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Abstract
Accurate and efficient models for rainfall–runoff (RR) simulations are crucial for flood risk management. Most rainfall

models in use today are process-driven; i.e., they solve either simplified empirical formulas or some variation of the St.

Venant (shallow water) equations. With the development of machine-learning techniques, we may now be able to emulate

rainfall models using, for example, neural networks. In this study, a data-driven RR model using a sequence-to-sequence

long-short-term-memory (LSTM) network was constructed. The model was tested for a watershed in Houston, TX, known

for severe flood events. The LSTM network’s capability in learning long-term dependencies between the input and output

of the network allowed modeling RR with high resolution in time (15 min). Using 10-year precipitation from 153 rainfall

gages and river channel discharge data (more than 5.3 million data points), and by designing several numerical tests, the

developed model performance in predicting river discharge was tested. The model results were also compared with the

output of a process-driven model gridded surface subsurface hydrologic analysis (GSSHA). Moreover, physical consis-

tency of the LSTM model was explored. The model results showed that the LSTM model was able to efficiently predict

discharge and achieve good model performance. When compared to GSSHA, the data-driven model was more efficient and

robust in terms of prediction and calibration. Interestingly, the performance of the LSTM model improved (test Nash–

Sutcliffe model efficiency from 0.666 to 0.942) when a selected subset of rainfall gages based on the model performance,

were used as input instead of all rainfall gages.
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1 Introduction

Flooding is considered the leading cause of natural-disaster

losses in the USA with an average annual damage of $7.95

billion (1984–2013, adjusted to 2014 inflation) [37].

Implementing flood management strategies without a reli-

able predictive rainfall–runoff (RR) modeling framework

is not possible. RR modeling, which aims at predicting the

streamflow hydrograph from precipitation input, is

intensively studied and used to support flood assessment

[13, 35, 38, 45, 52, 53]. In addition, RR models are

required to provide reliable discharge input for storm surge

models when real-time data are not availed due to the

absence of measuring gages. Such coupling is very

important to simulate the cascading effects of storm surge,

local runoff, and compound flooding in coastal areas.

RR models can be categorized as process-driven and

data-driven models [25, 33, 51]. While process-driven

methods are composed of analytical and empirical formu-

lae based on physical phenomena, data-driven models rely

on interpolating and extrapolating data. During the past two

decades, multiple process-driven hydrologic models such

as Interconnected Channel and Pond Routing Model

(ICPR), Hydrologic Engineering Center’s River Analysis

System (HEC-RAS), and Gridded Surface Subsurface

Hydrologic Analysis (GSSHA) for RR simulation have

been developed [2, 7, 11, 23].
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Although much progress has been made recently, even

state of the art process-driven models like GSSHA rely on

accurate meteorological input data that are changing due to

human/natural activities, which adds difficulty to con-

structing a production-level model incipiently. Further-

more, accurate prediction of RR requires extensive

calibration of the multiphysics model that is computa-

tionally expensive and requires intensive data availability

and entry. In addition, using process-driven models make it

more difficult to build a coupled coast flood prediction

model that considers the coupled interactions of hurricane

storm surge and associated RR [47]. During a flood event,

channel discharge information computed by RR model will

be passed to a surge model as a flux boundary condition.

Concurrently water surface elevation computed by the

surge model will be enforced on the RR watershed

boundary as a Dirichlet boundary condition. The overhead

caused by this message passing between RR and storm

surge model will affect the overall computational

efficiency.

Recently using deep neural networks for real time flood

prediction has been made possible by the increasing

amount of collected hydrologic data. Antithetical to pro-

cess-driven models, data-driven models such as artificial

neural network (ANN) that have been widely applied to

streamflow prediction, e.g., [9, 20, 22, 25, 42, 43, 50], are

more robust to meteorological data changes. This robust-

ness is due to the nature of their training data, batched

learning, and relatively inexpensive calibration process.

Due to its capability of modeling highly nonlinear rela-

tionships between input and output, the ANN model has

generated promising results for RR simulation.

When it comes to time series data, standard feed forward

neural network has its limitations. Feed forward neural

networks are designed based on the assumption that the

training and test examples (data points) are independent.

Thus, the entire state of the network is erased after pro-

cessing each example [48]. This assumption is not desired

when data points are inherently related. Moreover, to deal

with time series data, a standard ANN model (feed-for-

ward) would require choosing a fixed-sized sliding window

over the dataset. Tuning the size of this sliding windows for

the best predictive accuracy adds extra work to the model

selection [22]. This limitation becomes more significant in

flood assessment with finer time resolution (i.e., 15 min).

In this case, long-term dependencies prevail due to the

small time step size and cannot be learned by ANN because

they are not captured within the fixed-sized time windows.

