is opti-

mized using Eq. (8):
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E I=thð Þ ¼ EðC0=thÞ þ E C1=thð Þ ð8Þ

where

E C0=thð Þ ¼ �
Xth

i¼0

hi
w0

log
hi
w0

E C1=thð Þ ¼ �
XL�1

i¼thþ1

hi
w1

log
hi
w1

ð9Þ

where E(.) represents the entropy. Albuquerque [30] pro-

posed a concept based on Tsallis entropy and the function

for thresholding is now represented by Eqs. (10) and (11):

Eq I=thð Þ ¼ Eq C0=thð Þ þ Eq C1=thð Þ
þ 1� qð ÞEq C0=thð ÞEq C1=thð Þ ð10Þ

where

Eq C0=thð Þ ¼ 1

1� q

Xth

i¼0

hi
wo

� �q

�1
" #

Eq C1=thð Þ ¼ 1

1� q

XL�1

i¼thþ1

hi
w1

� �q

�1
" # ð11Þ

The criterion function for the Renyi’s entropy [28] is

given by Eqs. (12) and (13):

EaðI=thÞ ¼ EaðC0Þ þ EaðC1Þ ð12Þ

where

EaðC0=thÞ ¼
1

a� 1
log

Xth

i¼0

hi
wo

� �a
" #

EaðC1=thÞ ¼
1

a� 1
log

XL�1

i¼thþ1

hi
w1

� �a
" # ð13Þ

The concept based on Masi’s entropy [33] and the cor-

responding thresholding function is represented by

Eqs. (14) and (15):

Er I=thð Þ ¼ Er C0=thð Þ þ Er C1=thð Þ ð14Þ

where

Er C0=thð Þ ¼ 1

1� r
log 1� ð1� rÞ

Xth

i¼0

hi
w0

� �
log

hi
w0

� �" #

Er C1=thð Þ ¼ 1

1� r
log 1� ð1� rÞ

XL�1

i¼thþ1

hi
w1

� �
log

hi
w1

� �" #

ð15Þ

The entropy between the two classes C0 and C1 is

maximized and the gray level at which this holds true is

treated to be the optimal threshold. An optimal threshold

value th in the case of multi-level based image segmenta-

tion can be expressed as:

ErðIl=th1lÞ ¼ ErðC0l=th1lÞ þ ErðC1l=th1lÞ ð16Þ

where

ErðC0l=th1lÞ ¼
1

1� r
log 1� ð1� rÞ

Xth1l

i¼0

hi
w0l

� �
log

hi
w0l

� �" #

ErðC1l=th1lÞ

¼ 1

1� r
log 1� ð1� rÞ

Xth

i¼th1lþ1

hi
w1l

� �
log

hi
w1l

� �" #

ð17Þ

After maximizing the entropy in the second segment,

threshold th1l is calculated. To realize the second segment

of the image, the following equations are used:

ErðIr=th1rÞ ¼ ErðC0r=th1rÞ þ ErðC1r=th1rÞ ð18Þ

where

ErðC0r=th1lÞ ¼
1

1� r
log 1� ð1� rÞ

Xth1r

i¼thþ1

hi
w0r

� �
log

hi
w0r

� �" #

ErðC1r=th1rÞ ¼
1

1� r
log 1� ð1� rÞ

XL�1

i¼th1rþ1

hi
w1r

� �
log

hi
w1r

� �" #

ð19Þ

After maximizing the entropy in the second segment,

threshold th1r has been found. After completion of the

above steps, three threshold values are obtained. Thus, four

new image segments are obtained: two from the first seg-

ment and the next two from the second segment. For each

of the segments, an optimal threshold is determined using

the Masi-based scheme. The process can be continued for

any number of threshold values.

3.2 Sine cosine algorithm

In the context of multi-level thresholding segmentation, the

sine cosine algorithm (SCA) focuses to search for the

optimal position in the search space. Alternatively, the best

solution denotes the optimal threshold configuration values

that maximize the objective function. In SCA, each can-

didate outcome is represented as a vector of possible real

values related to thresholds. The quality of each of the

candidate outcomes is evaluated at the beginning using the

energy-curve-based Masi entropy objective function. The

SCA has its own novel tendency to update the position of

the candidate outcomes after the evaluation of the objective

function employing the sine and cosine mathematical

functions [44]. To summarize, the SCA involves three

steps. The first step is to produce a random population and

then calculate the fitness function of each of the thresholds.

The second step is to determine the global best outcome

(the target point) which forms the basis to update the rest of
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the population. The final step is to set an ending criterion to

the maximum number of iterations. The stopping criterion

is generally chosen as 100 iterations. The complete

description of the algorithm is given in [44, 45].

3.3 Dragonfly algorithm

Mirjalili [46] proposed the dragonfly optimization (DFO)

algorithm after observing the immovable and movable

swarming behaviors of dragonflies. In optimization, there

are two imperial phases, i.e., exploration and exploitation.

DFO explains these phases by modeling the social behavior

of dragonflies in order to find food and to avoid enemies

while swarming both statistically and dynamically. Gen-

erally, the DFO algorithm is based on the life cycle of

dragonflies. The life cycle involves mainly two stages, i.e.,

nymph and adult. Most of their lifespan spent in nymph

phase and transform into the adult phase by undergoing

metamorphism. Exploration phase is formulated by

observing the sub-swarm’s flying behavior over various

regions in a static swarm, whereas exploitation phase is

modeled by the monodirectional flying behavior of drag-

onflies in bigger swarms. The three important behaviors of

swarms are separation which means individuals separate

from one another to avoid a collision, second is alignment

where the velocity of the individuals is matched with

others, and the last is cohesion which means the center of

the neighborhood attracts the individuals. The stopping

criterion is the maximum number of iterations, generally

chosen as 100. The complete description of the algorithm is

given in [46].

3.4 Selfish herd algorithm

Selfish herd algorithm is based on the selfish herd theory,

and it was proposed by Hamilton [47]. According to this

theory, at the time of predation, each individual within a

herd of possible prey follows to enhance their chance of

living by aggregating with other same species without the

care of other individuals’ chances of survival. This

behavior is observed in some groups of organisms, thereby

forming a new optimization algorithm called selfish herd

optimizer (SHO). It assumes that the complete search space

is an open area where herds of animals interact. Two types

of search agents are modeled in this algorithm: a group of

prey living in aggregation (a selfish herd) and a group of

predators that hunts for the prey within the same aggre-

gation. Briefly, seven stages are involved in this algorithm.

They are population initializing, survival value assignation,

a structure of a selfish herd, herd movement operators,

predator’s movement operators, predation phase and

restoration phase. The complete description of the algo-

rithm is given in [47].

3.5 Lightening search algorithm

Lightening search algorithm (LSA) [43] is a novel opti-

mization algorithm inspired by the sinuous nature of

lightening during a thunderstorm. This algorithm is derived

from the mechanism of step leader propagation, and it uses

the concept of fast particles called projectiles. The pro-

jectile is analogous to an initial population size. The main

steps involved in LSA are described as:

1. Projectile Model: LSA has three different types of

projectiles, namely transition, space and lead projec-

tiles. The transition projectiles generate first step leader

population for solutions, space projectiles are respon-

sible for exploring and attempting to become the

leader, and the lead projectiles engage in finding and

exploiting the optimal solution.

2. Forking Procedure: Forking is the principle property of

a stepped leader, in which two or more simultaneous

and symmetrical branches emerge. This can be realized

in the following two ways:

• Symmetrical channels are produced since the nuclei

collision of a projectile is realized using the

opposite number.

• Channel is presumed to appear at the tip of step

leader. This is because the energy of most unsuc-

cessful leader is redistributed after several propa-

gation trials.

The stopping criterion is the maximum number of iter-

ations, generally taken as 100. The maximum value of

fitness function gives the final threshold points.

4 Proposed algorithm

In this section, a novel and effective scheme to compute the

optimal multi-level threshold values is presented with a

fusion-based Masi energy curve model employing standard

cuttlefish algorithm (CFA). The proposed fusion approach

is simple and easy to implement for image segmentation. In

the following subsections, we describe each of the com-

ponent algorithms employed in the proposed approach for

multi-level image segmentation.

4.1 Energy curve

Energy curve uses the spatial content of the image. The

valleys and peaks in energy curve are smoother than that

obtained through histogram-based segmentation where

latter uses only the intensity of the pixels. For thresholding

the image, the optimal thresholds are obtained in the center

of the valley regions of the energy curve. In the energy
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curve, an object in the image is characterized by each mode

and a valley exits in between two adjacent modes. As we

assumed earlier, an image I with maximum intensity value

L is represented as a matrix I ¼ fIxy; 1� x�M; 1� y�Ng
with dimension of the image being M 9 N. For calculating

the spatial content of the image, we first calculate the

spatial correlation between the neighboring pixels. Thus,

for a given position (x, y), Np
xy ¼ fðxþ u; yþ vÞ; ðu; vÞ 2

Npg is used as neighborhood N of order p where p denotes

the configuration at which neighborhood takes place

[24, 25]. The system is expressed in spatial terms as (u,

v) 2 {(± 1, 0), (0, ± 1), (1, ± 1), (- 1, ± 1)} and is

shown in Fig. 1.

The energy of the image I at gray intensity value l

(0 B l B L) is calculated by creating a two-dimensional

matrix for each and every intensity value as Bx ¼
fbx;y; 1� x�M; 1� y�Ng where bx,y = 1 if the intensity

at the present position is greater than l, the intensity value

(lx,y[ l), or else bx,y = - 1. Let C ¼
fcx;y; 1� x�M; 1� y�Ng be a constant matrix where

cx,y = 1, V (x, y) the energy value Ex of the image I at gray

intensity value l is computed as:

Ex ¼ �
XM

x¼1

XN

y¼1

X

rs2N2
xy

bxy � brs þ
XM

x¼1

XN

y¼1

X

rs2N2
xy

cxy � crs ð20Þ

The right hand side of Eq. (20) is a constant term

involved to ensure positive energy value, El C 0. Equa-

tion (20) also depicts that, for a given image I at intensity

value l, the energy will be zero if all the elements of the

binary image Bl are either 1 or - 1. This approach deter-

mines the energy associated with every intensity value of

the image to generate a curve considering spatial content

information of the image.

Pictorial interpretation of Eq. (20) is provided in the

revised manuscript following the reviewer suggestion using

an example. Figure 1 in the revised manuscript represents

the energy curve of an image and also shows how it is

different from the histogram of the same image. The matrix

Bl is of a size similar to that of the image, which consists of

either ? 1 or - 1 entries which are computed through this

binary image Bl. For a quick reference, some part of the

entries of matrix Bl is presented in the below figure.

