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Abstract
The different CNN models use many layers that typically include a stack of linear convolution layers combined with

pooling and normalization layers to extract the characteristics of the images. Unlike these models, and instead of using a

linear filter for convolution, the network in network (NiN) model uses a multilayer perception (MLP), a nonlinear function,

to replace the linear filter. This article presents a new deep network in network (DNIN) model based on the NiN structure,

NiN drag a universal approximator, (MLP) with rectified linear unit (ReLU) to improve classification performance. The use

of MLP leads to an increase in the density of the connection. This makes learning more difficult and time learning slower.

In this article, instead of ReLU, we use the linear exponential unit (eLU) to solve the vanishing gradient problem that can

occur when using ReLU and to speed up the learning process. In addition, a reduction in the convolution filters size by

increasing the depth is used in order to reduce the number of parameters. Finally, a batch normalization layer is applied to

reduce the saturation of the eLUs and the dropout layer is applied to avoid overfitting. The experimental results on the

CIFAR-10 database show that the DNIN can reduce the complexity of implementation due to the reduction in the

adjustable parameters. Also the reduction in the filters size shows an improvement in the recognition accuracy of the

model.

Keywords Exponential linear unit (ELU) � Convolutional neural networks (CNNs) � Deep MLPconv � Image recognition �
Network in Network (NiN)

1 Introduction

Convolutional neural networks (CNNs) have had great

success in image recognition [1–11] and object detection

[12–15]. They are a key element in the field of computer

vision. Unlike traditional artificial neural networks (ANN),

CNNs can directly process three-dimensional input data.

They are organized in successive computation layers

alternating between convolution and pooling [16–21] other

types of deep neural networks (DNN) [22, 23], and CNNs

are easy to form with back-propagation [24] because they

have very clear connectivity in each convolutional layer

[25]. The main parameters of CNNs are the weights of the

linear convolution filters. To reduce the number of

parameters, we suggest a strategy to diminish the linear

convolution filters size and adopt the network depth.

Reducing the convolution filters size has proved effective

in image classification models, because it reduces the

computation and the number of parameters used in the

convolution layer operations while increasing the effi-

ciency of the representation. Added to that, the use of

multilayer perception [13] as a nonlinear function instead

of using a linear convolution filter can improve the calcu-

lation layers as in NIN [5] and aims to increase the non-

linearity of the local patches in order to allow the

abstraction of larger amounts of information within the

receptive fields. Compared to CNN, the dense connection

characteristic of MLP makes it possible to extract the local

characteristics in the spatial domain and not to be able to

extract them in the channel domain. This limits the per-

formance of networks based on MLPs such as [5].
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Furthermore, MLP, in which a ReLU [26] is used as an

activation function, allows the abstraction of information

more representative of latent concepts. MLP is a fully

connected network that causes an increase in the density of

the connection. This causes a vanishing gradient problem

and makes learning more difficult and the learning time

slower. Different works [1–11] exploit the ReLU [26] to

prevent the vanishing gradients problem since it activates

above 0 and its partial derivative is 1. However, it has a

potential drawback where the constant 0 will block the

gradient across the inactivated ReLU [26] units, so that

some units may never activate. Several proposed works

have attempted to solve these challenges such as [27–30].

Reducing the size of the convolution filters and using eLU

[29] may represent a solution to the challenges of NiN [5].

The choice of eLU [29] to replace ReLU [26] is due to its

capacity to attenuate the vanishing gradients problem via

the identity of positive values and improves the learning

characteristics compared to other activation functions.

ReLU [26] and eLUs [29] have negative values, allowing

them to push medium unit activations closer to zero.

Activations close to zero have a gradient similar to the

natural gradient since the shape of the function is smooth,

thus activating learning faster than the ReLU [26] where

the neuron is disactivated. The eLUs [29] saturate in a

negative value with smaller inputs and thus decrease the

variation and the propagated information. They have neg-

ative values which make it possible to bring the average

unit activation closer to zero, to reduce the calculation

complexity, and thus improving the learning speed.

