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Abstract
This research intends to use machine learning approaches to predict tunnel geology and its construction time and costs. For

this purpose, the Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Decision Tree (DT) have

been utilized. An estimation of the geological conditions of the Garan road tunnel and its construction time and cost has

been conducted. In addition, after constructing about 200 m from the inlet and outlet sides of the tunnel, using the field-

observed data of these sectors in the tools, all the previously forecasted results were updated for unconstructed parts.

Fivefold cross-validation has been applied to assess the performance of each model. The obtained models are used to

predict construction time and cost in real scenarios, and the accuracy of each model was investigated through different

statistical evaluation criteria. Finally, it turns out that all the models provide relatively high performance and reduce the

uncertainties of tunnel geology. However, the GPR provides more accurate results compared to the SVR and DT tools.

Thus, we recommend the GPR for the prediction of geology and construction time and costs in future levels of a tunnel.

Keywords Gaussian Process Regression � Support Vector Regression � Decision Tree � Tunneling

1 Introduction

Cost overruns and delays often encounter tunnel con-

struction projects. Delays may negatively affect the scope

of tunneling projects, which leads to severe cost overruns.

Applying contingencies and estimating risks at the project

level often do not capture the multiple uncertainties in the

construction process of tunnel projects. An example of cost

and duration underestimation in subsurface projects is the

Channel Tunnel between England and France. The con-

struction of the Channel Tunnel started in 1988, and the
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project took approximately 20% longer than planned

(6 years instead of the scheduled 5) and 80% over the

budget (costs increased £2 billion, from £2.6 billion to

£4.6 billion). The Channel Tunnel is just one among many

examples of subsurface projects completed with high cost

and duration overruns. While these projects are very large,

the phenomenon of cost overruns and delays in subsurface

projects is widespread, as described by Flyvbjerg et al. [1].

Thus, there is a necessity for innovative methods and tools

to eschew significant construction cost and duration over-

runs. In this paper, two artificial intelligence methods of

Gaussian Process Regression (GPR) and Support Vector

Regression (SVR) will be described with which cost and

duration underestimation in road tunnel projects can be

avoided. The models will be applied to a road tunnel in

Iran.

Insurers have reported major losses and delays in tunnel

construction projects. The necessity for analyzing the

uncertainty and risks of tunnel construction has been rec-

ognized by the tunneling community [2–5]. At present,

construction time and costs of engineering projects were

commonly assessed on a deterministic basis. The deter-

ministic tool, however, does not appropriately reflect the

uncertain reality. Recently, many innovative studies have

been developed to minimize uncertainties regarding con-

struction time and costs [6, 7]. Flyvbjerg [8] proposed

utilizing reference class forecasting for transportation

construction projects. For example, this tool estimates the

cost or duration performance of a project based on statis-

tical analyses of the previously constructed projects rather

than on the specifics of the project itself. Different risk

factors causing project cost underestimation have been

described in detail in the transportation construction liter-

ature [9–12].

A variety approaches and tools have been used to esti-

mate the tunnel construction time and costs, such as Mar-

kov chains [7, 13], Monte Carlo simulation [8, 14],

dynamic Bayesian networks [15], decision aids for tun-

neling (DAT) developed at MIT in collaboration with

Ecole Polytechnique Fédérale de Lausanne—EPFL (Moret

and Einstein, 2016), Bayesian analysis and artificial neural

networks [16, 17], and analytical solution [18]. In the more

recent researches, different machine learning techniques

have been applied in different civil engineering problems

[19], for example optimization of geotechnical problems

[20], project control forecasting [21], construction man-

agement [22], construction injury prediction [23], slope

collapse prediction [24], prediction of TBM operating

parameters [25], tunnels’ convergence rate forecasting

[26], landslide displacement [27], rockburst prediction

[28], manufacturing cost estimation [29], uniaxial com-

pressive strength prediction [30], ground surface settlement

[31], determination of earth pressure [32], risk assessment

and costs estimation [33, 34], rock fragmentation fore-

casting [35], and other engineering problems.