4.1.1 Thresholding

One of the simplest and easiest ways to segment an image

is thresholding as already mentioned. The ease of thresh-

olding comes from the simplicity in computing the

threshold values (th) and applying them over the histogram

until an ending criterion is reached compared to other

approaches for image segmentation. In this work, we have

applied thresholding over the energy curve instead of the

histogram since the former better determines the spatial

position of the pixel which can be expressed as:

Isgðr; cÞ

¼
IGðr; cÞ if IGðr; cÞ� thr1

thrk�1 if thk�1\IGðr; cÞ� thrk; k ¼ 2;3; . . .nt

IGðr; cÞ if IGðr; cÞ[ thrnt

8
><

>:

ð21Þ

where Isg (r, c) and IG (r, c) represent the gray value of the

segmented image and the original image at the pixel

position r and c, respectively. As most applications require

the segmentation into two or more classes, the energy

curve is grouped into n * t ? 1 classes using n * t thresh-

olds, where thrk is the k-th threshold value used for the

segmentation process. The most difficult problem in the

case of thresholding-based image segmentation is to obtain

the optimal thresholds that can assure the best classification

of pixels. In this paper, the concept of energy curve is

introduced into the Masi entropy framework by substituting

histogram with energy curve in order to enhance the quality

of segmentation.

4.2 Energy curve with Masi entropy method

Masi entropy is based completely on the probability dis-

tribution for image segmentation. The energy curve, on the

other hand, uses the spatial content of the image. However,

this concept of energy curve can be applied to the Masi

entropy as the latter uses the histogram. Hence, one can

easily replace the histogram by the energy curve. The

energy value Ex from Eq. (20) for each of the pixels in an

image, according to its availability, generates a probability

which is given by the following equation:

PEx ¼
Ex

M � N
where; Ex� 0 and

XM�N

x¼1
Ex ¼ 1

ð22Þ

For bi-level thresholding,

(x-1, y-1) (x-1, y) (x-1, y+1)

(x, y-1) (x, y) (x, y+1)

(x+1, y-1) (x+1, y) (x+1, y+1)

Fig. 1 Spatial representation of neighborhood system N2
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w0 ¼
Xth

x¼0
Ex; w1 ¼

XL�1

x¼thþ1
Ex ð23Þ

For multi-level thresholding,

w0 ¼
Xth1

x¼0
Ex; w1 ¼

Xth2

x¼thþ1
Ex; w2 ¼

Xth3

i¼th2þ1
Ex;

wn ¼
XL�1

i¼thn
Ex

ð24Þ

On replacing these new energy-curve-based probability

distributions in the place of histogram, finally Eq. (18)

changes to Eq. (25) as follows:

ErðIr=th1rÞ ¼ ErðC0r=th1rÞ þ ErðC1r=th1rÞ ð25Þ

ErðC0r=th1lÞ ¼
1

1� r
log 1� ð1� rÞ

Xth1r

i¼thþ1

Ex

w0r

� �
log

Ex

w0r

� �" #

ErðC1r=th1rÞ ¼
1

1� r
log 1� ð1� rÞ

XL�1

i¼th1rþ1

Ex

w1r

� �
log

Ex

w1r

� �" #

ð26Þ

Even though the energy-curve-based Masi entropy gives

satisfactory results, the computational cost and the time

complexity are high. In order to overcome this issue, meta-

heuristic optimization algorithm called the cuttlefish algo-

rithm is used in this paper. The complete details of the

cuttlefish algorithm are explained in the following.

4.3 Cuttlefish algorithm

The CFA [39–42] is a nature-inspired meta-heuristic opti-

mization algorithm. It is based on the camouflage feature of

cuttlefish that disappears by adjusting its color same as that

of its surroundings. There are three skin layers that are

responsible for its camouflage nature, the chromatophores,

iridophores and leucophores. This CFA mimics the mech-

anism of these three layers to find an optimum solution. The

global optimal solution is obtained by two main processes:

Reflection used to replicate the phenomena of reflection.

Visibility used to simulate the visibility of matching

patterns.

The new solution (Pnew) is formulated using reflection

and visibility and is given by

Pnew ¼ VVisibility þ RReflection ð27Þ

The main steps involved in CFA are shown in Fig. 2.

Similar to the other meta-heuristic optimization algorithms,

CFA also starts with random solutions to initialize the

population. The initial population P (cells) consists of

N cells, and each cell has d number of points. The range of

values for initial population is generated as

Pi;j ¼ Random � ðUL � LLÞ þ LL ð28Þ

where i = 1, 2…N represents the number of cells and j = 1,

2…d represents the number of points per cell. The random

is a function used to generate a random number in between

[0,1]. The lower limit (LL) and the upper limit (UL) are

selected based on the problem domain. For an eight-bit

image, the lower limit is set to 1 and upper limit to 256.

The fitness function is evaluated and the best solution is

kept in best and the average of best points is stored in

AVbest. The population is divided into four equal groups,

namely G1, G2, G3 and G4. Each group works indepen-

dently and shares only the best solution among them. Out

of the four groups, two groups (G1 and G4) are dedicated

to local search, while the other two (G2 and G3) are ded-

icated to the global search to find an optimal threshold

value. As a part of the optimization criteria, the population

in each group is updated using the following principles.

Group1 new population: The new population in G1 is

generated using Eq. (27). The visibility and reflection

values for group1 are calculated as:

RReflectionj ¼ R � G1i � j ð29Þ

VVisibilityj ¼ V � ðBestj � G1i � j ð30Þ

where G1 represents the cells in group1. Bestj represents

the best solution points. R and V represent the reflection

degree and visibility degree, respectively, and are defined

as

R ¼ RrandðÞ � r1� r2ð Þ þ r2 ð31Þ
V ¼ RrandðÞ � v1� v2ð Þ þ v2 ð32Þ

The values r1, r2, v1, and v2 are user defined values. In

group1, V is set to 1 and the parameters are chosen as

r1 = 2 and r2 = - 1 according to [39].

Group2 new population: Similar to the group1, the new

population in group2 are generated using Eq. (27). The

difference is that the reflection is now computed as

RReflectionj ¼ R � Bestj ð33Þ

and visibility is calculated using Eq. (30). For this group,

R value is taken as 1, while the V is computed using

Eq. (32) with v1 = 1.5 and v2 = - 1.5 according to [39].

Group3 new population: The reflection is computed

using Eq. (33), and visibility for group 3 is calculated as

VVisibilityj ¼ V � Bestj � AVbestj ð34Þ

and the population in G3 is updated using Eq. (27). In this

group, the parameters v1, v2 are set to (1, - 1) and R value

is chosen as 1, according to the conditions given in [39].

Group4 new population: For each cell, the new popu-

lation in this group is generated using Eq. (28).
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In each iteration, for each group, the fitness function is

evaluated as Snew and the value is compared with current

solution Si. If the Snew value is better than the Si, then Si is

updated with Snew and Sbest is compared with Snew. If, Snew
is better than Sbest, then the algorithm replaces Sbest by Snew.

The algorithm repeats the above process until the stopping

criteria are satisfied. The final optimal solution is returned

as Sbest.

Cuttlefish algorithm is a meta-heuristic optimization

algorithm, inspired by the color changing behavior of

Cuttlefish for finding optimal thresholds. The light

reflecting and visibility factors of matching patterns are the

added advantages for selecting CFA. These two processes

are used as searching mechanisms to find optimal thresh-

olds. Proficiency of the CFA algorithm is verified [39–42]

with few other well-known nature-inspired optimization

techniques such as DA, LSA, SHO, SCA that have been

previously proposed in the literature. Furthermore, effec-

tiveness of the CFA algorithm is compared with DA, LSA,

SHO and SCA for image segmentation application. In CFA

algorithm, initial population is divided into four groups and

local best solution is calculated in each group. Based on

these four best solutions, new population is generated and

processed to find the best solution. The method of gener-

ating solution is more effective in case of CFA which

makes the algorithm more efficient as compared to other

algorithms.

4.4 Fusion based on local contrast

The primary objective of image enhancement is to increase

the perceptual quality of the image for human observers or

to better resolve the information present within the image.

At the same time, most of the enhancement methods do not

completely resolve problems like loss of details and loss of

local contrast. One of the solutions for these deficiencies is

image fusion based on local contrast. In this case, a new

image is formed by combining the good qualities of the

Sbest = Si
Si = Snew

Calculate AVbest

Snew > Sbest

Return Sbest

End

Yes

Yes

No

Start Initialize the population P

Initialize the parameters: r1, r2, v1, v2

Divide the population into four groups: G1, G2, G3,
G4

Calculate fitness, AVbest and keep the best solution in 
Sbest

Si group 1

Si group 2

Si group 3

Determine Snew for G1 using (29) and (30)

Determine Snew for G2 using (33) and (30)

Determine Snew for G3 using (34) and (35)

Determine Snew for G4 randomly using (28)

Stopping
Criteria?

Yes

Yes

Yes

No

No

No

No

Yes

Snew > Si

No

Fig. 2 Flowchart of cuttlefish

optimization algorithm
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original image and image obtained by applying enhance-

ment method. Motivated by this fact, in this paper, the

above stated image fusion method based on local contrast

[38] is exploited for image segmentation. The outcome of

fusion-based image segmentation is much better than that

obtained through each of the individual segmentation

methods.

Basically, local contrast depends upon the difference of

the intensity value in a small local space within an image.

Let Pi, i = 1, 2 be two gray-level images which are nor-

malized. Then, the local contrast can be expressed as:

Miðp; qÞ ¼ maxðJiðp; qÞÞ �minðJiðp; qÞÞ ð35Þ

where Ji(p,q) indicates the 3 9 3 local image of Pi focused

at the position (p,q). min(.) and max(.) indicates the min-

imum and maximum gray values of the local image,

respectively. The local contrast is plotted by considering

the difference of intensity values in each of the 3 9 3 local

images. Besides, there are also other expressions for the

local contrast, such as the one used in the logarithmic

image processing (LIP). This definition is consistent with

the human point of view and the image formation styles

(for further details please refer to [36, 38]).