More recently, a class of ANNs known as recurrent

neural network (RNN), a deep learning algorithm, has

attracted much attention and shown success in solving

sequential problems such as machine translation, speech

recognition, and handwriting recognition [14]. Even though

the idea of RNN was proposed in the 1980s [36], the

applications of RNN in hydrologic engineering are rela-

tively more recent [24, 46]. RNNs are networks with loops

in them, allowing information to persist. RNN can exploit

the sequential pattern in the data while preserving feed-

forward NN’s ability to model nonlinear relationship

between input and output via cycles formed by the hidden

nodes in the network [32]. A standard RNN has very simple

looping units, such as a single layer with hyperbolic tangent

(tanh) activation. To cope with the vanishing gradient

challenge [21] for standard RNN and learn longer-term

dependencies in sequential data, long short-term memory

(LSTM)-based RNN systems have been developed [18].

LSTM’s success has encouraged groups to explore its

capability in time series forecasting of river discharge and

other applications [26, 28, 29, 34, 41, 49, 51].

All of the aforementioned LSTM models have been

using both rainfall and flow at previous time steps to pre-

dict future flow. Even though the prediction uncertainty

associated with time series forecast using LSTM is not

analytically available yet, studies [34, 49, 51] have shown

increasing error in predicting flow by the passage of time.

Despite some examples in using RNN for hydrologic

modeling [15], the literature obviously lacks an LSTM

model that predicts future river flow purely based on pre-

cipitation input to address this accumulative uncertainty

problem. In addition, such a model, capable of simulating

longer events only using precipitation data as input, is more

desirable for flood management applications and dynamic

coupling with surge models.

Ubiquitous as deep learning systems are, they are often

criticized for their lack of interpretability. There are mul-

tiple motivations to interpret deep learning models [10],

among which two aspects raise the most concerns: (1) How

can the prediction be trusted when the model is not inter-

pretable? (2) How to select input features (rainfall gages)

for the model? These two questions are especially difficult

to answer for LSTM models. Unlike some machine learn-

ing models that have clearly defined importance metrics

such as the random forest algorithm [6], there is no simple

way to define such a metric and offer insights to the learned

LSTM model. Besides, the complicated structure of LSTM

unit adds more difficulty to understand the prediction.

While the importance of the first question is obvious, the

second question is equally important as it is found that

scrutinized gage selection can improve the model predic-

tions [1, 31]. Thus, it is critical to understand the data-

driven models and justify their results based on the phys-

ical intuition in addition to making good predictions.

In this paper, an LSTM network was applied to build a

data-driven model for streamflow prediction in a urban

watershed on a 15-min scale and compared it with a

benchmark process-driven model (GSSHA). The objectives
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of this paper are (1) to build a data-driven model for

streamflow prediction using precipitation as the only input

in an urban watershed by applying LSTM network, (2) to

compare the prediction accuracy and efficiency of the

developed model with a benchmark process-driven model

(GSSHA) and observational data, (3) to evaluate to what

extent the model results can be justified based on the

physical characteristics of the modeled watershed, and (4)

to propose a fast methodology to reduce the dimension of

input data to the model through an efficient feature selec-

tion approach.

2 Study area and data acquisition

Figure 1 shows the location of the Brays Bayou watershed,

Brays Bayou and its tributaries located in southwest of

Harris County and northeast of Fort Bend County, Texas

was selected for this study. Brays Bayou drains freshwater

from 329 square kilometers of a heavily urbanized and

populated watershed and discharges into the Houston Ship

Channel [5]. Brays Bayou has had a history of floods; just

in the last 18 years Tropical Storm Allison (2001), Hurri-

cane Ike (2008), the Memorial Day Flood (2015), the Tax

Day Flood (2016), and Hurricane Harvey (2017) caused

significant flooding and billions of dollars of property

damage [37].

15-min precipitation data from 2007 to 2017 were

compiled from 153 rainfall gages maintained by the Harris

County Flood Control District (HCFCD) and 15 min flow

data were obtained from the United States Geological

Survey (USGS) gages [19]. Within the Brays Bayou

watershed, there are 16 rainfall gages and five flow gages.

In this study, only one freshwater gage located very close

to the watershed outlet (see gage 08075000 in Fig. 1) was

used to compile flow data for the purpose of training,

calibration and validation.

Land elevation was extracted from the 10 m resolution

US National Elevation Dataset (NED) in WMS and

assigned to the grid. The 15-class land use data was com-

piled from 30 m resolution US National Land Cover

Database (NLCD).

Fig. 1 Study area
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3 Methods

3.1 Gridded surface subsurface hydrologic
analysis (GSSHA) model setup

GSSHA is developed and actively operated by the Engi-

neer Research and Development Center (ERDC) of the

United States Army Corps of Engineers (USACE). GSSHA

is an open source distributed-parameter hydrologic model

capable of coupling multiple physical interactions among

1D channel flow, 2D overland flow, infiltration and

groundwater flow, precipitation interception, snow melting,

and evapotranspiration [12]. Among the process-driven

models, GSSHA has been widely used by many researchers

for various purposes from total maximum daily loads

(TMDLs) to compound flooding; in the period of

2000–2017, GSSHA has been used in more than 85 sci-

entific/technical projects [4]. More recently, [40] coupled

GSSHA with the state-of-the-art surge modeling system

(ADCIRC-SWAN) to simulate compound flooding on the

east coast of Puerto Rico. Other recent studies used

GSSHA to improve the parameterization of the Storm

Water Management Model [16], and to evaluate the per-

formance of satellite-based precipitation products in com-

parison to radar data [17]. Thus, it is chosen as the

benchmark model for this study. Considering the location,

geography, and objectives of the study only surface flow

routing processes were activated.