Although many studies have been conducted by

researchers to solve various engineering problems by the

machine learning tools, so far, these methods have not been

provided to predict a tunnel path geology and time and

costs required to its construction. Therefore, a novel

approach has been implemented for this research which

intends to use three machine learning tools widely used in

solving complex engineering problems, Gaussian Process

Regression (GPR), Support Vector Regression (SVR), and

Decision Tree (DT) for prediction of geology conditions,

construction time, and construction costs in road tunnels

construction. The paper also aims to determine the rela-

tionship between the tunnel geology parameters with the

time and costs required for construction, which in this

paper, rock mass rating (RMR) parameter was considered.

In order to train the GPR, SVR, and DT tools, datasets from

the previously constructed road tunnels were gathered.

Also, another interesting work in this paper is to update the

previously predicted results by applying the more datasets

obtained during the tunnel construction in the constructed

parts. To verify the feasibility of these tools, as well as the

other machine learning tools, they were applied to the

Garan tunnel on Sanandaj–Marivan road in Iran. Next, to

assess the performances of the applied machine learning

tools, fivefold cross-validation was adopted using

MATLAB 2018 tool through the regression learner app,

and the accuracy of the GPR, SVR, and DT predictions was

investigated through different statistical evaluation criteria.

Also, in each step of the predictions, to predict the tunnel

geology, construction time, and construction costs along

the Garan tunnel route, the obtained models of the pre-

diction tools through the regression learner app were

exported. By applying the datasets of the Garan tunnel

route as the test data in the exported models, all the

parameters were predicted along the tunnel route. Finally,

the accuracy of the predictions made by each tool, as well

as the impact of the updates on the predicted results, was

investigated.

The rest of this paper is organized as follows: In the next

section, the work methodology is described step by step. In

Sect. 3, the application of the methodology in a case study

is briefly outlined. Results analysis and validations are

presented in Sect. 4. Discussion and conclusions are

described in Sects. 5 and 6, respectively.
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2 Methodology

2.1 Geology parameter selection

In the first phase of the work, a geology parameter should

be considered that can describe the tunnel’s ground con-

ditions and affect tunnel construction time and costs. Rock

mass classification systems are a crucial part of under-

ground projects and can well describe tunnel geology

conditions. RMR parameter is one of the most commonly

applied classification systems in numerous civil and mining

projects [36]. Therefore, in this paper, it is considered as an

effective parameter on the tunnel geology and the tunnel

construction time and costs.

RMR system is a geomechanical classification system

for rocks, developed by Bieniawski [37]. It combines the

most significant geologic parameters of influence and

represents them with one overall comprehensive index of

rock mass quality, which is used for the design and con-

struction of excavations in rock, such as tunnels, mines,

slopes, and foundations. Over the years, the RMR system

has been successively refined as more case records have

been examined, and the reader should be aware that

Bieniawski has made significant changes in the rating

assigned to different parameters. The discussion which

follows is based upon the 1989 version of the classification

[38]. The following six parameters are estimating the

strength of rock mass using the RMR system:

• Uniaxial compressive strength of rock material

• Rock quality designation (RQD)

• Spacing of discontinuities

• Condition of discontinuities

• Groundwater conditions

• Orientation of discontinuities

Each of the six parameters is assigned a value corre-

sponding to the characteristics of the rock. These values are

derived from field surveys and laboratory tests. The sum of

the six parameters is the RMR value, which lies between 0

and 100. The classification of the RMR system is provided

in Table 1.

2.2 Machine learning tools of GPR, SVR, and DT

2.2.1 GPR

GPR models as nonparametric kernel-based probabilistic

models can be trained using a training set

xi; yið Þ; i ¼ 1; 2; . . .; nf g, xi 2 Rd, yi 2 R, drawn from an

unknown distribution. A GPR model estimates the value of

a response variable ynew, given the new input vector xnew,

and the training data. A linear regressor can be modeled as

y ¼ xTbþ e, where e�N 0; r2ð Þ. The error variance r2 and
the coefficients b are estimated from the data. A GPR

model describes the response by introducing latent vari-

ables, f xið Þ; i ¼ 1; 2; . . .; n, from a Gaussian process (GP),

and explicit basis functions, h. The covariance function of

the latent variables captures the smoothness of the

response, and basis functions map the inputs x into a p-

dimensional feature space [39–41].