The image fusion technique exploits the local contrast

concept. Let for each point (p, q), the difference between

M1 and M2 be N = M2 - M1. So, the fusion weight func-

tion is stated as:

Wf ¼
1

1þ e�pðN̂�qÞ
ð36Þ

where p and q are two fixed values in the smooth increasing

sigmoidal function Wf. The steepness in the position of

N̂ ¼ q and the mean value position (namely 0.5) of Wf are

adjusted by the constants p and q. In this paper, two fixed

values are employed and those are p = 0.5 and

q ¼ �minðNÞ=ðmaxðNÞ �minðNÞÞ. The function N̂ ¼
N �minðNÞ=ðmaxðNÞ �minðNÞÞ represents the normal-

ized difference. The main idea of selecting fusion weight

function as the sigmoidal function over linear function is

that the former will surmount the deficiencies by preserv-

ing the good qualities of the two images better than latter.

Thus, the image obtained by fusion can be represented as:

R ¼ Ŵf P2 þ ð1� Ŵf ÞP1 ð37Þ

where the normalized fusion weight function is given by

Ŵf ¼ ðWf �minðWf ÞÞ=ðmaxðWf Þ �minðWf ÞÞ. The reason
behind employing a normalized fusion weight function is

that when the function Ŵf ! 0, the image P1 will be more

predominant than P2 in the fused image. In other words, the

local contrast of M1 will be more dominant than that of M2

and vice versa when Ŵf ! 1.

To improve the segmentation quality in this paper, we

propose a novel algorithm based on the local contrast. The

local contrast computed using Eq. (35) is equal to the

morphological gradient. It results in contrast intensity

within a close neighborhood of the pixel. Specifically, it is

the difference between the dilation and the erosion of an

image. The close neighborhood is considered because

statistical image features are spatially non-stationary, and

image distortion is also a space-variant. Moreover,

increasing the neighborhood size increases computational

complexity. Initially, the segmentation is carried out on

Masi entropy-based fitness function, and we obtain the

thresholded image. From the thresholded image, we sepa-

rated the value channel (from HSV color space) and fused

it with the input image value channel based on the simi-

larity distance metric. In the HSV color space, the hue and

saturation (H and S) are responsible for the chromaticity

information of the image. To improve the visual sections of

the thresholded regions, we have used the fusion method.

4.4.1 Fusion for color image thresholding

The above fusion method is for grayscale images, and it

can also be implemented for color images. For color image

fusion, the first step is to convert red–green–blue (RGB)

color image into hue-saturation-value (HSV) color space

and only the value components should be processed in the

fusion method. Therefore, the final image is a combination

of the fused value component, and the hue and saturation

components of the original image. Clearly, for color image

segmentation, the original image is fused with the seg-

mented image in place of an enhanced image.

4.5 Proposed fusion-Masi energy curve model

In this section, we describe the proposed novel local-con-

trast-based fusion method [36] for segmentation exploiting

Masi energy curve model along with CFA. In Masi energy

curve method [33], an image is divided into a finite number

of small classes with the help of threshold values. Fur-

thermore, these thresholds are calculated using the energy

curve instead of the histogram. As the number of thresholds

increases, the complexity of the problem also increases due

to rising modality and the restrictions of the search space.

The use of the CFA minimizes the said complexity. In

order to further improve the quality of the segmented

images, the concept of fusion based on local contrast has

been used in this study. Consequently, the proposed fusion-

based Masi energy curve approach dominates energy-based

Masi entropy.

To enhance the quality of the segmented image, a fusion

based on local contrast [36] was introduced in color image

segmentation. In this process, fusion of the original image
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and the segmented image takes place to give new hybrid

segmented image. Consequently, this new image will have

characteristics from both original image and segmented

image. Experimentally, it also is proven that the fidelity

parameters of the new fusion image dominate the seg-

mented image. At the same time, the precision in the

details of the segmented images is increased. After

obtaining the energy-curve-based Masi entropy with CFA

algorithm, the concept of fusion based on local contrast has

been added to the aforementioned approach to enhance the

quality of the segmented image.

The idea of the energy curve was used for image seg-

mentation in [24, 25]. For decades, use of histogram has

been the dominant and simple option for thresholding-

based image segmentation. However, the computation of

histogram does not include the spatial relationship among

the surrounding pixels. In this paper, the author’s thrust is

to develop a novel concept to perform image thresholding,

which creates a light to the new research for color image

segmentation. In a fundamental departure from the current

practice of histogram-based image segmentation, the pro-

posed approach uses the energy curve concept. It is worth

mentioning that the proposed energy curve utilizes the

spatial contextual information of the neighborhood pixels,

which is lacking in the general histogram. To achieve this,

we adopted the essential features of the histogram by

considering the spatial relationships among the pixels.

The steps involved in the proposed segmentation tech-

nique are described as follows:

Step 1 An image with dimension M 9 N that is to be

segmented is taken as an input and it is saved into an image

array I. The maximum value of gray level is calculated,

along with the normalized gray-level probability distribu-

tion H = {h0, h1…hL - 1} for the image. Next, the energy

Ex is calculated using Eq. (20), while Eq. (1) is replaced by

Eq. (22) since we have used the concept of energy curve

instead of histogram.

Step 2 It is to note that the image is assumed to be

completely homogeneous and the threshold is set to a

minimum possible value. The maximum entropy Emax is

then calculated for the image. The value of the entropic

parameter q, a and r for Masi’s entropy is set to 0.8, 0.8 and

1.2, respectively, to obtain optimum results.

Step 3 Assuming the threshold to be th, the intensity

level values of image I are divided into two classes, one

being C0 and the other being C1 where C0 = {0, 1, 2…th}

and C1 = {th ? 1, th ? 2…L - 1}. Next, the dimension

of the population in CFA algorithm, number of thresholds,

the maximum number of iterations and boundary points are

initialized.

Step 4 Using Eq. (23), the prior probabilities w0 and w1

corresponding to C0 and C1 are calculated and the new set

of probability distributions DC0 and DC1 are derived using

Eq. (6).

Step 5 The entropy for Masi-based methods is maxi-

mized using Eqs. (8), (10), (12) and (14), respectively.

While maximizing the entropy for each of the cases, the

optimal threshold value th is assumed to lie within the

domain G = {0, 1…L - 1}.

Step 6 The segmentation of image is carried out through

thresholding by the optimum threshold value th.

Step 7 The obtained two new thresholds, th1l lying in

G1l = {0, 1…th} and th1r in G1r = {th ? 1, th ? 2…L -

1} are the thresholds required for bi-level thresholding.

Step 8 The maximization of entropies for each obtained

segment is continued until the desired level of thresholds is

determined.

Step 9 The thresholds are determined in the following

order: th, th1l, th1r, th2l, th2r, th3l, th3r, th4l, th4r, th5l, th5r,

th6l, and th6r using the range of intensity values as {0,

1…L - 1}, {0, 1…th}, {th ? 1, th ? 2…L - 1}, {th1l-
? 1, th1l ? 2…th}, {th ? 1, th ? 2…th1r}, {0, 1…th1l},

{th1r ? 1, th1r ? 2…L - 1}, {th2l ? 1, th2l ? 2…th},

{th ? 1, th ? 2…th}, {th1l ? 1, th1l ? 2…th2l}, {th2r-
? 1, th2r ? 2…th1r}, {th3l ? 1, th3l ? 2…thll}, {th1r-
? 1, th1r ? 2…th3r}, respectively.

Step 10 The levels of thresholds are selected symmet-

rically to get optimal results. Next, we normalize the seg-

mented and original images and calculate the local contrast

using Eq. (35).

Step 11 Weight function is calculated using Eq. (36),

and the final fused image is obtained using Eq. (37). The

proposed segmentation algorithm is summarized pictorially

in the flowchart shown in Fig. 3.

5 Experimental results and discussion

In this section, comprehensive experimental results

including performance assessment tables and illustrative

examples are presented to demonstrate the effectiveness of

the proposed scheme over some of the dominant existing

approaches.

5.1 Experimental setup

In this paper, the simulations are obtained by using the 3, 5,

8, 10 different thresholds and all these have been executed

using MATLAB R2017a on Windows machine using an

Intel� Corei7 CPU @ 3.6 GHz processor with 8 GB of

RAM. The proposed fusion-based multi-level thresholding

employing local contrast is evaluated with different algo-

rithms like LSA, SHO, SCA and DA. It is also compared

with Masi energy curve method with same search algo-

rithms. Almost all the results of the proposed method show
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better quality of segmentation and consistency. The num-

ber of iterations for all algorithms is chosen to be 500. The

image fidelity parameters like mean error (ME), mean

squared error (MSE), peak signal-to-noise ratio (PSNR),

structural similarity index module (SSIM), feature simi-

larity index module (FSIM) and entropy values are used as

metrics for contrast purpose in this paper. The formulae for

all these parameters are enlisted in Table 1, where I and I‘

represents the original image and the segmented image,

respectively. M and N stand for size (rows and columns) of

the image.

5.2 Image data set

In this paper, the proposed fusion-based Masi energy curve

model is tested with a set of benchmark images from the

Kodim dataset [66] and Berkeley dataset [67]. This set

contains ten complex color images, and all images are in

JPEG format with the size of 256 9 256 pixels and are

shown in Fig. 4a–k. Color image processing is associated

with complex problems due to which most of the existing

thresholding methods are evaluated over single frame gray-

level images. Color images contain highly dense informa-

tion which leads to uncertainties and inaccuracy in seg-

mentation task. Therefore, obtaining greater accuracy

during the segmentation of such images is a challenging

problem.

5.3 Performance evaluation and comparison

In this paper, comparison between Masi energy curve and

fusion-based Masi energy curve with search algorithms like

LSA, SHO, SCA, DA and CFA has been done. The seg-

mented images obtained using the proposed approach are

Start

Initialize the dimension of population, number of thresholds, 
maximum number of iterations, and boundary points

Perform CFA optimization 
algorithm

Load the image

End

Max 
iterations?

Return optimum thresholds and segment the image by using 
threshold points

Calculate Energy using Eq. (20) and probability distribution using Eq. (22)

Weight function is calculated using Eq. (37) and the 
final fused segmented image is obtained using Eq. 

(38)

Normalize the segmented and original images ,
and calculate the local contrast by using Eq. (36)

Yes

No

Generate random thresholds values using Energy curve based Masi entropy
objective function i.e., from Eq. (25)

Fig. 3 Flowchart of proposed

method
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better than those obtained using the existing former

methods in all aspects of explored fidelity parameters, i.e.,

ME, MSE, PSNR, FSIM, SSIM and entropy. Table 1

enlists the values for the six assessment parameters studied

in this paper. Table 2 gives threshold values of Masi

energy curve model, and Table 3 reports the comparison of

ME and entropy values of Masi energy curve model along

with that for the proposed fusion method, respectively. The

results of fusion-based Masi energy curve model beat the

outcomes of Masi energy curve model. Furthermore, the

proposed method shows higher entropy. It is well known

that higher entropy for an image indicates more informa-

tion contained in the segmented images.