In this paper, based on [5], we propose to use an eLU

[29] instead of ReLU [26] to accelerate the learning speed

and to attenuate the vanishing gradients problem. In addi-

tion, we approach another important aspect of architecture,

convolution/depth, where we increase the depth of NiN [5]

by adding more convolutional layers, which is possible,

thanks to the use of very small size convolution filters

(3 9 3, 1, 1) instead of convolutional layers of size (5 9 5,

1, 2) in all the convolutional layers of [5]. This allows

increasing the nonlinearity and reducing the number of

parameters, hence the calculation complexity. Conse-

quently, we obtain a more precise and deeper architecture

NiN [5]. The resulting model is ‘‘Deep Network In Net-

work’’ (DNIN).

The rest of this paper is organized as follows: In Sect. 2,

a survey of related works is given. Section 3 bears on the

strategy. Experimental evaluations and a comparative

analysis are presented and discussed in Sect. 4. Section 5 is

dedicated to the implementation details. The advantages

and future work of the DNIN are reported in Sect. 6. The

work is concluded in the last section.

2 Related works

Several techniques have been used to improve the perfor-

mance of CNN: Increasing depth [31], increasing the width

[19], modification of the convolution parameters [6, 32, 33]

or pooling [34–42] change the activation function

[27, 28, 43, 44] and reduce the number of parameters and

resources. It should be noted that the depth and the width

designate the capacity of the CNN, the depth of the net-

work means the number of layers, and the width of the

network refers to the number of units of each layer. The

number of feature maps (channels) in each layer can rep-

resent the width of the CNNs. It is widely recognized that

the depth of Deep convolutional neural network (DCNN) is

one of the major differences between DCNNs and tradi-

tional artificial neural networks [17] [45]. The increase in

the depth can make the formation of deep networks more

difficult and slower training time and introduces several

challenges such as the vanishing gradients problem, the

reduction reuse characteristics during the forward propa-

gation. To reduce this problem, several approaches are

proposed such as residual block [6], batch normalization

[46] and dropout [47].

In [6], He et al. presented a residual learning framework

comprising a link around each of the two convolutional

layers, adding both the original hijacked data and their

results from the convolution function. In [27], the Maxout

network provided a solution to the vanishing gradients

problem. He tends to over-adjust the training database

without using a regularization layer of the model. In [28], a

Maxout network in Maxout network (MIM) model more

complex than the maxout network [27] is proposed. This

MIM model [28] integrates a number k of maxout units that

are stacked in a MIM block. A MIM network with k = 2

produces the best result. In [30], the authors presented a

new formulation, deeply supervised networks (DSN) to

minimize classification errors while making the learning

process of hidden layers direct and transparent.

Among the first CNNs for image classification, we find

AlexNet [1], which won the ILSVRC [48] in 2012, and it is

the first architecture to use the rectified linear unit (ReLU)

for the activation function, aiming at improving the rate of

convergence by attenuating the vanishing gradients prob-

lem. In 2013, Zeiler and Fergus introduced a multilayer de-

convolutional neuron network [2] that reduced the Ima-

geNet error rate from 16.4 to 11.7%. This reduction in the

error rate is due to the modification of the topology of

AlexNet [1] by reducing the convolution filters size of the

first layer from (11 9 11, S = 4) to (7 9 7, S = 2) and

increasing the number of convolutional kernel of the third,

fourth and fifth of this convolutional layer. In 2014, several

topologies with different numbers of layers ranging from
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11 to 19 were proposed in [9]. The VGG-16 [3] has a

homogeneous and regular structure of 16 layers. In the

VGG-16 [3], the convolution filters (7 9 7 with a stride of

2) are replaced by three convolution filters of sizes (3 9 3,

S = 1, P = 1) in order to increase the number of activation

functions and to keep the same resulting dimension by

reducing the number of parameters and the calculation

complexity. It is noted that the width of VGG 16 [3] starts

from 64 and increases two convolution layers by a factor of

two. In 2014, GoogLeNet [4] was introduced by Christian

Szegedy et al., the main target of this architecture was to

reduce the cost of calculation and the number of parame-

ters, while offering a high accuracy through the reduction

in the dimension of the channel follows to exploit the

1 9 1 convolution layer before the 3 9 3 and 5 9 5 lay-

ers. In [4] and [5], a global average pooling layer is

exploited at the last layer, instead of using a fully con-

nected layer that is traditionally used in conventional

CNNs to reduce the density of connections.