In this paper, a GSSHA model was built for the study

area using the Watershed Modeling System (WMS) version

10.1. WMS is a watershed RR simulation and modeling

software application from AquaveoTM [8]. The software

supports a number of hydraulic and hydrologic models

including GSSHA that can be used to create drainage basin

simulations. A uniform 2-D grid with 56,606 cells with a

dimension of 100 by 100 m for 2D overland flow was

constructed. The streams were represented by 49 reaches of

trapezoidal channels. The channel nodes have an average

length of 470 m in the longitudinal direction. The cross-

section geometry is approximated based on an existing

HEC-RAS model for Brays Bayou developed by the

USACE. To compute 2D overland flow, the alternating

direction explicit (ADE) method was chosen in GSSHA.

To assign surface roughness parameters (Manning coeffi-

cient) an index map was created using 15-class land use

data. For each land use class [see Fig. 8 in ‘‘Appendix’’],

Manning coefficient recommended by the National

Resource Conservation Service (NRCS) was used (see

Table 4 in ‘‘Appendix’’). The channel flow is modeled

using explicit diffusive wave method. The precipitation

data were obtained from 16 rainfall gages inside the Brays

Bayou watershed. The distributed rainfall was then

interpolated using Theissen polygon and inverse distance

weighted methods.

Limited by the computational expense, the GSSHA

model used in this study was calibrated on a period from

2014/12/13 to 2015/01/30, which consists of a series of

rainfall events. The highest peak flow of the events is

317 cm. River channel’s Manning’s coefficient was set as

the only calibration factor and restricted within the range

between 0.001 and 0.02. The optimal Manning’s coeffi-

cient is found to be 0.003 by grid search within this range.

The RMSE of the calibrated model is 14.03 and NSE of is

0.757.

Furthermore, four flood events in 2017 with different

scales were simulated using the calibrated model to be

compared with the LSTM model’s result and observed

data. To be consistent with the data-driven model, dis-

charge at the chosen USGS fresh water gage (08075000) is

set as the observation point.

3.2 Long-short-term-memory (LSTM) network

In this study, a standard LSTM network was used to predict

the discharge from rainfall data. The LSTM network is an

RNN composed of LSTM units. RNN structures have been

explained elsewheres [30], but in brief and as shown in

Fig. 2a, at each time step t, a neural network, A, looks at

some input xt 2 Rd, where d is the dimension of the input,

and hidden state from the last time step ht�1, and outputs a

value ht 2 R. A loop allows information to be passed from

one step of the network to the next. At the next time step

t þ 1, the new input xtþ1 and hidden state ht are fed into the

network, and new hidden state htþ1 is computed. In theory,

RNNs are capable of handling ‘‘long-term dependencies’’.

For instance, initial input X0 could affect the hidden state

value 500 steps later (h500). Unfortunately, in practice, due

to numerical limitation during the optimization stage,

RNNs consisting of single layer of artificial neurons are

unable to learn to connect the long-term dependency [3].

Instead of an artificial neuron, an LSTM unit contains a

memory cell gt and three gates. These gates are input gate

it, forget gate ft, and output gate ot [18].

At time step t, the LSTM unit takes input xt, hidden

states ht�1. Then, it updates the hidden states following (1):

it ¼ rðWiixt þ bii þWhiht�1 þ bhiÞ
ft ¼ rðWif xt þ bif þWhf ht�1 þ bhf Þ
gt ¼ rðWigxt þ big þWhght�1 þ bhgÞ
ot ¼ rðWioxt þ bio þWhoht�1 þ bhoÞ
ct ¼ ftct�1 þ itgt

ht ¼ ot tanhðctÞ

ð1Þ
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where r is the sigmoid function; Wii, Wif , Wig, and Wio are

the input-hidden weights; Whi, Whf , Whg, and Who are the

hidden-hidden weights; bii, bif , big, and bio are the input-

hidden biases; bhi, bhf , bhg, and bho are the hidden-hidden

biases.

Depending on the size of the watershed, the peak of

generated runoff can be observed from a couple of hours to

a couple of weeks after the event. For instance, for a time

step of 15 min, a rainfall event that lasted for a week would

have more than 650 steps in time. To accurately model the

RR process, the model is required to memorize the effect of

precipitation from the beginning of the event, which is

numerically difficult for standard RNN. Thus, such a

structure shown in (1) is proposed to cope with the van-

ishing gradient problems that can be encountered when

training standard RNNs [18]. With the objective of channel

discharge prediction, a two-layer LSTM network with 10

hidden units in each layer was designed as shown in

Fig. 2b. A standard LSTM implementation from the open

source deep learning platform PyTorch [39] was adopted in

this study to develop the data-driven model.