A GP is a set of random variables with a joint Gaussian

distribution for any finite number of them. If

f xð Þ; x 2 Rd
� �

is a GP, then given n observations of

x1; x2; . . .; xn, the joint distribution of the random variables

f x1ð Þ; f x2ð Þ; . . .; f xnð Þ is Gaussian. A GP is given by its

mean function m xð Þ and kernel function, k x; x0ð Þ. That is, if
f xð Þ; x 2 Rd
� �

is a GP, then:

E f xð Þð Þ ¼ m xð Þ ð1Þ

Cov f xð Þ; f x0ð Þ½ � ¼ E f xð Þ � m xð Þf g f x0ð Þ � m x0ð Þf g½ �
¼ k x; x0ð Þ ð2Þ

Let us consider the model of h xð ÞTbþ f xð Þ, where

f xð Þ�GP 0; k x; x0ð Þð Þ, that is, f xð Þ are from a zero-mean

GP with covariance function, k x; x0ð Þ. h xð Þ are a set of basis
functions that transform the original feature vector x in Rd

into a new feature vector h xð Þ in Rp. b is a p-by-1 vector of

basis function coefficients. This model indicates a GPR

model. An instance of response y can be modeled as

[39–41]:

Pðyijf xið Þ; xiÞ� Nðyijh xið ÞTbþ f xið Þ; r2Þ ð3Þ

Thus, a GPR model is a probabilistic model. There is a

latent variable f xið Þ introduced for each observation xi,

which makes the GPR model nonparametric. In vector

form, this model is equivalent to:

Pðyjf ;XÞ� NðyjHbþ f ; r2IÞ ð4Þ

where X ¼

xT1
xT2
..
.

xTn

0

BBB@

1

CCCA
, y ¼

y1
y2

..

.

yn

0

BB@

1

CCA, H ¼

hðxT1 Þ
h xT2
� �

..

.

h xTn
� �

0

BBB@

1

CCCA
,

f ¼

f ðx1Þ
f ðx2Þ
..
.

f ðxnÞ

0

BB@

1

CCA.

Table 1 The classification for the RMR system [38]

RMR 0–20 21–40 41–60 61–80 81–100

Class no. I II III IV V

Rock quality Very poor Poor Fair Good Very good
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The joint distribution of latent variables

f x1ð Þ; f x2ð Þ; . . .; f xnð Þ in the GPR model is as follows:

Pðf jXÞ� Nðf j0;K X;Xð ÞÞ ð5Þ

close to a linear regression model, where K X;Xð Þ is given
as follows:

K X;Xð Þ ¼

k x1; x1ð Þ
k x2; x1ð Þ

k x1; x2ð Þ
k x2; x2ð Þ

� � �
� � �

k x1; xnð Þ
k x2; xnð Þ

..

. ..
. ..

. ..
.

k xn; x1ð Þ k xn; x2ð Þ � � � k xn; xnð Þ

2

6664

3

7775

The covariance function k x; x0ð Þ is usually parameter-

ized by a set of kernel parameters or hyperparameters, h.
Often, k x; x0ð Þ is represented as kðx; x0jhÞ to explicitly show

the dependence on h [39–41].

2.2.2 SVR

In SVR, xi; yif gli¼1 is considered as a training set, in which

xi 2 Rp represents p-dimensional input vector and yi 2 R is

a scalar measured output that indicates the system output.

The goal is to construct a function y ¼ f xð Þ that shows the
dependency of the output yi on the input xi [42]. The

function is expressed as:

y ¼ w:; xð Þ þ b ð6Þ

where w is the weight vector, and b is the bias.

The following convex optimization problem (Eq. 7)

[42, 43] can be used to express the regression problem.

Figure 1 presents the concept of nonlinear SVR, corre-

sponding to Eq. 7.