From these literatures, we consider all these previous

approaches and the experiences already realized to propose

a new approach. In our case, many attempts have been

made to improve the original architecture of NiN [5] in

order to obtain better precision where we use smaller

convolution and stride sizes instead of the parameters of

the convolution layers that are already in use. Another axis

of improvement revolves around training and testing the

networks in a dense way on the whole image CIFAR-10

and on several scales.

3 The proposed methods

3.1 Network in network (NiN)

Network in network [5] consists of several MLPconv layers

which are stacked in a successive manner. Figure 1 illus-

trates the overall structure of the architecture.

The MLPconv layer consists of a linear convolution

layer and a two-layer MLP with a ReLU used as an acti-

vation function. The calculation performed by the MLP-

conv layer is as follows:

f 1i;j;k1 ¼ maxðx1T
k1
xi;j þ bk1 ; 0Þ

� � �
f ni;j;kn ¼ maxðxnT

kn
f n�1
i;j þ bkn ; 0Þ

:

Knowing that (i, j) represents the pixel index in the

feature map, xij designates the input patch centered at the

location (i, j), k is used to index the channels of the feature

map and n denotes the number of layers. In [5], a global

average pooling layer is used instead of fully connected

layers that are traditionally used in CNNs. This solution

generates a feature map for each category. The average of

each feature map and the resulting vector will be directly

introduced into the softmax layer. The advantage of this

technique is that there is no parameter to optimize which

avoids over-adjustments at this layer. Figure 2 shows an

example of the fully connected layer and the global aver-

age pooling layer.

In terms of precision, the NIN [5] obtained an error rate

equivalent to 10.41% using the dropout layer [47] and

without data augmentation [5]. Using the data augmenta-

tion layer (translation and horizontal flipping), the NIN [5]

obtained an error rate equivalent to 8.81%.

3.2 The structure of deep network in network

NiN [5] represents a major extension of the CNN. It uses a

multilayer perception (MLP) as a nonlinear function,

instead of using a linear convolutional filter. However, the

MLP consists of fully connected layers (Fc). This limits

parameter performance where many MLP parameters need

to be calculated and stored. The MLP connection feature

prevents the network from retrieving local entities in the

channel domain although it can retrieve local entities from

the spatial domain. As a solution, we propose different

Fig. 1 Overall network in network structure (NIN)
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configurations of DNiN evaluated in this paper. All these

configurations are designed according to the same param-

eters (height, width and number of convolution kernel).

Our overall proposal is to go further in depth by performing

an optimization in terms of parameter and accuracy. Since

small filters have proven to be very effective in many

works, including [1, 3, 6, 8, 9], we do not plan to use filters

larger than 3 9 3. We use two filters with a very small size

(3 9 3, 1, 1) instead of the filter size (5 9 5, 1, 2), and this

type of filter is defined as the smallest size to capture the

notion of left/right, up/down, center.

So, what did we gain by using a stack of two 3 9 3

convolution layers instead of a single 5 9 5 layer?

• First, we incorporate two nonlinear layers instead of

one, which makes the decision function more

discriminating.

• Second, we decrease the number of parameters from

(25 Cin
2 to 18 Cin

2 ) knowing that the number of input

(Cin) and output (Cout) channels is the same.

Our configurations are captured in a fixed size RGB

image equivalent to 32 9 32. The image is passed through

a stack of layers that is constructed with variable and

complex structures as shown in Fig. 3.