In this study, input xt ¼ ðxt1 ; xt2 ; . . .; xtnÞ is the vector of

precipitation gage readings at time t. xti corresponds to the

reading of the i-th precipitation gage at time t. Note that

flow at any of the previous time steps (yt�k) is not within

the input vector indicating the developed model is not a

time series model. In other words, it does not depend on the

immediate past observation to make prediction. For each

time step t, the precipitation readings are input into the

network, and ht 2 Rp is computed by the two layers of

LSTM network MLSTM: ht; ct ¼ MLSTMðxt; ht�1; ct�1Þ.
Each hidden unit works independently. Formally, the

LSTM network MLSTM : R2p 7!R2p is defined as:

hlt ¼ olt tanhðcltÞ
clt ¼ flt clt�1

þ ilt glt
ð2Þ

where dimension of ht and ct, p ¼ 10 is the number of

hidden units set by user. hlt ; clt are the lth element of the

ht; ct vector. The gates and cell state olt ; flt ; ilt ; glt are

updated following (1). Since the output dimension is 1 (we

are only trying to predict the outlet discharge), another

fully connected layer Mfc : R
p 7!R would transform the ht

to the output ŷt: ŷt ¼ MfcðhtÞ:

MfcðhtÞ ¼ ga b0 þ
Xp

l¼1

blhlt

 !
ð3Þ

where ga is the activation function; in the context of arti-

ficial neural networks, the activation function of a node

defines the output of that node for a given input or set of

inputs. A nonlinear activation function allows the neural

networks to model nonlinear relationship between the input

and output. This function is also known as the transfer

function [30]. An activation function defined as the positive

part of its argument is called rectifier:

gaðxÞ ¼ xþ ¼ maxð0; xÞ; ð4Þ

where x is the input to a neuron. Leaky rectified linear unit

(LReLU) is a generalization of rectifier where a small,

A

(a) Structure of RNN.

Dense Layer (LReLU)

First
Layer

Second
Layer

LSTM
Unit 1

LSTM
Unit 2

LSTM
Unit 10

...

LSTM
Unit 1

LSTM
Unit 2

LSTM
Unit 10

...

(b) Developed two layer LSTM network with 10 hidden units.

Fig. 2 Architecture for recurrent

network and the developed

LSTM network
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positive gradient is allowed when the unit is not active

(input to the neuron is not positive):

gaðxÞ ¼
x if x[ 0;

0:01x otherwise:

�
ð5Þ

As shown in (1) and (2), an initial hidden state is required

for the LSTM network to start a forward propagation, i.e.,

h1; c1 ¼ MLSTMðx1; h0; c0Þ. After some preliminary test

runs, a modification was made to the model to set the initial

hidden states ðh0; c0Þ as learnable parameters instead of

randomly initializing it to improve the prediction perfor-

mance at the initial stage. The initial hidden states ðh0; c0Þ
are fixed after training. This change was justified because

hydrologic models are generally set up with an initial

condition (base flow) which exists before the rainfall event.

Like any supervised learning algorithm, calibrating the

LSTM model requires training the model by optimizing the

objective function Lðŷt; y;wÞ under some constraint C,

where ŷt and y are the prediction and observation, respec-

tively. w is the learnable parameter:

arg min
w

subject to
ð6Þ

In this study, the objective function is defined as the mean

square error (MSE) between the prediction and

observation:

L ŷt; y;wð Þ ¼ 1

n

Xn

t¼1

ŷt � yð Þ2: ð7Þ

To avoid over-fitting of the deep learning models, regu-

larization by adding penalty to the learnable parameters is a

widely used approach [30]. In practice, regularization

RðwÞ is added to the objective function. A regularized

version of the optimization problem becomes,

arg min
w

subject to
ð8Þ

where C is the constraint on w.
In this work, l2 regularization is used to prevent the

model from over-fitting to the training data,

RðwÞ ¼ kkwk22=2: ð9Þ

where k is the regularization parameter (10�6). Larger k
corresponds to more regularization. Note that this tech-

nique is also known as weight decay because when

applying standard stochastic gradient descent (SGD), it is

equivalent to updating the weight in this way:

wiþ1 ¼ wi � kwi � a
dL
dw

jwi
ð10Þ

where wi is the learnable parameters at step i, a is the

learning rate, and dL
dw jwi

is the stochastic gradient approxi-

mation at step i. Thus, at each step, the weight w decays by

ð1� kÞ. For standard stochastic gradient descent (SGD),

weight decay can be made equivalent to l2 by a reparam-

eterization of the weight decay factor based on the learning

rate. However, this is not the case for adaptive gradient

descent methods including Adam optimization [27], which

is used in this study with a learning rate of 10�4.