Minimize (w, b, ni; n
�
i ):

1

2
w2 þ C

Xl

i¼1

ni þ n�i
� �

ð7Þ

Subject to:

yi � w:; xð Þ þ bÞ� eþ n�i

w:; xð Þ þ bð Þ � yi � eþ n�i

ni; n
�
i � 1; . . .; l

where ni and n�i are slack variables that specify upper and

lower training errors that are subject to error tolerance, and

C is a positive constant that determines the degree of

penalized loss when an error occurs.

The dual form of the nonlinear SVR can be described as

[43]:

Minimize (ai; �ai):

1

2

Xl

i;j¼1

ai � �aið Þ aj � �aj
� �

; xið Þ:; xj
� �

þ e
Xl

i¼1

ai þ �aið Þ

�
Xl

i¼1

yi ai � �aið Þ ð8Þ

Subject to:

Xl

i¼1

yi ai � �aið Þ ¼ 0

0� ai �C; i ¼ 1; 2; . . .; l

0� �ai �C; i ¼ 1; 2; . . .; l

Selection of a suitable nonlinear function ; xið Þ and the

computation of ; xið Þ:; xj
� �

in the feature space could be a

difficult task. The input space computation can be per-

formed using a kernel function K xi; xj
� �

¼ ; xið Þ:; xj
� �

to

yield the inner products in feature space, circumventing the

problems intrinsic in determining the feature space. Func-

tions that meet the condition of Mercer in feature space can

be proven to match dot products. Any functions that fulfill

the theorem of Mercer can, therefore, be used as a kernel.

The following are some commonly used kernels in SVM

[43]:

K xi; xj
� �

¼ xi:xj Linear kernel ð9Þ

K xi; xj
� �

¼ c xi; xj
� �

þ c
� �d

Polynomial kernel ð10Þ

K xi; xj
� �

¼ tanh c xi; xj
� �

þ c
� �

Sigmoid kernel ð11Þ

K xi; xj
� �

¼ exp �c xi � xj
�� ��2

	 


Radial basis function kernel
ð12Þ

Finally, the feature of the kernel allows the nonlinear

SVR decision function to be expressed as Eq. 13:

f ðxiÞ ¼
Xl

i¼1

ð�ak þ �akÞK xi; xkð Þ þ b ð13Þ

2.2.3 DT

Decision Tree (DT) as a nonparametric data mining tech-

nique is an efficient statistical tool to develop prediction

algorithms for a response variable. DT comes with several

advantages; for example, no assumption is needed about

the distribution of explanatory variables, it is not affected

by high correlations among independent variables, it can be

applied to many types of dependent variables including

categorical, numerical, and survival data, the most impor-

tant variables explaining the dependent variable are

included in decision trees, and the insignificant variables

are excluded. Although DT has initially been proposed for
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large datasets, it also provides accurate estimates for small

datasets.

Classification and Regression Tree (CART) is a specific

type of DT algorithms. It covers both classification and

regression trees. In the regression tree, the predicted out-

come is considered a real number. In this case, variance

reduction is used for splitting the nodes.

The steps for the algorithm are as follows:

1. First, the variance of the target is calculated

2. The datasets are divided into different attributes, and

the variance of each branch is subtracted from the

variance before the split. This is known as variance

reduction.

The variance reduction of a node N is defined as:

IV Nð Þ ¼ 1

Sj j2
X

i2S

X

j2S

1

2
xi � xj
� �2� 1

Stj j2
X

i2St

X

j2St

1

2
xi � xj
� �2

 

þ 1

Sfj j2
X

i2Sf

X

j2Sf

1

2
xi � xj
� �2

!

ð14Þ

where S, St, and Sf are the set of presplit sample

indices, set of sample indices for which the split test is

true, and set of sample indices for which the split test is

false, respectively. Each of the above summands is

indeed variance estimates, though, written in a form

without directly referring to the mean.

The attribute with the highest VR will be the deci-

sion node.

3. The datasets are divided based on the values of selected

attributes. If the variance of a branch is more than zero,

it divided again.

4. Continue the process until all the data are processed.

2.3 Automatic resource forecasting model

Initial observations are crucial for training the machine

learning tools, and depending on the type of projects and

problems can be different. More observations for the

training result in more precise results. Some of the most

important observations in the road tunnels before con-

struction are the inlet and outlet portals and location of

boreholes, and perhaps these observations are often the

only observations available for training at this stage.