Another important concept in the design of our archi-

tecture is the pooling layer that allows big gains in com-

putational power due to the reduction in the image spatial

size. For this, it is common to periodically insert a pooling

layer between a stack of successive convolution layers of a

CNN architecture to reduce overlearning. The shape of the

pooling layer used in [5] is a ‘‘max pooling’’ where the

output is the maximum of the values of the input patch. In

our architecture:

• First, an attempt was made to avoid the pooling layer in

the proposed architecture due to the loss of information,

but this involved overlearning and saturation in

accuracy.

• Second, we tried to reduce the filter size to 2 9 2,

which is the most common form. For this, we used two

layers of size 2 9 2 with a stride of one.

For example, for a size image 32 9 32, the resulting

image after a layer (3 9 3, 1) is
32�3þ1ð Þ

1
¼ 30 and after two

layers (2 9 2, 1) is
32�2þ1ð Þ�2þ1ð Þ

1
¼ 30; but a reduction in

performance has been found in terms of accuracy. The

model achieves an error rate of 17.8% for the CIFAR-10

dataset. Note that it is possible to use other pooling func-

tions than the maximum, but max pooling layer was more

efficient, because it increases more significantly the

importance of strong activations. The general structure of

‘‘DNiN’’ is shown in Table 1.

Fig. 2 Example of fully

connected layer versus global

average pooling layer

Fig. 3 Deep network in network
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3.3 Deep MLPConv

In conventional CNNs, the calculation in the convolution

layer is based on the linear filter (Fig. 4a). However, it has

been shown that a nonlinear filter is more complex as an

MLP filter (Fig. 4b) produces more favorable results than a

simple linear filter [5].

In NiN [5], an MLPconv layer is used as a convolution

filter (Fig. 4b). This MLPconv layer is considered a normal

linear convolution layer followed by a multilayer percep-

tion (with a depth of two layers). Compared to the original

model [5], the size of the convolution layer and the acti-

vation function in the MLPconv layer have been modified.

A stack of two convolutional layers of size 3 9 3 is used

instead of a single 5 9 5 layer. The stride of these con-

volution layers is set at one pixel, padding as well. In

addition, the eLU [29] is used as the activation function

instead of ReLU [26]. The new convolution filter is named

Deep MLPconv. Figure 4c illustrates the architecture of

Deep MLPconv layer.

3.3.1 Type of layers and numbers of convolution kernels
in Deep MLPconv

Let Deep MLPConv (X) be the Deep MLPconv layer,

where 9 is a list of the layers used in the structure. For

example, MLPconv (3, R) denotes the original structure of

MLPconv in [5] with a convolution layer of size 3 9 3 and

a ReLU [26] unit used as a nonlinear activation functions.

Note that the number of MLP layers and nonlinear acti-

vation functions are always the same for all Deep MLPconv

structures. All the configurations of the proposed Deep

MLPconv layer are equipped with nonlinearity eLU [29]. It

is only in the first ‘‘configuration (A)’’ that the rectified

linear unit [26] is used. For other configurations, we add a

new layer each time. Spatial pooling is done on a 3 9 3

window with a stride equivalent to 2. Two layers of max

pooling layer are localized after the first two Deep MLP-

conv layers, and an average pooling layer is localized

before the layer of softmax layer. It should be noted that

the normalization of the local response (LRN) is not used

in the various configurations.

• MLPconv (5, R): Original MLPconv layer in [5].

• MLPconv (5, E): MLPConv (5, R) with an exponential

linear unit (eLU) instead of a rectified linear unit

(ReLU).

• Deep MLPconv (3, R): two convolution layers of size

3 9 3 with a rectified linear unit (ReLU).

• Deep MLPconv (3, E): two convolution layers of size

3 9 3 with an exponential linear unit (eLU) instead of a

rectified linear unit (ReLU).

• Deep MLPconv (3, E, BD): Deep MLPconv (3, E) with

normalization and regularization layers.

• Deep MLPconv (3, E, BD, D): Deep MLPconv (3, E,

BD) with increased data.

For all Deep MLPconv structures, the numbers of con-

volution kernel and MLPs 1 and MLPs 2 are the same.