The obtained experimental results suggest that the

fusion-based segmentation method has effective features

with better contrast. By comparing all these results, the

quality of the proposed fusion-based segmented images is

observed to be superior to those obtained through the

previous individual segmented images. This new method

exploits the results of the individual segmentation methods

and enhances them with the help of fusion. Hence, the

segmented outcomes are improved, and the contrast of the

image is enhanced. With the help of fusion, accuracy in the

details of the segmented images is also increased. Thus, the

results of the proposed method, for each of the sample

images, validate that the CFA algorithm is comprehen-

sively superior to the other included schemes in terms of

efficiency, solution quality and robustness as reported by

the performance assessment indices in each case.

Table 1 Fidelity parameters considered to test the efficiency of proposed method with other algorithms

S.

no.

Parameters Formula Remarks

1. Mean error (ME) [62]
ME ¼

PN

i¼1
I0 � I

� ��
N

Calculates the mean error between segmented image and

original image

2. Mean square error (MSE) [20]

MSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

i¼1

PN

j¼1 Iði;jÞ�I0ði;jÞð Þ
2

=MN

MN

r
Calculates the difference between expected value and the

actual value

3. Peak signal-to-noise ratio

(PSNR) [63]

PSNR ðin dBÞ ¼ 20 log10 255=MSEð Þ It is the ratio of maximum power of a signal to the power of

noise

4. Structural similarity index

(SSIM) [20]
SSIMðI; I0Þ ¼ ð2lIlI0 þl1Þð2rII0 þl2Þ

ðl2Iþl2I0 þl1Þðr
2
Iþr2I0 þl2Þ

Evaluates the similarity between segmented image and

original image

5. Feature similarity index (FSIM)

[64] FSIM ¼
PN

c¼1 SDðcÞPCmaxðcÞPN

c¼1 PCmaxðcÞ

Calculates the feature similarity of segmented image and

original image

6. Entropy [65] Entropy ¼
P

i Pi log2 Pi Indicates the busyness of an image

Fig. 4 a–k Represent original test images from Kodak and Berkeley dataset [66, 67]
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Table 2 Comparison of thresholds values obtained by using different methods for each sample images

Test

images

m MASI

MASI-DA MASI-SCA MASI-WOA MASI-GOA MASI-CFA

1. 3 81 126 157 69 125 161 78 126 166 84 130 161 82 130 161

5 71 128 151 191 218 66 96 130 160 186 74 105 131 152 192 78 108 130 155 184 75 109 132 151 187

8 63 81 104 132 147 163

198 219

38 55 69 130 151 164

190 223

62 95 111 133 148 167

190 219

48 74 104 125 143 156

191 215

52 69 90 111 133 151

191 218

10 38 63 93 114 132 150

164 191 217 232

11 36 42 66 75 114 139

173 196 223

38 47 74 107 123 135

148 163 200 218

38 55 72 85 98 112 132

148 167 202

38 61 85 106 123 135

147 164 190 219

2. 3 93 131 172 87 135 169 88 131 172 92 131 172 91 130 172

5 79 106 131 163 192 76 118 133 156 193 77 109 132 166 196 78 104 131 164 192 76 103 132 164 192

8 67 81 105 123 162 188

218 242

66 78 94 100 108 133

169 197

60 90 106 130 145 164

177 197

58 77 96 113 132 153

173 196

56 77 101 125 144 163

183

10 62 82 101 115 130 146

164 175 192 205

13 37 52 66 80 110 127

138 162 198

13 40 63 83 98 122 144

166 194 214

56 71 86 100 114 129

142 159 175 197

56 74 91 110 130 145

160 175 188 201

3 3 36 69 102 35 69 109 36 67 103 57 106 150 36 68 103

5 33 60 87 115 148 47 69 102 124 157 35 61 83 111 147 33 64 92 119 148 35 66 93 120 148

8 32 52 72 98 127 140

148 160

13 31 58 77 85 101 137

154

21 34 65 80 94 113 124

147

20 37 62 84 105 126

148 230

32 55 70 87 103 125

147 160

10 20 33 46 64 88 111 132

149 192 222

26 42 57 81 91 107 118

125 144 161

12 18 37 50 64 76 90

100 109 120

12 21 34 55 84 108 128

147 160 245

29 45 59 71 91 111 122

134 147 158

4 3 58 94 128 60 146 228 56 114 218 76 136 164 78 99 164

5 59 92 138 177 192 44 81 152 169 189 53 101 113 156 222 62 92 103 143 182 15 47 106 141 161

8 16 49 71 98 129 134

170 242

36 56 112 122 162 183

195 214

10 73 101 124 143 173

222 233

46 55 79 87 96 118 164

194

25 46 72 73 115 145

162 166

10 26 54 82 100 125 150

177 198 216 236

21 39 79 101 120 136

140 166 203 228

14 34 58 83 109 132

157 184 205 226

31 58 82 104 126 147

168 188 208 228

17 35 56 79 103 127

152 180 206 227

5 3 93 143 206 21 39 134 110 152 182 79 147 185 50 87 147

5 86 145 155 195 220 47 67 136 165 206 34 96 112 154 187 79 117 122 152 199 19 41 79 120 171

8 55 85 115 149 186 191

223 239

47 104 137 149 186

206 221 234

30 57 85 94 119 149

179 199

21 55 87 134 145 173

190 195

10 38 57 80 111 125

149 162

10 29 52 72 92 119 145

167 187 209 232

19 38 62 91 101 127

160 171 195 228

23 47 73 93 115 139

160 183 207 230

30 55 77 100 121 144

166 188 208 232

24 44 67 87 105 142

165 186 207 231

6 3 41 68 118 48 105 140 32 66 154 44 83 172 32 105 157

5 19 46 67 108 218 12 83 112 137 183 56 144 169 215 239 13 36 84 128 179 37 98 132 161 187

8 15 34 45 59 99 104 113

189

37 80 86 102 162 170

194 208

21 53 91 111 175 185

208 211

6 29 51 82 107 154 162

187

59 88 95 118 126 148

161 197

10 27 48 68 89 116 143

165 189 220 238

34 58 90 97 113 126

145 163 199 223

17 35 63 89 113 138

165 188 210 232

25 48 69 97 123 146

166 185 207 229

24 44 65 87 111 134

160 186 211 232

7 3 96 149 186 71 139 206 76 151 237 72 135 186 79 112 168

5 82 123 154 174 233 27 75 116 136 177 60 82 162 201 228 41 92 115 161 196 91 108 151 160 190

8 23 86 129 150 171 205

205 224

10 16 45 57 107 133

162 232

27 34 92 148 172 193

208 224

21 50 89 105 140 156

180 192

24 32 80 94 119 122

160 195

10 28 62 82 106 127 154

177 200 221 241

10 25 51 75 121 147

172 194 207 232

17 35 49 78 103 126

150 176 204 230

24 44 65 86 106 130

152 176 202 229

20 38 62 85 111 133

154 179 204 230

8 3 99 157 195 89 170 213 42 154 227 62 113 176 92 148 174

5 90 140 181 196 199 79 119 123 138 173 49 138 161 196 213 64 122 141 172 184 60 98 130 154 178

8 25 95 143 168 185 203

217 247

20 80 116 142 150 170

235 245

56 124 147 164 183

190 199 230

29 55 92 127 128 162

182 198

6 54 76 118 154 164

178 186

10 21 48 70 93 118 153

178 198 214 232

18 38 57 87 117 138

153 172 213 240

32 62 82 106 127 154

177 200 221 241

21 44 67 90 113 139

162 186 209 232

20 38 56 81 106 130

155 181 206 231

9 3 23 69 111 34 98 156 35 87 145 79 147 220 30 86 154

5 29 72 123 171 218 36 74 120 185 220 33 74 123 171 215 48 86 128 164 208 33 72 120 168 215
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Table 4 shows the comparison of MSE and PSNR val-

ues, where the proposed fusion method dominates energy-

curve-based Masi entropy method. The experimental

results exhibit that fusion-based multi-level thresholding of

color image is a feasible solution to the insufficiencies of

existing image segmentation techniques. The inaccuracies

like the loss of features, loss of local contrast and gray-

level destruction and abrupt intensity changes can be suc-

cessfully minimized by fusing a thresholded result with the

original image. Moreover, the fusion-Masi energy curve

with CFA approach can significantly decrease the number

of function evaluations preserving the good search abilities

of an optimization algorithm.

Out of all the values of SSIM and FSIM for segmented

images shown in Table 5, the values obtained using Masi

energy curve and fusion-based Masi energy curve are

comparable to each other. The best values of SSIM and

FSIM are obtained by the proposed fusion-Masi energy

curve along with the CFA method, where it stands at the

top ahead of energy-based Masi entropy for almost all the

images. The difference in the entropic value of the seg-

mented image from the original image gives the amount of

information lost during the segmentation process. In image

segmentation, preservation of information is very crucial

which implies that the original and segmented entropic

values should be nearly equal. Tables 2 and 3 show the

comparison of loss of information incurred when the pro-

posed methodology is implemented using energy-based

Masi entropy and then coupled with fusion method. For

most of the cases, a minimal loss is noted when the test

images are segmented using the proposed approach.

From the illustrations presented in Figs. 5, 6, 7, 8 and 9,

the qualitative supremacy of the proposed method over

other methods can be easily perceived. The segmentation

outputs enormously depend upon the utilization of objec-

tive function. In the context of image segmentation, the

objective function is used to determine the threshold values

efficiently without any exhaustive search. Therefore, the

results of the optimization algorithms are varying due to

exploitation of different objective functions. Figures 5, 6,

7, 8 and 9 also show the segmented results of each test

images at 3-level, 5-level, 8-level and 10-level threshold-

ing. From those images, it can be visually investigated that

the proposed method surpasses the energy-based approach

exploiting Masi entropy. From Tables 3, 4 and 5, it can be

clearly identified that the proposed segmentation technique

overcomes other methods. Based on the quantitative and

qualitative assessment presented in this work, proposed

fusion-based Masi energy curve with CFA method leads to

better performance as it offers more reliable and efficient

thresholded results. Comparison of CPU time consumed by

the explored and proposed methods for each of the sample

images is given in Table 6.