3.3 LSTM model training, validation,
and evaluation

In machine learning, a mathematical model is built from

existing data. However, the task of the machine learning

model is to make predictions on future data that is not

available at the model construction time. To evaluate the

model performance on unseen data, a common practice in

supervised machine learning is to split the data into three

data sets which are used in different stages of the creation

of the model.

Specifically, the model is initially fit on a training

dataset, that is a set of examples used to fit the parameters

(e.g., weights of connections between neurons of artificial

neural networks) of the model. Successively, the fitted

model is used to predict responses for the observations in a

second dataset called the validation dataset (e.g., predict

hydrograph given precipitation in this study). The valida-

tion dataset provides an unbiased evaluation of the model

fit on the training dataset while tuning the model’s hyper-

parameters (e.g., the number of the hidden units in neural

network, number of LSTM layers, regularization, etc.). The

combination of the hyperparameters with the best valida-

tion performance is then chosen for the machine learning

model. Finally, the test dataset is used to provide an

unbiased evaluation of a final model. If the examples from

the test dataset have never been revealed to the model

during training and validation stages, the test dataset is also

called a holdout dataset.

Hydrologic data were split into train, validation, and test

data sets. As shown in Fig. 3, all 15-min data up to the end

of 2015 (2007–2015) were used for training. The entire

year 2016 was used for validation and 2017 was used as the

holdout test dataset. This train-validation-test split

scheme is designed to minimize over-fitting and consistent

with realistic prediction scenarios.

Particularly at the training stage, each time series is

considered as a training example. A training iteration

includes a forward propagation of the training example that

computes the output, a backward propagation that com-

putes the gradient, and an optimization step that updates

learned parameters. Multiple training examples can be put
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into a batch where both forward and backward propagation

are processed in parallel respectively. One forward pass

and one backward pass of all the training examples is

called an epoch. More details can be found in [30].

During training, each sequence of data from the training

dataset was input into the LSTM network as one batch.

Built-in Adam optimization algorithm was used to opti-

mize the MSE loss function. To avoid over-fitting, an l2
regularization with coefficient of 10�6 was added for all

learnable parameters. The learning rate was set to 10�4.

These hyper-parameters were used for all tests for this

study unless otherwise indicated.

To handle the missing data, a threshold of 90-min was

set. If the missing data gap was less than or equal to 90 min

(6 missing points), the missing points were imputed by

linear interpolation. For gaps greater than 90 min, the

sequence was split at the gaps. To speed up training and

avoid the gradient exploding problem [44], the time series

is further split into even shorter series.

To help the data-driven model extrapolate better, a

minimum-maximum scaling was applied to both input and

output variables [20, 22] so that all transformed variables

are in the range of [0, 0.9]. Preliminary tests showed the

model trained by the transformed variables in the range of

[0, 0.9] performed better in comparison to the one trained

by variables in the range of [0, 1].

3.4 LSTM scenarios

3.4.1 Scenario 1: Physical consistency of LSTM model

Physically, it is obvious that the amount and pattern of

rainfall collected by gages near/upstream of the flow gage

are more relevant to runoff discharge than those collected

by gages that are far from/downstream of the river gage. To

explore how the LSTM model results are spatially dis-

tributed and verify that the trained data-driven model is

consistent with the physical intuition, two numerical tests

were conducted using precipitation data from all 153

aforementioned rainfall gages:

1. Precipitation data from each rainfall gage was used to

train a separate LSTM model. Then, the training loss of

all of the 153 models were recorded and compared.

The assumption was: if the LSTM model could

actually learn the physical correlation between precip-

itation and river discharge, the model trained with

more relevant input data should perform better.

2. All gages’ data were used to train a single LSTM

model. It is natural to assume that a physically

consistent model should pay more attention to the

more important gages.

The purpose of these two numerical tests is to explore the

characteristics of the LSTM network for the defined

application and reduce the number of input gages to the

model based on the physical intuition of the problem.

For the first test, each model was trained for 200 epochs

on the training data set combined with the validation data

set and the best performing epoch with the minimum

training error was recorded. Because the models trained in

this test was not intended to be used for prediction, regu-

larization and validation were not applied in this case. For

the second test, due to the higher input dimension more

epochs were required for the model to converge. Thus, the

all-gage model was trained for 400 epochs on the training

data set. The best performing epoch on the validation data

set was chosen as the trained model. Regularization and

Fig. 3 Training, validation, and

test split
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validation were applied here to (1) cope with the ill-con-

ditioning problem when highly correlated precipitation

data from different gages are presented; (2) prevent over-

fitting so that the model parameters including the first layer

weights, come from a meaningful model. As noted before,

the first layer of the LSTM network takes precipitation

input. After the training, all the learnable input-hidden

weights (Wii;Wif ;Wig, and Wio) of the first LSTM layer are

grouped by gages and then flattened to a vector W, i.e.,

W ¼ ½Wii;1;Wif ;1;Wig;1;Wio;1; . . .;Wii;n;Wif ;n;Wig;n;Wio;n�
ð11Þ

where n is the number of hidden units, i.e., 10. For each

gage, three parameters of the learnable input-hidden

weights were defined by the l1; l2, and l1 norms of W:

kWk1 ¼
Xn

i¼0

ðjWiij þ jWif j þ jWigj þ jWiojÞ ð12Þ

kWk2 ¼
Xn

i¼0

ðW2
ii þW2

if þW2
ig þW2

ioÞ
" #1=2

ð13Þ

kWk1 ¼ maxfjWii;1j; jWif ;1j; jWig;1j; jWio;1j; . . .;
jWii;nj; jWif ;nj; jWig;nj; jWio;njg