Table 2 describes the numbers of the kernel.

Figure 5 illustrates the architecture of Deep MLPconv

(5, E).

3.3.2 Normalization and regularization layers in Deep
MLPConv

As MLPs increase the number of parameters, a batch

normalization [46] that produces a regularization effect is

used, this layer requires a significant increase in data,

Fig. 4 a Linear convolution layer, b MLPconv layer, c Deep MLPconv layer

Table 1 Structure of networks

in networks
Stucture D Mlpconv 1 M.pool D Mlpconv 2 M.pool D MlPconv 3 A.Pool

Output size 32 9 32 16 9 16 16 9 16 8 9 8 8 9 8 1 9 1
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which we would like to avoid, and this is not always

possible. We add a Dropout layer [47] between the Deep

MLPconv layers, ‘‘configuration (D),’’ as shown in Fig. 6.

This layer produces a regularization effect to prevent the

network from over-adjusting as represented.

Dropout [47] proves to be an effective technique for

regularizing different networks. It reduces the error rate

with almost 2%. This layer is a popular method proposed

by Hinton et al. [47] to prevent neural networks from over-

adjusting during training. Dropout [47] is adopted by many

powerful architectures such as [1, 3, 5, 6, 8]. They even-

tually improve the generalization by randomly jumping a

percentage of their connections. At the time of the test, all

the neurons are used, but their outputs are multiplied by the

equivalent probability 0.5. This layer introduces the regu-

larization within the network.

4 Experimental results

We evaluate our configurations on a set of reference data:

CIFAR-10. The dataset of CIFAR-10 is composed of

60,000 images grouped in 10 classes of images. These

60,000 images are separated between 50,000 total learning

images and 10,000 test images. Each image is a 32 9 32

RGB image. The networks used for the databases consist of

three Deep MLPconv structures. A maximum pooling layer

follows the first two Deep MLPconv structures of all

experiments. In what follows, we will refer to networks by

their names (A–E) and their Deep MLPconv (X) structures.

Note that all proposed configurations are summarized in

Table 3.

Based on architecture [5], the ‘‘configuration (A)’’ of

DNiN is designed by replacing each convolution layer of

size 5 9 5 by two convolution layers of size 3 9 3 (which

has the same receiving field) and keeping the same acti-

vation function. By comparing NiN [5] with DNiN’s

‘‘configuration (A),’’ we observe that the classification error

decreases with 0.82% as we increase nonlinear activation

functions. The learning, test and loss curves for ‘‘configu-

ration (A)’’ on CIFAR-10 are illustrated in Fig. 7.

4.1 eLU VS ReLU

Compared to the original architecture [5] and ‘‘configura-

tion (B),’’ the nonlinear activation has been modified from

ReLU [26] to eLU [29]. As it was demonstrated in [29] that

the latter trained faster and achieved better results. On an

experimental basis, eLUs [29] not only allow for faster

learning, but also for better generalization performance

than ReLU [26]. We formed our network with the eLU [29]

inserted after convolution layers and MPLs. We no longer

need to increase the number of training cycles compared to

basic networks with ReLU [26] where we can notice that

the ‘‘configuration (B)’’ exceeds the original NiN [5] in

terms of accuracy for 70 K cycle instead of 162 K. The

training, test and loss curves for ‘‘configuration (B)’’ on

CIFAR-10 are shown in Fig. 8.

The accuracy test is 86.31% instead of 85.49%. The

execution of the learning requires about 91 h. In ‘‘config-

uration (C),’’ eLU [29] was used instead of ReLU [26], and

the modification allowed us to have an increase in accuracy

as represented in Fig. 9. Using the same depth, the ‘‘con-

figuration (C)’’ generates better classification accuracy than

the ‘‘configuration (A)’’ but using a higher number of

epochs.