Proposed Masi-Energy-Fusion using CFA (MASI-ENG-

F-CFA) scheme has been assessed using benchmarked

images, and performance is compared with well-known

recently developed meta-heuristic optimization methods

like SHO, SCA, DA and LSA. Figures 5, 6, 7, 8 and 9

show the superior visual quality and better contrast of the

segmented images obtained using the proposed approach.

All the benchmark images are well segmented using the

best threshold values obtained through Masi-Energy-Fu-

sion-CFA. The results presented in this paper demonstrate

the superior search capability of CFA in addition to clear

contrast rate due to the fusion process. The same has been

experimentally validated visually as well as numerically

using well-established evaluation parameters for image

thresholding. The presented qualitative as well as quanti-

tative experimental results, given in Tables 3, 4 and 5,

display the superiority of proposed approach over SHO,

SCA, DA and LSA in terms of quality and consistency.

The best result in each case is highlighted through bold

faces in Tables 3, 4 and 5. Due to the fusion process, better

contrast is achieved in the thresholded images. This, in

Table 2 (continued)

Test

images

m MASI

MASI-DA MASI-SCA MASI-WOA MASI-GOA MASI-CFA

8 27 56 87 122 153 178

205 229

20 40 73 102 139 163

185 207

24 53 82 110 138 166

197 224

23 51 79 103 127 153

185 220

25 51 81 111 140 169

197 224

10 25 47 69 92 119 151

173 198 220 235

32 45 87 118 144 181

194 205 219 233

33 46 63 90 118 141

163 188 207 231

23 44 64 84 108 132

154 181 206 225

19 39 62 86 111 135

162 187 211 232

10 3 48 96 152 46 91 138 43 106 161 44 103 154 44 103 154

5 43 85 121 166 211 48 84 132 188 226 43 90 126 167 211 43 86 122 168 213 43 80 117 166 212

8 19 38 66 95 128 156

187 223

24 44 78 109 138 184

217 231

44 62 84 113 136 166

196 227

23 48 81 112 14 170

198 226

32 51 73 96 125 152

187 221

10 28 62 82 106 127 154

177 200 221 241

10 25 51 75 121 147

172 194 207 232

17 35 49 78 103 126

150 176 204 230

24 44 65 86 106 130

152 176 202 229

20 38 62 85 111 133

154 179 204 230

Neural Computing and Applications (2021) 33:271–299 285

123



Table 3 Comparison of entropy and ME computed by different algorithms using Masi entropy

Test

images

M ME

MASI-

ENG-

SHO

MASI-

ENG-

SCA

MASI-

ENG-DA

MASI-

ENG-

LSA

MASI-

ENG-

CFA

MASI-

ENG-F-

SHO

MASI-

ENG-F-

SCA

MASI-

ENG-F-

DA

MASI-

ENG-F-

LSA

MASI-

ENG-F-

CFA

1. 3 0.1198 0.0111 0.0114 0.1178 0.1049 0.0078 0.0077 0.0077 0.0078 0.0075

5 0.0297 0.0108 0.0109 0.0281 0.0094 0.0077 0.0077 0.0077 0.0077 0.0075

8 0.0097 0.0077 0.0101 0.0088 0.0076 0.0077 0.0078 0.0077 0.0077 0.0075

10 0.0097 0.0078 0.0079 0.0077 0.0065 0.0077 0.0077 0.0077 0.0077 0.0075

2. 3 0.0414 0.4119 0.4566 0.4389 0.0373 0.0004 0.0004 0.0004 0.0005 0.0004

5 0.0314 0.1445 0.1922 0.2115 0.0302 0.0004 0.0003 0.0003 0.0003 0.0003

8 0.0213 0.0135 0.0648 0.0056 0.0132 0.0003 0.0002 0.0002 0.0002 0.0003

10 0.0112 0.0674 0.0058 0.0442 0.0046 0.0002 0.0003 0.0003 0.0002 0.0002

3. 3 0.0440 0.1528 0.1652 0.2314 0.0343 0.0030 0.0029 0.0029 0.0032 0.0029

5 0.0339 0.0854 0.1451 0.1274 0.0286 0.0029 0.0029 0.0030 0.0031 0.0029

8 0.0239 0.0584 0.0550 0.0541 0.0186 0.0029 0.0029 0.0029 0.0029 0.0029

10 0.0139 0.0097 0.0373 0.0359 0.0069 0.0029 0.0029 0.0029 0.0029 0.0029

4. 3 0.0438 0.0476 0.0458 0.0539 0.0373 0.0028 0.0029 0.0029 0.0029 0.0029

5 0.0338 0.0199 0.0278 0.0229 0.0137 0.0028 0.0028 0.0029 0.0029 0.0029

8 0.0238 0.0078 0.0087 0.0145 0.0064 0.0028 0.0028 0.0028 0.0028 0.0028

10 0.0138 0.0051 0.0100 0.0098 0.0041 0.0028 0.0028 0.0028 0.0028 0.0028

5. 3 0.0111 0.0007 0.0004 0.0000 0.0000 0.0001 0.0000 0.0000 0.0002 0.0002

5 0.0112 0.0000 0.0002 0.0000 0.0000 0.0002 0.0002 0.0000 0.0002 0.0000

8 0.0112 0.0000 0.0000 0.0000 0.0000 0.0002 0.0002 0.0000 0.0002 0.0000

10 0.0110 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6. 3 0.0313 0.0759 0.0723 0.1106 0.1127 0.0003 0.0003 0.0003 0.0003 0.0003

5 0.0213 0.0441 0.0435 0.0388 0.0525 0.0003 0.0003 0.0003 0.0003 0.0003

8 0.0113 0.0024 0.0287 0.0210 0.0287 0.0003 0.0003 0.0003 0.0003 0.0003

10 0.0113 0.0015 0.0205 0.0144 0.0126 0.0003 0.0003 0.0003 0.0003 0.0003

7. 3 0.0311 0.0005 0.0007 0.1519 0.1519 0.0001 0.0000 0.0000 0.0001 0.0001

5 0.0210 0.0015 0.0006 0.0004 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.0110 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

10 0.0111 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000

8. 3 0.0425 0.0556 0.0770 0.1314 0.1492 0.0015 0.0015 0.0015 0.0015 0.0016

5 0.0325 0.0305 0.0324 0.0535 0.0536 0.0015 0.0015 0.0015 0.0015 0.0015

8 0.0225 0.0094 0.0116 0.0104 0.0103 0.0015 0.0015 0.0015 0.0015 0.0015

10 0.0125 0.0078 0.0067 0.0104 0.0104 0.0015 0.0015 0.0015 0.0015 0.0015

9 3 0.0410 0.0006 0.0007 0.0001 0.0003 0.0000 0.0000 0.0000 0.0000 0.0000

5 0.0310 0.0000 0.0002 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

8 0.0210 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

10 0.0111 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0001 0.0000

10 3 0.0495 0.0350 0.0346 0.0337 0.0329 0.0095 0.0095 0.0095 0.0095 0.0095

5 0.0394 0.0306 0.0312 0.0279 0.0256 0.0094 0.0094 0.0094 0.0095 0.0095

8 0.0295 0.0251 0.0266 0.0248 0.0232 0.0095 0.0095 0.0 0.0094 0.0095

10 0.0195 0.0222 0.0222 0.0217 0.0148 0.0095 0.0095 0.0095 0.0094 0.0095
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turn, can help in distinguishing edges and other objects

after segmentation.

In this section, the performance assessment of Masi

entropy for multi-level color image thresholding is given.

The threshold levels and corresponding numerical assess-

ment metrics using Masi entropy using each assessed algo-

rithms are reported in Tables 2, 3, 4, 5 and 6 for m = 3, 5, 8,

10. The ME, MSE, PSNR, FSIM, SSIM and entropy values

Table 3 (continued)