ð14Þ

Thus, for each gage, this test generates four parameters: the

training error e, and the three norms of the weight vector

W. To find any correlation, if any, among the three norms

of the weight vector and training errors from the first

numerical test, a correlation analysis was conducted using

both Pearson correlation coefficient (r) and Spearman’s

rank correlation coefficient (q).

3.4.2 Scenario 2: LSTM model using 10 rainfall gages

To reduce the training time and the need for input data, it is

necessary to reduce the number of gages used for the

training. In addition, reducing the number of gages should

not decrease, if not increase, the performance of the model.

An exhaustive feature selection would require trying all

combinations of gages which means training 2153 models

which is infeasible. Thus, the choice of rainfall gage was

the 10 most relevant gages determined by scenario 1 using

the gages with the minimum training errors.

A slightly different training process for this test was

followed since this model was intended to be used for

prediction. The LSTM model was trained on the training

data set and regularization was added. The number of

epochs were restricted to 200 and the best performing (in

terms of evaluation score) epoch on the validation data set

was chosen as the training result.

To show the causal improvement of this feature selec-

tion approach, more numerical tests were conducted.

Comparison was made among models trained with the 10

best gages (based on training error), 10 randomly sampled

gages (sampled 5 times) from all 153 gages, 10 randomly

sampled gages within the watershed, and 10 closest gages

to the discharge gage. Thus, a total of eight models using

10 rainfall gages were built and tested.

3.5 Analysis and comparison of LSTM
and GSSHA models

Since this study focuses on RR prediction for flood events,

the evaluation was focused on flood events instead of

normal flow regime dominated by the base flow and tidal

mechanisms. The Nash–Sutcliffe model efficiency (NSE)

and root-mean-square error (RMSE) were selected as the

metrics for model evaluation. As introduced in Sect. 3.2,

our developed model (as well as GSSHA model) is not a

time series forecasting model. Hence, the metrics do not

include those evaluations for time series models such as

persistency criterion which compares the forecasting with

the predictions from a naive persistence model.

To make a fair comparison of the LSTM model and the

benchmark GSSHA model, an additional LSTM model was

trained with data from 2014/12/13 to 2015/01/30, the same

period used to calibrate GSSHA model. Moreover, the

LSTM model takes the same set of input rainfall gages as

the GSSHA model so that the two models have access to

the exact same information. This LSTM model is referred

as the reduced LSTM model for the rest of this paper. For

comparison, four events of different scale in terms of

precipitation and river discharge were chosen from the test

data set (2017); low rainfall event from 9/28/2017 to 10/6/

2017, moderate rainfall event from 12/16/2017 to 12/19/

2017, high rainfall event from 12/2/2017 to 12/12/2017,

and finally, an extreme rainfall event including Hurricane

Harvey, which started from August 23 and ended on

September 1, 2017. Note that the moderate event follows

the high event with an interval of 4 days. Here, it was

assumed the precipitation of the first event had completed

runoff by the time the second event starts. Again, the

choice of these four events were due to the limitation of

computational expense of the GSSHA model, not the

LSTM model. The LSTM model has no such restriction

and was tested for all of 2017’s flood events.

4 Result and discussion

The results and discussion section will start by presenting

the results from the developed LSTM model, how well the

model can predict runoff discharge using precipitation

from each gage, and how consistent the results were with

physical intuition. For this purpose, the two numerical tests
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of experiment 1 will be discussed. Next, the performance

of the constructed LSTM model with the 10 selected gages’

data as input will be investigated and the results will be

compared with the model using all 153 gages’ data as

input. Finally, the results of the GSSHA model developed

for the Brays Bayou watershed will be presented and the

difference between the predictions from GSSHA and

LSTM will be discussed.

4.1 Physical consistency of LSTM result

The training errors of LSTM models using each single

rainfall gage (first numerical test in experiment 1) are

shown in Fig. 4. The lowest training error was 29.94 in a

gage just upstream of the discharge gage and highest

training error was 278.11 in a gage located outside of

Harris County. From Fig. 4 it can be seen that gages with

the best performance are the ones located within or near the

watershed. In fact, the Pearson correlation between the

training error extracted from the LSTM model and the

physical distance between the rainfall gages and the USGS

gage was significant with a p value of 3.5E�31 and

r ¼ 0:77. This results show that similar to the process-

driven model, where precipitation drives runoff and the

amount of precipitation falls into the watershed is repre-

sented by the interpolation of the rainfall gage recording,

the data-driven model also performs better when better

representation of the distributed precipitation is provided.