Fig. 5 Deep MLPconv (5, E)

Table 2 Numbers of the kernel for Deep MLPConv

Couches Conv MLP-1 MLP-2

Nombres 192 160 96
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4.2 Normalization and regularization layers
in DNiN

Studies show that a network with batch normalization [46]

achieves greater accuracy than a network without batch

normalization [46]. The exploitation of the batch normal-

ization layer [46], which produces a regularization effect,

requires a significant increase in data, which we would like

to avoid and in our case is not possible because it plays an

important role in increasing accuracy. We add a dropout

layer [47] after the first two Deep MLPConv (3, E, BD) to

prevent DNiN from overlearning. This solution ‘‘Configu-

ration (D)’’ also provides improvements over other con-

figurations (A, B, C) that do not use this layer.

4.3 The effect of data augmentation

Data augmentation [49] is a strategy that dramatically

increases the diversity of data available for training mod-

els, without the need to collect new data, that is, creating

modified copies of each instance in a single-instance

database. Data augmentation [49] techniques such as

cropping, padding and horizontal tilting are commonly

used to form large neural networks. Applying this layer to

the ‘‘configuration (D)’’ increases the accuracy.

The exploitation of the data augmentation layer ‘‘con-

figuration (E)’’ leads to significantly better results than the

learning on single images of the database. This confirms

that increasing the data is a useful effect for reducing the

classification test error.

4.4 The performances of different
configurations (A–E)

In terms of parameters, our architecture exceeds the WRN-

(28-10; 16-8; 40-4) [8], ResNet (110, 1202) [6] and

ResNeXt-29 (8 9 64d, 16 9 64d) [9] architecture param-

eters despite their depth and width. For example, the wide

models WRN-28-10 [8], and ResNeXt-29-16 9 64d [9],

have, respectively, 33.189 and 61.909 more parameters

DNiN. A comparison with architectures already completed

is shown in Fig. 10.

Table 4 shows a comparison between the accuracy of

different configurations with the size of the mini batch 128.

Fig. 6 Deep MLPconv (3, E, BD)
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Our results were obtained by calculating the average over

five executions. It is noted that the increase in the number

of Deep MLPconv structures up to four structures leads to

an increase in the number of parameters and an accuracy

equivalent to 90.44% using the dropout layers in the same

locations and without using the batch normalization layers.

DNiN with a number of Deep MLPconv equivalent to three

generates the best performance. Using a higher or lower

number of Deep MLPconv leads to a reduction in the

accuracy of the classification.

The experimental results are presented in Table 4, on

the CIFAR10 datasets, and the test accuracy rates for all

models in [5] are 85.49% and 89.59%, respectively. The

test error rates for all the proposed DNiN configurations

are 86.31%, 87.29%, 88.25%, 90.63% and 92.54%,

respectively. The results also demonstrate the effective-

ness of the proposed idea. Furthermore, they show that

the DNiN ‘‘configuration (E)’’ offers better results than

the different DNiN configuration and different NiN

models [5] in terms of classification accuracy based on

the CIFAR-10 dataset.

The experimental results show that DNiN provides

classification precision that allows it to have a well-local-

ized location between several baselines. The importance of

DNiN lies in its size, and small models are more suited to

implementations on a chip (FPGA). Our architecture offers

interesting performance with a number of layers that does

not exceed 16 layers on the contrary to [6] which uses 110,

[8] which uses 28 layers and [9] which uses 29 layers.

Table 5 shows a comparison between our work and the

state of the art on the CIFAR-10 database with/without the

use of data augmentation. The results of our work are

presented with the size of the mini batch 128. Our results

Table 3 Deep NiN configurations

Nom A B C D E

Deep

MLPConv (X)

Deep MLPConv (3, R) Deep MLPConv (5, E) Deep MLPConv (3, E) Deep MLPConv

(3, E, BD)

Deep MLPConv

(3,E,BD,D)

Conv-1-1 3 9 3 9 192/st. 1/pad 1

(ReLU)

5 9 5 9 192/st. 1/pad 2

(eLU)

3 9 3 9 192/st. 1/pad 1

(eLU)

3 9 3 9 192/st. 1/pad 1

eLU/BN

Conv-1-2 3 9 3 9 192/st. 1/pad 1

(ReLU)