In this work, a geological or geotechnical parameter (for

example, parameter X) in the tunnel path is considered first,

so that there are preliminary observations about it in the

tunnel path. These observations are then used to train the

GPR, SVR, and DT tools. After the training process,

parameter X state can be forecasted along the entire path of

the tunnel. In the next stage, in order to predict the con-

struction time and costs of the tunnel, the previously con-

structed road tunnels are applied to train the GPR, SVR,

and DT tools. In this way, by studying the previously

constructed road tunnels, the different time and costs per

each meter of construction based on the different states of

the parameter X are applied to train the prediction tools.

After training, according to the forecasted states of the

parameter X along the tunnel path using the GPR, SVR,

and DT tools, the construction time and costs of the tunnel

can be forecasted. It can be noted that the selected previ-

ously constructed tunnels should be similar to the tunnel

under investigation in terms of the maintenance system,

drilling method, tunnel cross section, which affects the

tunnel construction time and costs.

Since the initial data are either low or not accurate

before the construction stage of the tunnel, these can affect

the predictions made on the ground conditions and the time

and costs of the tunnel construction. To cope this problem,

it is possible to update the previous prediction results

during tunnel construction by using the actual data on

parameter X, construction time, and construction costs

obtained in the constructed parts as the new train datasets.

Therefore, in order to update the previous prediction results

during tunnel construction, in addition to the initial data-

sets, the field-observed datasets also can be utilized to train

Nonlinear SVR

Support vector

0

Loss

Error

Fig. 1 Nonlinear SVR with

Vapnik’s e-insensitive loss

function [43]
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the GPR, SVR, and DT tools. In Fig. 2, all the prediction

stages of this article are presented in a schematically way.

In the next section, an engineering application of the

GPR, SVR, and DT tools is presented on Garan road tunnel

to predict the RMR parameter state along the tunnel route

and the construction time and costs of the tunnel before and

during construction.

3 Engineering application

3.1 Engineering background

The new road among Sanandaj and Marivan cities is an

under-development venture in the northwest of Iran. In

light of the section through the Zagros Mountains, a few

passages extend on this course, including the Garan,

Hamru, Baghan, and Gezerdareh, which have been actu-

alized or are under development. The Sanandaj–Marivan

old road is a standout among the most hazardous roads in

Iran, where numerous mishaps happen each year, prompt-

ing money-related misfortunes and passing of individuals.

The length of the old Sanandaj–Marivan road is 126 km.

On the new road, the length will be decreased to 105 km,

which can lessen the traveling time and mishaps.

The present examination is directed on Garan tunnel

with a length of 1900 m and a cross-segment region of

97 m2 as a major aspect of the under-development

Sanandaj–Marivan road. The channel of Garan burrow is

viewed as the eastern mouth (to the Sanandaj-S), and its

outlet is viewed as the western (to the Marivan-M). The

area of Garan tunnel is shown in Fig. 3.

The inlet and outlet portals of Garan tunnel are situated

on the SM39 ? 490 and SM41 ? 390 (km ? m), indi-

vidually. The topographical profile of the Garan tunnel

with the situation of the four boreholes is shown in Fig. 4a.

As per the accessible information, a sum of four kinds of

designing geography in the passage course is recognizable

and isolated from one another: limestone (Li), shale (Sh),

sand shales with shale–limestone arrangement (ShL), and

limestone–shale succession (LSh).

Garan tunnel was excavated using the top heading and

benching method. The support system used in Garan tunnel

construction is as follows:

– IPE 180: spacing 0.75–1.5 m

– Rock bolts: fully grouted, u25 mm, L: 4–6 m

Collecting datasets regarding construction time
and costs from previously-constructed tunnels

Train Machine learning tools

Prediction of tunnel construction time and costs

Time/cost prediction

Updating the previously
predicted results during
construction for the
non-constructed parts
by applying the actual
data of parameter X
and construction time
and costs obtained in
the constructed parts

Is there any
new constructed

part?