The correlation between training error e and the three

parameters in scenario 1 could provide intuition on how

much attention the LSTM model pays to the important

rainfall gages. This makes more sense when considering

the fact that the spatial distribution of the best performing

gages matches very well with the physical intuition. The

Pearson correlation coefficient, Spearman’s rank correla-

tion coefficient, and the respective p values of the statistical

t tests are shown in Table 1. All statistical t tests suggest it

is safe to reject the null hypothesis that the weight

parameter is uncorrelated with the gage training error.

Moreover, there is a non-trivial negative correlation

between the norms of first layer weights and performance

of model trained using the corresponding gage. The result

suggests that statistically the LSTM model pays more

attention to the physically important gages than those

irrelevant gages.

Fig. 4 Training error map for single gage models
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As suggested in [1, 31], eliminating redundant gages

effectively improves the predictions of RR models. The

consistency not only suggests the LSTM model is paying

more attention to the more important gages, but also pro-

vides an efficient way of choosing rainfall gages for the

LSTM model. Unlike the dedicated studies of choosing

rainfall gages for RR modeling using areal rainfall opti-

mization [1], the LSTM model can provide a coarse yet fast

approach to pick the most relevant gages.

4.2 LSTM prediction

As noted before, an exhaustive feature selection among the

rainfall gages is infeasible. Using the feature selection

criterion suggested in scenario 1, the 10 gages with the

lowest training error in the first test, which are mostly

located inside the watershed (the only gage outside the

watershed is also very close to the watershed boundary),

were picked as the input of the finalized LSTM model. To

show the causal improvement of feature selection, we also

compared the model performance (see Fig. 5) with models

using (1) 10 randomly chosen gages within Harris County

(sampled 5 times) (2) 10 randomly chosen gages within the

watershed (3) closest 10 gages. The result in Fig. 5 shows

that the best 10 gages model not only has the best valida-

tion score, but also converged faster than all other afore-

mentioned models. Note that the model with 10 randomly

chosen gages within the watershed also has a high vali-

dation score (0.945) but this model shares 6 common gages

with the best 10 gages model. Nonetheless, its best epoch is

296 which is more than twice as much as that of the best 10

gages model indicating longer computational time for

training.

Compared to the 153-gage model in experiment 1,

training of the best 10 gages model converged significantly

faster: It took 145 epochs to converge, whereas the

153-gage model required more than 350 epochs to con-

verge using the same learning rate. The convergence

analysis of Adam optimization algorithm is out of the

Table 1 Correlation between gage training error and weights

parameters

Parameter r p value of r q p value of q

kWk1 - 0.731 7.551e-27 - 0.335 2.264e-5

kWk2 - 0.742 4.457e-28 - 0.343 1.389e-5

kWk1 - 0.664 9.071e-21 - 0.318 6.097e-5

Fig. 5 Validation score versus

number of epochs

Table 2 Evaluation scores of

10-gages model versus

153-gages model

Data set 10-gages model 153-gages model

RMSE NSE RMSE NSE

Training 8.11 0.921 5.65 0.961

Validation 7.83 0.947 8.49 0.938

Test 17.62 0.942 42.24 0.666

Test excluding Hurricane Harvey 8.32 0.906 10.04 0.864
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scope of this paper; however, it is clear that the conver-

gence of Adam algorithms is dimension dependent [27].

Besides, lower dimension implies lower computational cost

for each iteration. Hence, training models with fewer inputs

would be more efficient.

The evaluation scores (RMSE and NSE) were computed

for both 10-gages model and 153-gages model on train-

ing/validation/test data set and are shown in Table 2. The

153-gages model had lower training error but higher

Fig. 6 Scatter plot of prediction versus observation for 10-gages and 153-gages models

Neural Computing and Applications (2021) 33:1261–1278 1271

123



validation/test error compared to the 10 gages model which

implies more over-fitting of the 153-gages model.

Moreover, the test error of both models were signifi-

cantly higher than the training and validation errors.

However, this behavior is explainable and does not indicate

our model is over-fitting. The larger test error was domi-

nated by under-predicting Hurricane Harvey which was

included in the test set (see Fig. 6c). It should be noted that,

Hurricane Harvey was an extraordinary flooding event in

which, due to the high volume of precipitation, inter-basin

transfer happened in many of the watersheds in the Greater

Houston Area. Such phenomena is almost impossible to

capture even with process-based models when only one

watershed is modeled. Considering the uniqueness and

rarity of Hurricane Harvey and its different behavior in

both precipitation pattern and volume, the prediction of the

10-gages model on Hurricane Harvey, as shown in Fig. 7,

is acceptable. The test result actually shows the relatively

good extrapolation ability of the data-driven model.