3 9 3 9 192/st. 1/pad 1

(eLU)

3 9 3 9 192/st. 1/pad 1

eLU/BN

(MLP)-MLP-1-1 1 9 1 9 160/st. 1/pad 0

(ReLU)

1 9 1 9 160/st. 1/pad 0

(eLU)

1 9 1 9 160/st. 1/pad 0

(eLU

1 9 1 9 160/st. 1/pad 0

eLU/BN

(MLP)-MLP-1-2 1 9 1 9 96/st. 1/pad 0

(ReLU)

1 9 1 9 96/st. 1/pad 0

(eLU)

1 9 1 9 96/st. 1/pad 0

(eLU)

1 9 1 9 96/st. 1/pad 0

eLU/BN

Max pool 3 9 3/st.2 3 9 3/st.2/Drop

Conv-2-1 3 9 3 9 192/st. 1/pad 1

(ReLU)

5 9 5 9 192/st. 1/pad 2

(eLU)

3 9 3 9 192/st. 1/pad 1

(eLU)

3 9 3 9 192/st. 1/pad 1

eLU/BN

Conv-2-2 3 9 3 9 192/st. 1/pad 1

(ReLU)

3 9 3 9 192/st. 1/pad 1

(eLU)

3 9 3 9 192/st. 1/pad 1

eLU/BN

(MLP)-MLP-2-1 1 9 1 9 160/st. 1/pad 0

(ReLU)

1 9 1 9 160/st. 1/pad 0

(eLU)

1 9 1 9 160/st. 1/pad 0

(eLU)

1 9 1 9 160/st. 1/pad 0

eLU/BN

(MLP)-MLP-2-2 1 9 1 9 96/st. 1/pad 0

(ReLU)

1 9 1 9 96/st. 1/pad 0

(eLU)

1 9 1 9 96/st. 1/pad 0

(eLU)

1 9 1 9 96/st. 1/pad 0

eLU/BN

Max pool 3 9 3/st.2 3 9 3/st.2/Drop

Conv-3-1 3 9 3 9 192/st. 1/pad 1

(ReLU)

3 9 3 9 192/st. 1/pad 1

(eLU)

3 9 3 9 192/st. 1/pad 1

(eLU)

3 9 3 9 192/st. 1/pad 1

eLU/BN

Conv-3-2 3 9 3 9 192/st. 1/pad 1

(ReLU)

3 9 3 9 192/st. 1/pad 1

(eLU)

3 9 3 9 192/st. 1/pad 1

eLU/BN

(MLP)-MLP-3-1 1 9 1 9 160/st. 1/pad 0

(ReLU)

1 9 1 9 160/st. 1/pad 0

(eLU)

1 9 1 9 160/st. 1/pad 0

(eLU)

1 9 1 9 160/st. 1/pad 0

eLU/BN

(MLP)-MLP-3-2 1 9 1 9 96/st. 1/pad 0

(ReLU)

1 9 1 9 96/st. 1/pad 0

(eLU)

1 9 1 9 96/st. 1/pad 0

(eLU)

1 9 1 9 96/st. 1/pad 0

eLU/BN

AVG pool 8 9 8

Softmax
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Fig. 7 Training, test and loss curves for configuration A on CIFAR-10

Fig. 8 Training, test and loss curves for configuration B on CIFAR-10

Fig. 9 Training, test and loss curves for configuration C on CIFAR-10

Fig. 10 CIFAR-10 parameters:

a comparison with different

architectures
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were obtained by calculating the average of five

executions.

4.5 Visualization of weights

We extract and visualize the weights of the first convolu-

tional layer of our models formed for CIFAR-10. Fig-

ures 11 and 12 show the 192 3 3 3 3 convolution kernels

learned by the first convolution layer on the 32 3 32 input

images. Visualizing the weights of the first CONV layer is

usually the most preferable as the filter weights deeper into

the network because it directly looks at the raw pixel data.