Test

images

Entropy

MASI-

ENG-

SHO

MASI-

ENG-SCA

MASI-

ENG-DA

MASI-

ENG-LSA

MASI-

ENG-

CFA

MASI-

ENG-F-

SHO

MASI-

ENG-F-

SCA

MASI-

ENG-F-

DA

MASI-

ENG-F-

LSA

MASI-

ENG-F-

CFA

1. 2.267 2.952 2.962 1.811 2.994 6.167 6.828 6.748 5.950 6.994

3.241 3.559 3.458 2.570 3.649 6.757 7.090 6.661 6.535 7.105

3.698 3.885 3.833 3.821 3.999 7.134 7.222 6.989 7.014 7.333

3.813 4.208 4.304 4.289 4.395 7.342 7.345 7.260 7.458 7.455

2. 1.907 1.880 1.785 1.404 1.944 6.094 5.816 5.868 5.758 5.821

2.056 3.113 2.723 2.373 3.221 6.267 6.264 5.626 5.642 5.776

3.308 3.783 3.551 3.038 3.889 6.070 6.260 6.461 6.099 6.266

3.552 4.159 4.073 3.790 4.277 6.761 6.547 6.320 6.516 6.178

3. 1.892 2.420 2.380 1.924 2.468 5.942 6.097 6.077 6.187 6.272

2.540 3.344 3.045 2.956 3.390 6.006 6.783 6.773 6.676 6.891

3.554 3.858 3.734 4.106 4.116 7.076 6.959 6.653 7.020 7.109

3.703 4.278 4.128 4.136 4.368 6.903 6.847 6.653 6.780 6.916

4. 2.634 2.806 2.803 1.841 2.892 6.844 6.854 6.836 6.905 6.937

3.037 3.414 3.220 3.362 3.485 7.131 7.034 6.854 6.961 7.282

3.565 3.967 3.895 3.983 3.986 7.219 7.259 6.957 7.142 7.266

3.827 4.095 4.151 4.188 4.200 7.228 7.151 7.175 7.265 7.312

5. 2.968 2.605 2.586 2.277 2.971 7.162 7.028 6.989 7.037 7.249

3.363 3.425 3.448 3.568 3.512 7.244 7.227 7.263 7.120 7.305

3.853 3.999 4.038 3.981 4.154 7.345 7.384 7.378 7.219 7.364

3.263 4.163 4.189 3.843 4.267 7.471 7.416 7.480 7.310 7.496

6. 3.049 2.770 2.737 1.744 2.339 6.657 6.628 6.560 6.483 6.368

3.297 3.383 3.535 3.152 3.057 6.602 7.211 7.103 7.094 6.740

3.520 3.895 4.121 4.168 3.808 6.992 7.158 6.901 7.477 7.042

3.602 4.368 4.240 4.295 4.274 6.737 7.240 7.005 7.349 7.140

7. 2.063 2.270 2.297 1.431 1.528 5.945 6.313 6.367 5.616 5.640

2.926 2.685 2.813 1.831 2.728 6.420 6.491 6.365 6.156 6.218

3.166 3.413 3.387 3.256 2.918 6.302 6.539 6.372 6.917 6.587

3.335 3.873 3.639 3.627 3.776 6.606 6.746 6.525 6.699 6.666

8. 3.080 2.893 2.951 2.558 2.769 6.901 6.902 6.918 6.981 7.089

3.520 3.637 3.739 2.884 3.787 7.147 7.137 6.936 6.957 6.902

3.743 3.959 4.376 4.362 4.347 7.226 7.260 7.188 7.416 7.078

4.271 4.632 4.503 4.563 4.377 7.234 7.236 7.203 7.490 7.288

9 2.615 2.385 2.289 2.367 2.050 6.832 6.685 6.809 6.620 6.631

3.202 2.990 2.970 2.559 3.128 7.122 7.020 6.892 7.141 7.152

3.122 3.579 3.561 3.572 3.128 6.990 7.062 7.151 7.340 7.139

3.344 3.604 3.799 3.784 3.810 6.803 7.176 7.039 7.313 7.232

10 2.726 3.067 3.060 1.817 3.189 6.454 6.378 6.526 6.346 6.590

3.588 3.709 3.570 2.293 3.799 6.749 6.819 6.896 6.413 6.902

3.908 4.241 4.218 3.386 4.226 7.125 7.111 7.017 6.849 7.159

4.069 4.350 4.498 3.726 4.570 7.103 7.109 7.250 7.019 7.238
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Table 4 Comparison of MSE and PSNR computed by different algorithms using Masi entropy

Test

images

M MSE

MASI-

ENG-

SHO

MASI-

ENG-

SCA

MASI-

ENG-DA

MASI-

ENG-

LSA

MASI-

ENG-

CFA

MASI-

ENG-F-

SHO

MASI-

ENG-F-

SCA

MASI-

ENG-F-

DA

MASI-

ENG-F-

LSA

MASI-

ENG-F-

CFA

1. 3 2367.68 2002.15 1939.40 1933.65 1843.61 1438.82 803.23 767.19 1261.43 772.28

5 945.08 791.82 647.84 650.30 669.26 520.40 414.15 287.98 338.19 243.57

8 491.48 362.82 296.02 320.85 277.79 260.34 192.66 159.21 190.17 128.63

10 764.35 301.71 227.56 251.44 202.76 544.64 168.87 162.01 165.05 114.39

2. 3 1640.50 1649.92 1746.12 1608.75 1587.27 756.37 849.86 857.78 787.98 727.90

5 1403.02 699.11 828.04 828.92 667.11 660.70 341.96 513.25 433.68 321.84

8 597.34 416.62 286.81 466.41 242.94 415.23 241.84 121.80 178.29 140.45

10 784.24 227.50 201.91 309.74 167.84 384.38 107.91 94.82 82.84 77.07

3. 3 2550.27 1660.75 1673.24 1401.49 1316.40 1922.49 1075.21 1086.27 707.57 698.90

5 1469.91 685.42 778.30 545.64 464.78 1076.88 324.81 355.37 270.53 258.36

8 635.00 412.84 389.36 218.65 165.92 315.94 189.25 209.14 163.91 112.52

10 642.41 194.03 222.68 145.79 119.67 362.98 96.65 98.55 149.14 90.73

4. 3 1834.98 1634.17 1668.72 1368.47 1318.30 1084.59 629.23 644.13 644.75 602.21

5 1112.98 829.82 811.37 603.27 533.72 550.80 302.40 308.35 294.12 248.68

8 985.77 378.67 358.36 273.06 222.81 480.60 135.87 127.93 300.85 104.82

10 491.04 323.54 250.41 211.59 143.48 244.50 136.84 89.83 116.20 74.05

5. 3 1667.51 2659.95 2782.62 1842.80 1596.19 869.11 1511.51 1645.72 1070.68 793.30

5 1133.60 820.82 778.52 669.65 579.43 1014.80 927.97 461.92 488.10 438.97

8 565.73 445.32 306.25 337.18 308.44 721.17 829.99 380.76 415.54 308.27

10 1374.13 343.88 235.59 251.60 185.03 1021.01 502.51 383.25 333.80 208.62

6. 3 1363.57 1788.70 1843.79 1365.81 1301.09 710.55 1040.50 1082.44 715.94 681.85

5 1138.22 634.75 674.94 593.93 583.95 703.89 268.76 292.37 252.67 251.99

8 992.43 486.16 304.38 271.37 228.42 557.74 255.87 135.96 153.74 139.91

10 501.58 263.08 220.09 179.34 173.58 282.34 118.75 100.64 119.09 101.18

7. 3 2017.77 1798.39 1741.91 1645.95 1636.16 1438.72 867.16 848.99 1132.22 728.31

5 914.14 938.52 848.16 544.23 497.60 583.28 649.76 594.03 299.16 279.82

8 519.65 341.40 355.55 235.25 219.89 766.39 561.23 317.76 282.33 280.44

10 431.66 204.54 194.06 179.20 170.66 681.59 436.85 362.93 246.05 176.84

8. 3 1345.55 2130.65 1824.27 1386.32 1279.47 591.97 1255.04 1002.20 652.89 500.03

5 898.39 946.64 676.11 542.37 615.67 477.20 472.02 271.20 285.12 266.68

8 646.46 480.25 307.36 245.70 222.67 381.32 186.02 118.04 187.76 127.65

10 463.54 261.35 258.42 176.50 165.36 253.26 125.32 101.65 180.38 98.06

9 3 1333.14 1987.50 2278.39 1220.09 1175.02 723.31 1142.66 1153.08 592.60 556.02

5 1171.08 877.27 665.56 555.99 478.37 1201.70 1199.67 363.67 363.17 327.81

8 1050.51 343.59 314.69 316.07 242.20 1096.27 652.84 522.52 286.04 272.71

10 436.33 351.10 212.46 200.09 122.62 810.53 834.23 525.64 307.69 179.30

10 3 2081.67 1657.35 1669.15 1599.81 1416.06 1799.87 529.09 491.72 564.35 457.45

5 1116.17 691.26 627.63 808.16 573.00 777.09 224.81 180.69 308.76 176.89

8 877.87 374.16 285.29 564.95 253.44 231.63 119.02 88.72 288.00 86.91

10 666.28 360.22 219.66 519.96 209.50 379.93 112.49 68.64 305.31 58.93
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computed with the proposed (MASI-ENG-F-CFA) based

method are listed in Tables 2, 3, 4, 5 and 6 and compared

with the outcomes of SHO, SCA, DA and LSA, respectively,

for fusion- and context-based scheme. The energy curve

follows the properties of histogram, i.e., it also has the val-

leys and peaks. The proposed scheme is aimed to obtain

Table 4 (continued)

Test

images

PSNR

MASI-

ENG-

SHO

MASI-

ENG-SCA

MASI-

ENG-DA

MASI-

ENG-LSA

MASI-

ENG-

CFA

MASI-

ENG-F-

SHO

MASI-

ENG-F-

SCA

MASI-

ENG-F-

DA

MASI-

ENG-F-

LSA

MASI-

ENG-F-

CFA

1. 14.39 15.26 15.42 15.36 15.58 16.68 19.12 19.33 17.60 20.01

18.49 19.27 20.03 20.02 20.89 21.27 22.46 23.91 23.00 23.95

21.23 22.60 23.42 23.18 23.50 24.04 25.33 26.16 25.46 26.54

19.42 23.46 24.59 24.33 25.07 21.08 25.90 26.19 26.16 27.73

2. 16.01 15.96 15.71 16.07 16.87 19.68 19.16 19.01 19.30 20.06

16.77 19.69 19.01 19.00 20.31 19.94 23.13 21.65 22.38 23.27

20.58 21.99 23.63 21.50 23.82 22.17 24.96 27.30 26.05 27.72

19.51 24.72 25.13 23.26 25.86 22.73 28.61 27.40 27.98 28.39

3. 14.30 16.29 16.29 16.68 17.64 16.07 18.84 18.87 19.75 19.76

16.86 19.94 19.25 20.79 20.92 19.09 23.06 23.19 23.85 23.94

20.52 22.04 22.26 24.73 24.91 23.75 26.37 25.31 26.01 27.99

21.53 25.27 24.66 26.51 26.73 25.57 28.30 28.39 26.45 28.56

4. 15.65 16.11 15.99 16.78 16.95 18.35 21.06 20.88 20.32 20.59

18.03 18.97 19.07 20.35 21.12 21.18 23.87 24.31 23.46 24.28

18.44 22.50 22.60 23.90 24.09 21.64 27.12 27.81 23.50 28.00

21.52 23.11 24.15 25.12 25.32 25.07 27.63 29.22 23.39 29.65

5. 15.94 14.03 13.89 15.90 15.98 18.77 17.39 17.15 18.09 17.99

17.70 19.00 19.24 19.99 20.25 18.09 18.46 21.70 21.35 20.49

20.77 21.69 22.28 23.03 23.19 19.72 19.04 22.36 22.15 24.27

17.85 22.82 24.42 24.28 24.80 18.99 21.22 22.36 23.09 25.24

6. 16.89 15.66 15.58 16.78 17.67 19.66 18.73 18.69 20.14 21.78

17.95 20.14 19.86 20.40 20.79 20.05 23.95 23.63 24.26 24.09

18.90 21.29 23.30 23.83 23.97 21.44 24.17 27.14 26.29 27.94

21.22 23.96 24.73 25.17 25.46 24.10 27.86 28.62 27.40 28.88

7. 15.36 15.77 15.87 16.01 16.04 17.27 19.01 19.07 18.15 20.19

19.09 18.43 18.89 20.79 21.39 21.17 20.16 20.68 23.46 23.41

21.22 23.03 22.99 23.43 23.13 19.35 20.82 23.57 23.65 24.61

21.80 25.27 25.26 25.60 25.86 19.80 21.89 22.57 24.23 25.80

8. 16.85 14.85 15.53 16.72 17.73 20.77 17.27 18.38 20.58 20.75

18.65 18.45 19.84 20.79 21.24 21.49 21.77 24.10 23.81 24.31

20.04 21.55 23.25 24.23 25.04 22.48 25.52 26.77 25.42 27.38

21.53 23.96 24.06 24.67 25.45 24.47 27.37 28.12 25.59 28.74

9 16.94 15.24 14.59 17.33 18.58 19.95 18.51 18.20 20.67 21.40

18.90 18.77 19.91 20.83 21.71 18.79 17.37 22.69 22.54 22.88

19.48 22.88 23.17 23.58 23.90 18.88 20.00 21.00 23.66 24.59

21.96 22.88 24.11 24.49 24.73 19.26 19.14 21.05 23.38 25.46

10 12.35 15.95 15.95 16.09 16.05 16.10 21.13 21.50 20.84 21.94

19.15 19.77 20.16 19.09 20.85 24.13 25.26 26.17 23.44 26.13

19.23 22.41 23.59 20.70 24.32 23.27 27.98 29.05 23.58 29.97

20.88 22.63 24.75 21.11 24.93 25.38 28.03 30.63 23.36 31.03
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Table 5 Comparison of SSIM and FSIM computed by different algorithms using Masi entropy