From Fig. 6, it can be seen that the test set contains

target discharge above 900 cm, while the training/valida-

tion sets have lower peak flow rate. The 10-gages model

clearly performs better than the 153-gages model on an

extreme event (Harvey). The flow rate versus time plots of

both models for every event with peak flow larger than

30 cm are shown in Fig. 9 in ‘‘Appendix’’. It can be shown

that for the majority of the events except Harvey, both

models are making reasonable predictions. Table 2 shows

that if the time series containing Hurricane Harvey was

excluded from the test set, the performance of the 10-gages

model would be closer to those on the training and vali-

dation set. However, compared to the 10-gages model, the

153-gages model still seems to have larger variance given

that it has better training score (compared to 10-gages

model) but worse validation/test score. Due to the superior

performance of the 10-gage LSTM model chosen through

feature selection, this model was used as the final data-

driven model in this study. Thus, for the rest of this paper,

the 10-gage model is referred as the full LSTM model

unless indicated otherwise.

4.3 Comparison of calibrated GSSHA and LSTM
result

The evaluation metrics of the GSSHA model, reduced

LSTM model, and full LSTM model are shown in Table 3.

(a) Low rainfall event (b) Moderate rainfall event

(c) High rainfall event (d) Hurricane Harvey

Fig. 7 Comparison of the ground truth flow rates and predicted flow

rates computed by GSSHA and LSTM. The distinct initial gap

between prediction of GSSHA model and observation shown in a, b,

is due to cold starting GSSHA simulation without an initial condition.

Such a gap becomes invisible as event scale increases (c, d)
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Compared to GSSHA, the LSTM models show superior

prediction performance in every test event. Note that in low

and high events, GSSHA had lower than 0.7 NSE since it

over-predicted the peak flow and predicted a delayed run-

off. The reduced LSTM model is particularly good at

predicting the moderate and high event with significantly

better evaluation scores compared to both GSSHA model

and full LSTM model. The superiority over the full LSTM

model is probably due to the biased training set of the

reduced LSTM model. The reduced training set consists of

rainfall events of similar scale (medium to high). As the

peak flow rate continues to increase, the full LSTM starts

to stand out. From Fig. 7, we can clearly see that the full

LSTM model prediction closely follows the observed flow

rate.

One possible approach to improve the performance of

the GSSHA model is to give it more degrees of freedom.

For instance, instead of assuming all the river channels in

the watershed have the same Manning’s coefficient, we can

allow river branches to have different Manning’s coeffi-

cients and find the optimal coefficients by more extensive

calibration. However, without a more efficient optimization

procedure, calibration of GSSHA can be significantly more

time consuming. The fastest forward simulation of GSSHA

on the calibration dataset takes 2 h 54 min, when training

LSTM model on the exact same dataset for 400 epochs

takes 7 min. And the entire calibration would requires tens

or hundreds of forward GSSHA runs depending on the

dimension of calibration coefficients. Another potential

solution would be improving the quality of geometry input

variables, activating the infiltration module, and increasing

the model spatial resolution. All of these solutions will

dramatically increase the cost of data acquisition, model

set-up, and computation.

5 Conclusions

In this study, we have shown the potential use of long-

short-term-memory networks (LSTM) for RR modelling,

using 15-min discharge and precipitation data for the first

time. The experimental results from real world hydrologic

data validated that the data-driven model can not only

accurately predict stream flow given precipitation as the

sole input when the scales of test data and training data are

identical (interpolation), but also extrapolate well as shown

in the prediction of Hurricane Harvey (NSE at 0.958 and

RMSE at 69.73 cm for an event with peak flow at

993.92 cm). When compared to the process-driven model,

GSSHA, the data-driven model is clearly more efficient

and robust in terms of prediction and calibration. A forward

GSSHA simulation of a 47 days event takes more than 2 h

to run, but the prediction of the same event can be gener-

ated within a second by an LSTM model. Due to numerical

stability restrictions, GSSHA simulation of 1 month period

that contains an event like Hurricane Harvey could take

more than 24 h. In addition, we explored the inter-

pretability of the LSTM model in terms of its attention

distribution on the input space. We found that the gage

attention described in this paper can be used as a coarse yet

fast measure to select gages in flood prediction. The

experimental result shows that using the gage attention

criterion is better than selecting the closest gages.
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Appendix

See Figs. 8, 9 and Table 4.

Table 3 Prediction performance comparison of GSSHA and LSTM

model on selected events

Event GSSHA Full LSTM Reduced LSTM

RMSE NSE RMSE NSE RMSE NSE

Low event 2.51 0.636 1.43 0.881 2.34 0.684

Moderate event 10.49 0.725 8.99 0.798 5.49 0.925

High event 17.62 0.433 12.00 0.737 9.88 0.822

Harvey 185.64 0.700 69.73 0.958 169.42 0.751
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Fig. 8 Land use of study area
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Fig. 9 Comparison of

observation, 10-gages LSTM,

and 153-gages LSTM. A close

look at the lower discharge

region would reveal the

unphyscial oscillation of

153-gages prediction, indicating

overfitting
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Fig. 9 continued
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