5 Implementation details

We formed our configurations using a ‘‘Root Mean Square

Propagation Algorithm’’ with a batch size equivalent to

128 and a weight decrease of 0.0001. We found that this

small amount of weight loss was important for the model to

learn. We initialized the weights in each layer from a

normal to a random average distribution with a standard

deviation of 0.01. We initialized the neural biases in all

convolutional layers, as well as the MLP layers with the

constant zero. In the implementation of the MLP, a 1 9 1

convolutional layer is considered a fully connected layer.

The learning rate was initialized to 0.01 and divided by 10

twice before the end in epochs 81 and 122. We formed the

network for about 200 cycles at most on the CIFAR-10

training set in a central processing unit (CPU). The python

algorithm based on the deep learning library « Ten-

sorFlow » to classify and recognize images provides the

implementation of the CPU. Table 6 describes the details

of the CPU architecture.

6 Advantage and limitations

DNiN provides a very limited number of parameters that

allows it to occupy an important position at the top of the

works reported in the literature. There are two main rea-

sons for this reduction: The first reason is the reduction in

the size of the convolution filters, and the second reason is

the use of the global mean grouping layer, which does not

include any parameters to optimize. Added to that, DNiN

delivers competitive test errors compared to the baseline

with a very short number of layers compared to these

works. The importance of DNiN also arises in its small size

that makes it very suitable for integration as an image

recognition system in applications of embedded systems.

However, DNiN integrates disadvantages and limitations

that reside mainly in the number of convolution kernel.

DNIN uses a number of convolution kernels equivalent to

192 that negatively affects the number of parameters, the

calculation complexity and the memory efficiency.

7 Conclusion

We are proposing a new model ‘‘Deep Network In Net-

work’’ (DNIN) for the classification of images. The linear

exponential unit (eLU) is used as an activation function to

accelerate the learning of this network. In this network, a

new nonlinear Deep MLPconv filter is used. This structure

is based on very small convolution filters (3 3 3) and the

exponential linear unit which accelerates learning. The use

of this structure has proved beneficial for the accuracy of

the classification. Our results confirm once again the

importance of the depth and the choice of the activation

function to improve the classification accuracy and show

that our DNiN model obtains the acceptable results com-

pared to the other architectures tested on the datasets,

CIFAR-10 by considerably improving the main

Table 4 Precisions of different

configurations (A–E) on
CIFAR-10

Réf Acc (%)

NiN [5] 85.49

89.59

DNiN-A 86.31

DNiN-B 87.29

DNiN-C 88.25

DNiN-D 90.63

DNiN-E 92.54

Table 5 CIFAR-10 test error

Refs. Method Error (%)

No data augmentation

[42] Stochastic pooling 15.13

[27] Maxout network (k = 2) 11.68

[5] NIN 10.41

Our DNiN 9.37

[30] DSN 9.69

[28] MIM (k = 2) 8.52 ± 0.20

Data augmentation

[27] Maxout network (k = 2) 9.38

[5] NIN 8.81

[30] DSN 8.22

Our DNiN 7.46

[6] ResNet 6.43

[8] Wide Resnet (28, 10) 3.89

[9] ResNeXt 3.58
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performances (precision, parameter) and learning speed.

Our future work will focus on optimizing classification

performance. Working to reduce the number of convolu-

tional kernels while maintaining or increasing the same

accuracy can be an important point for research and

reflection, and due to the important role it plays in reducing

the number of parameters and the complexity of calculation

in addition to reducing learning speed.

Fig. 11 192 convolution cores

of size 3 9 3 learned by the first

convolution layer on the

32 9 32 input images for the

‘‘configuration (D)’’

Fig. 12 192 convolution cores

of size 3 9 3 learned by the first

convolution layer on the

32 9 32 input images for the

‘‘configuration (D)’’

Table 6 CPU architecture

Processor Name Memory Core count Core clock Memory bandwidth Memory clock

CPU Intel Xeon Processor E5-2620 v4 64 GB DDR4-2400 8 cores, 16 threads 2.1 GHz 68.3 GB/s 2133 MHz
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