Test

images

m SSIM

MASI-

ENG-

SHO

MASI-

ENG-

SCA

MASI-

ENG-DA

MASI-

ENG-

LSA

MASI-

ENG-

CFA

MASI-

ENG-F-

SHO

MASI-

ENG-F-

SCA

MASI-

ENG-F-

DA

MASI-

ENG-F-

LSA

MASI-

ENG-F-

CFA

1. 3 0.9328 0.9495 0.9515 0.9421 0.9553 0.9536 0.9766 0.9775 0.9571 0.9799

5 0.9763 0.9802 0.9831 0.9828 0.9893 0.9853 0.9872 0.9905 0.9895 0.9915

8 0.9877 0.9911 0.9921 0.9927 0.9935 0.9920 0.9940 0.9939 0.9934 0.9947

10 0.9784 0.9923 0.9940 0.9947 0.9955 0.9840 0.9950 0.9951 0.9963 0.9963

2. 3 0.9467 0.9463 0.9436 0.9477 0.9549 0.9719 0.9679 0.9675 0.9701 0.9786

5 0.9491 0.9790 0.9719 0.9744 0.9846 0.9755 0.9871 0.9800 0.9831 0.9885

8 0.9790 0.9876 0.9911 0.9881 0.9897 0.9844 0.9914 0.9955 0.9937 0.9956

10 0.9779 0.9936 0.9938 0.9939 0.9946 0.9884 0.9963 0.9965 0.9976 0.9988

3. 3 0.9169 0.9474 0.9468 0.9562 0.9657 0.9341 0.9623 0.9619 0.9743 0.9748

5 0.9524 0.9786 0.9751 0.9826 0.9892 0.9625 0.9886 0.9870 0.9907 0.9919

8 0.9813 0.9872 0.9874 0.9930 0.9936 0.9901 0.9932 0.9921 0.9954 0.9959

10 0.9831 0.9939 0.9929 0.9955 0.9962 0.9902 0.9967 0.9963 0.9963 0.9968

4. 3 0.9560 0.9649 0.9641 0.9685 0.9700 0.9677 0.9811 0.9808 0.9790 0.9805

5 0.9733 0.9811 0.9813 0.9866 0.9852 0.9828 0.9900 0.9898 0.9914 0.9916

8 0.9773 0.9918 0.9917 0.9942 0.9927 0.9860 0.9957 0.9956 0.9941 0.9962

10 0.9884 0.9922 0.9940 0.9957 0.9945 0.9926 0.9953 0.9968 0.9946 0.9973

5. 3 0.9576 0.9334 0.9305 0.9585 0.9593 0.9731 0.9553 0.9523 0.9679 0.9674

5 0.9730 0.9795 0.9804 0.9842 0.9803 0.9719 0.9738 0.9857 0.9848 0.9783

8 0.9850 0.9889 0.9923 0.9925 0.9902 0.9799 0.9786 0.9892 0.9878 0.9858

10 0.9726 0.9908 0.9939 0.9946 0.9932 0.9769 0.9861 0.9896 0.9906 0.9889

6. 3 0.9611 0.9474 0.9450 0.9596 0.9599 0.9752 0.9651 0.9633 0.9741 0.9759

5 0.9725 0.9821 0.9801 0.9828 0.9832 0.9822 0.9908 0.9895 0.9912 0.9922

8 0.9722 0.9855 0.9908 0.9913 0.9921 0.9830 0.9913 0.9950 0.9957 0.9959

10 0.9857 0.9926 0.9934 0.9953 0.9962 0.9910 0.9957 0.9963 0.9970 0.9981

7. 3 0.9331 0.9452 0.9472 0.9448 0.9550 0.9506 0.9733 0.9738 0.9588 0.9789

5 0.9707 0.9700 0.9726 0.9831 0.9833 0.9809 0.9782 0.9795 0.9895 0.9899

8 0.9835 0.9892 0.9887 0.9930 0.9931 0.9753 0.9817 0.9895 0.9909 0.9912

10 0.9865 0.9940 0.9940 0.9946 0.9948 0.9781 0.9864 0.9885 0.9921 0.9942

8. 3 0.9661 0.9479 0.9546 0.9632 0.9633 0.9796 0.9648 0.9703 0.9779 0.9798

5 0.9774 0.9764 0.9829 0.9861 0.9837 0.9862 0.9858 0.9905 0.9911 0.9905

8 0.9832 0.9885 0.9922 0.9940 0.9947 0.9885 0.9942 0.9959 0.9955 0.9965

10 0.9883 0.9935 0.9938 0.9958 0.9958 0.9925 0.9961 0.9967 0.9962 0.9973

9. 3 0.9659 0.9474 0.9413 0.9695 0.9712 0.9774 0.9666 0.9673 0.9803 0.9886

5 0.9677 0.9764 0.9831 0.9867 0.9883 0.9661 0.9681 0.9894 0.9893 0.9898

8 0.9738 0.9908 0.9919 0.9928 0.9933 0.9731 0.9831 0.9870 0.9921 0.9939

10 0.9890 0.9911 0.9946 0.9955 0.9964 0.9804 0.9799 0.9874 0.9919 0.9982

10. 3 0.8834 0.9739 0.9737 0.9739 0.9794 0.9195 0.9883 0.9888 0.9876 0.9886

5 0.9866 0.9879 0.9841 0.9879 0.9885 0.9936 0.9938 0.9930 0.9942 0.9947

8 0.9839 0.9934 0.9948 0.9928 0.9957 0.9887 0.9967 0.9976 0.9959 0.9975

10 0.9885 0.9943 0.9960 0.9937 0.9963 0.9927 0.9971 0.9981 0.9960 0.9983
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segmentation for color images.Masi entropy is awell-known

function for multi-level threshold selection, which considers

the energy of each channel and performs the multi-level

thresholding bymaximizing the objective function. The final

optimal threshold values are drawn by taking the average of

the two threshold values. FromFigs. 5, 6, 7, 8 and 9, it is clear

Table 5 (continued)

Test

images

FSIM

MASI-

ENG-

SHO

MASI-

ENG-SCA

MASI-

ENG-DA

MASI-

ENG-LSA

MASI-

ENG-

CFA

MASI-

ENG-F-

SHO

MASI-

ENG-F-

SCA

MASI-

ENG-F-

DA

MASI-

ENG-F-

LSA

MASI-

ENG-F-

CFA

1. 0.6939 0.7014 0.7014 0.7097 0.7179 0.7740 0.7930 0.7922 0.7714 0.7955

0.7407 0.7731 0.7715 0.7713 0.7748 0.8108 0.8477 0.8367 0.8209 0.8457

0.8019 0.8201 0.8339 0.8377 0.8468 0.8618 0.8708 0.8818 0.8712 0.8938

0.7799 0.8422 0.8578 0.8614 0.8646 0.8354 0.8895 0.9024 0.8895 0.9031

2. 0.7303 0.7289 0.7274 0.7296 0.7380 0.7990 0.7938 0.7925 0.7923 0.7906

0.7382 0.7958 0.7863 0.7965 0.7900 0.8085 0.8399 0.8362 0.8409 0.8460

0.7960 0.8408 0.8579 0.8550 0.8589 0.8322 0.8794 0.8892 0.8864 0.8931

0.8341 0.8510 0.8619 0.8604 0.8704 0.8522 0.9153 0.9046 0.9163 0.9186

3. 0.6353 0.6904 0.6848 0.6744 0.6944 0.7452 0.7697 0.7711 0.7688 0.7717

0.7101 0.8043 0.7797 0.8120 0.8267 0.7865 0.8550 0.8439 0.8546 0.8581

0.8278 0.8560 0.8466 0.9062 0.9084 0.8686 0.8870 0.8745 0.9130 0.9201

0.8520 0.9097 0.9023 0.9164 0.9264 0.8819 0.9184 0.9158 0.9245 0.9303

4. 0.6639 0.6910 0.6892 0.7194 0.7216 0.7589 0.8098 0.8078 0.7957 0.8132

0.7665 0.8114 0.8118 0.8157 0.8259 0.8309 0.8727 0.8702 0.8757 0.8860

0.7885 0.8912 0.9034 0.9090 0.9160 0.8445 0.9204 0.9296 0.9221 0.9299

0.8685 0.8993 0.9276 0.9267 0.9305 0.8980 0.9164 0.9457 0.9340 0.9485

5. 0.7444 0.6271 0.6217 0.7102 0.7593 0.8332 0.7579 0.7495 0.8093 0.8315

0.8251 0.8438 0.8569 0.8650 0.8687 0.8840 0.8988 0.8984 0.8997 0.9030

0.8755 0.9036 0.9176 0.9176 0.9209 0.9159 0.9357 0.9414 0.9239 0.9410

0.7876 0.9205 0.9487 0.9290 0.9512 0.8716 0.9415 0.9508 0.9316 0.9552

6. 0.6671 0.6378 0.6352 0.6646 0.6868 0.7590 0.7543 0.7564 0.7793 0.7806

0.7102 0.7617 0.7659 0.7795 0.7825 0.8091 0.8422 0.8425 0.8480 0.8495

0.7336 0.8063 0.8548 0.8654 0.8717 0.8059 0.8665 0.9017 0.8966 0.9044

0.8009 0.8598 0.8884 0.9004 0.9182 0.8494 0.9047 0.9204 0.9205 0.9372

7. 0.6350 0.6551 0.6592 0.6435 0.6647 0.7349 0.8096 0.8042 0.7255 0.8153

0.7065 0.6919 0.6973 0.7363 0.7488 0.8120 0.8041 0.7935 0.8138 0.8281

0.7548 0.7940 0.7891 0.8229 0.8319 0.8548 0.8767 0.8659 0.8830 0.8919

0.7698 0.8435 0.8435 0.8577 0.8639 0.8554 0.9082 0.9095 0.9003 0.9181

8. 0.6467 0.6049 0.6208 0.6521 0.6535 0.7709 0.7232 0.7414 0.7768 0.7832

0.7227 0.7340 0.7657 0.7905 0.7717 0.8218 0.8130 0.8412 0.8515 0.8421

0.7768 0.8238 0.8629 0.8805 0.8861 0.8410 0.8778 0.9044 0.9067 0.9131

0.8127 0.8687 0.8857 0.9066 0.9095 0.8736 0.9093 0.9187 0.9254 0.9304

9. 0.6502 0.5925 0.5715 0.6610 0.6917 0.7651 0.7554 0.7607 0.7573 0.7766

0.7509 0.7421 0.7664 0.7863 0.7903 0.8342 0.8446 0.8501 0.8578 0.8695

0.7591 0.8590 0.8752 0.8695 0.8848 0.8377 0.9018 0.9170 0.8982 0.9296

0.8278 0.8594 0.9172 0.9137 0.9257 0.8999 0.9056 0.9408 0.9139 0.9417

10. 0.7451 0.7704 0.7690 0.7721 0.7723 0.8116 0.8201 0.8248 0.8116 0.8301

0.7905 0.7906 0.8005 0.7994 0.8093 0.8359 0.8357 0.8466 0.8375 0.8587

0.7952 0.8292 0.8367 0.8305 0.8442 0.8342 0.8648 0.8776 0.8711 0.8823

0.8150 0.8377 0.8522 0.8443 0.8567 0.8612 0.8684 0.8920 0.8798 0.9014
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that the proposed method (MASI-ENG-F-CFA) produces

the superior segmentation results as compared to the SHO-,

SCA-, DA-, and LSA-based segmentation, respectively, in

almost every case. Moreover, the proposed CFA-based

fusion approach offers faster segmentation outcome among

energy-based SHO, SCA, DA, and LSAmethods. Therefore,

L-3 L-5 L-8 L-10 L-3 L-5 L-8 L-10

MASI-ENG-
SHO

MASI-ENG-
FUS-SHO

MASI-ENG-
SCA

MASI-ENG-
FUS-SCA

MASI-ENG-
DA

MASI-ENG-
FUS-DA

MASI-ENG-
LSA

MASI-ENG-
FUS-LSA

MASI-ENG-
CFA

MASI-ENG-
FUS-CFA

Fig. 5 Comparison of segmentation results obtained by using different methods for each sample images
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L-3 L-5 L-8 L-10 L-3 L-5 L-8 L-10

MASI-
ENG-SHO

MASI-
ENG-

FUS-SHO

MASI-
ENG-SCA

MASI-
ENG-

FUS-SCA

MASI-
ENG-DA

MASI-
ENG-

FUS-DA

MASI-
ENG-LSA

MASI-
ENG-

FUS-LSA

MASI-
ENG-CFA

MASI-
ENG-

FUS-CFA

Fig. 6 Comparison of segmentation results obtained by using different methods for each sample images
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L-3 L-5 L-8 L-10 L-3 L-5 L-8 L-10

MASI-
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SHO
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FUS-SHO

MASI-
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MASI-
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MASI-
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MASI-
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Fig. 7 Comparison of segmentation results obtained by using different methods for each sample images
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Fig. 8 Comparison of segmentation results obtained by using different methods for each sample images
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MASI-
ENG-SHO

MASI-
ENG-

FUS-SHO

MASI-
ENG-SCA

MASI-
ENG-

FUS-SCA

MASI-
ENG-DA

MASI-
ENG-

FUS-DA

MASI-
ENG-LSA

MASI-
ENG-

FUS-LSA

MASI-
ENG-CFA

MASI-
ENG-

FUS-CFA

Fig. 9 Comparison of segmentation results obtained by using different methods for each sample images
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it may be summarized that the proposedCFAbased approach

indicates less CPU time in case of contextually fused multi-

level thresholding results against SHO, SCA, DA, and LSA

algorithms.

The procedure of searching optimal threshold points for

multi-level color image segmentation can be measured as a

constrained optimization task. The appropriate threshold-

ing values show the accurateness of image segmentation.

Table 6 Comparison of CPU time obtained by using different methods for each sample images

Test

images

m Energy MASI Fusion-based energy MASI

MASI-

ENG-

SHO

MASI-

ENG-

SCA

MASI-

ENG-DA

MASI-

ENG-

LSA

MASI-

ENG-

CFA

MASI-

ENG-F-

SHO

MASI-

ENG-F-

SCA

MASI-

ENG-F-

DA

MASI-

ENG-F-

LSA

MASI-

ENG-F-

CFA

1 3 87.960 81.225 82.715 81.473 80.494 89.767 82.934 84.381 83.217 78.725

5 87.371 81.412 82.414 82.902 81.178 89.130 83.145 84.070 84.709 79.435

8 88.995 81.297 83.284 83.277 80.270 91.072 82.971 85.970 85.150 78.532

10 83.092 81.428 84.046 82.336 79.918 85.160 83.009 85.674 84.017 78.144

2 3 80.680 81.761 82.097 80.887 81.971 82.423 83.472 83.786 83.662 80.227

5 79.596 81.445 83.464 81.661 83.525 81.397 83.128 85.079 83.461 81.770

8 80.810 80.717 84.013 82.953 84.298 83.642 82.387 85.656 84.799 82.432

10 80.429 81.328 84.447 84.136 82.860 82.207 82.945 86.094 85.888 81.158

3 3 82.643 80.601 82.009 82.351 81.241 84.441 82.308 83.721 84.144 79.452

5 83.200 80.178 83.458 80.305 81.003 85.018 81.819 85.094 82.020 79.260

8 81.951 79.111 83.361 81.061 84.018 83.709 80.723 85.102 82.834 82.299

10 83.487 79.708 84.106 86.034 83.514 85.334 81.463 85.824 87.809 81.731

4 3 80.296 81.187 83.066 89.665 85.703 82.154 82.833 84.711 91.364 83.941

5 81.459 78.863 83.428 88.153 84.433 83.260 80.762 85.086 89.907 82.718

8 81.110 80.086 83.903 88.192 84.473 82.856 81.745 86.570 89.978 82.738

10 83.405 80.321 84.150 83.370 84.531 85.174 82.037 85.786 85.163 82.655

5 3 81.444 79.352 81.973 89.985 86.280 83.173 80.967 83.681 91.756 84.522

5 82.261 79.752 82.897 89.689 83.984 84.100 81.397 84.552 91.440 82.232

8 81.559 80.784 82.430 96.101 85.459 83.367 82.583 84.117 97.814 83.516

10 81.698 80.915 84.052 89.903 84.543 83.481 82.561 85.710 91.653 82.751

6 3 81.705 79.079 82.379 94.205 85.696 83.513 80.757 84.242 95.944 83.874

5 82.261 79.111 83.572 94.876 83.712 84.033 80.738 85.212 96.619 82.006

8 82.329 80.973 83.318 95.494 83.514 84.169 82.595 85.051 97.255 81.799

10 82.954 81.204 83.301 97.436 84.430 84.781 82.915 84.921 99.231 82.711

7 3 81.637 81.281 83.161 93.408 83.122 83.417 82.953 84.838 95.202 81.431

5 81.319 78.600 83.329 94.825 82.513 83.156 80.256 85.047 96.616 80.796

8 80.564 80.666 84.263 94.063 80.663 82.391 82.358 86.129 95.807 78.973

10 80.409 79.823 84.210 96.183 84.196 82.221 81.523 85.835 97.970 82.473

8 3 81.824 81.065 83.250 94.774 80.548 83.621 82.676 84.927 96.511 78.868

5 80.446 79.431 82.665 98.418 81.525 82.219 81.128 84.357 100.237 79.810

8 81.856 80.176 84.302 101.638 80.821 83.714 81.822 85.975 103.516 79.075

10 82.551 79.899 83.904 97.132 81.397 84.383 81.549 85.564 99.027 79.647

9 3 81.238 79.475 81.663 94.349 80.874 83.226 81.203 83.304 96.304 79.153

5 81.570 80.654 83.146 96.465 81.931 83.389 82.311 84.806 98.292 80.096

8 81.602 80.019 82.871 94.610 81.448 83.474 81.689 84.486 96.382 79.724

10 81.544 79.063 84.248 96.622 80.386 83.526 80.729 85.872 98.380 78.467

10 3 81.052 79.862 81.660 79.972 80.321 82.798 81.481 83.439 81.711 78.531

5 81.001 80.443 83.062 80.466 80.878 82.778 82.072 84.724 82.210 79.145

8 80.002 78.970 83.796 81.688 79.640 81.745 80.612 85.426 83.396 77.945

10 82.024 78.999 82.569 81.178 80.526 83.831 80.688 84.257 82.895 78.786
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Accordingly, the quality of multi-level image thresholding-

based segmentation is based on the performance of the

meta-heuristic algorithms. Therefore, the presented CFA

algorithm can be played an important role to obtain a fast

multi-level thresholding-based image segmentation.

6 Conclusions

In this paper, a new local-contrast-based fusion method for

color image multi-level thresholding is presented. The

proposed method is inspired from the success of image

fusion in the context of image enhancement. Motivated by

that, the fusion strategy is exploited for the first time in the

domain of image segmentation wherein the segmented

result is fused with their original image in order to obtain

superior results. The fusion-based multi-level thresholding

approach is observed to preserve more information in the

segmented images. Experimental outcomes indicate that

fusion-based multi-level thresholding is simple and yields

better solution in the context of color image segmentation

than most of the dominant existing techniques. The effec-

tiveness of the proposed approach is evaluated using well-

known metrics like ME, Entropy, MSE, PSNR, SSIM and

FSIM values. Quantitative results demonstrate that fusion-

based Masi energy curve with CFA produces high-quality

color segmented images when evaluated in terms of ME,

entropy, MSE, PSNR, SSIM and FSIM values. In addition

to that, edge detection in the case of proposed segmentation

technique is more precise which helps in finding or

extracting the higher amount of the information about the

hidden objects in the original image. Moreover, the quali-

tative evaluation of the thresholded images depicts well-

delimited regions which are easier to discriminate in

comparison with existing dominant approaches.
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