No

Yes

End

Results comparison
and selecting the best
forecasting tool

Start

Geological parameter selection (Parameter X )

Determination of tunnel observational locations

Train Machine learning tools

Forecasting of parameter X  along tunnel route

Geology prediction

Fig. 2 The prediction stages of parameter X and the time and costs of tunnel construction by using the GPR, SVR, and DT tools
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– Shotcrete: 22 cm reinforced by two-layer mesh

u6@100 9 100 mm.

In Fig. 4b, Garan tunnel cross section associated with

projected/applied support system is presented.

3.2 Sample selection and model establishment

In this article, fivefold cross-validation is adopted at each

stage of the predictions using the MATLAB tool, 2018,

through the regression learner app. In this application, there

are several different model types of GPR, SVR, and DT

tools. At the forecasting stage, all the model types are used

individually, and the results of the model with the highest

accuracy were considered. In the MATLAB application,

the GPR tool consists of four model types named rational

quadratic, squared exponential, Matern 5/2, and exponen-

tial. The SVR tool consists of six model types called linear,

quadratic, cubic, fine Gaussian, medium Gaussian, and

coarse Gaussian. Also, the DT tool consists of three models

of a fine tree, medium tree, and coarse tree.

Fitting a GPR model involves estimating the following

model parameters from the data:

• Covariance function k xi; xj hj
� �

parameterized in terms

of kernel parameters in vector h.
• Noise variance (r2).
• Coefficient vector of fixed basis functions (b).

The value of the ‘KernelParameters’ name–value pair

argument is a vector that consists of initial values for the

signal standard deviation (rf ) and the characteristic length

scales (rl). The ‘fitrgp’ function uses these values to

determine the kernel parameters. Similarly, the ‘Sigma’

name–value pair argument contains the initial value for the

noise standard deviation r. During optimization, ‘fitrgp’

creates a vector of unconstrained initial parameter values

g0 by using the noise standard deviation and the kernel

parameters. ‘fitrgp’ analytically determines the explicit

basis coefficient b, specified by the ‘Beta’ name–value pair

argument, from estimated values of h and r2. Therefore, b
does not appear in the g0 vector when ‘fitrgp’ initializes

numerical optimization.

For SVR, the regularization and portion width parame-

ters were tuned utilizing programmed hyper-parameter

improvement technique given in MATLAB with the

‘fitrsvm’ work. ‘fitrsvm’ trains a Support Vector Machine

(SVM) regression model on a low- through moderate-di-

mensional predictor dataset. It supports mapping the pre-

dictor data using kernel functions and supports sequential

minimal optimization (SMO), iterative single data algo-

rithm (ISDA), or L1 soft-margin minimization via quad-

ratic programming (L1QP) for objective function

minimization.

DT has a plethora of hyperparameters that require fine-

tuning in order to derive the best possible model that

reduces the generalization error as much as possible.

Usually, the tree complexity is measured by one of the

following metrics: the total number of nodes, the total

number of leaves, tree depth, and a number of attributes

used. max_depth, min_samples_split, and min_sam-

ples_leaf are all stopping criteria, whereas

min_weight_fraction_leaf and min_impurity_decrease are

pruning methods.

In each prediction step, to assess the performances of the

results, seven statistical evaluation criteria are used. These

criteria are the coefficient of determination (R2), mean

absolute error (MAE), mean square error (MSE), root mean

square error (RMSE), relative RMSE (RRMSE), mean

absolute percentage error (MAPE), and mean relative error

(MRE), respectively, given in Eqs. 15–21. All of these

criteria were applied to validate the prediction results

obtained by the intelligence approached in the previous

researches [44–49]:

R2 ¼
Pn

i¼1 f ðxið Þ � �f xð Þð Þ f � xið Þ � �f � xð Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 f ðxiÞ � �f xð Þð Þ2
Pn

i¼1 f � xið Þ � �f � xð Þð Þ2
q

0

B@

1

CA

2

ð15Þ

MAE ¼ 1

n

� 
Xn

i¼1

f ðxiÞ � f � xið Þj j ð16Þ

MSE ¼ 1

n

Xn

1

f ðxiÞ � f � xið Þð Þ2 ð17Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

� 
Xn

i¼1

f ðxiÞ � f � xið Þð Þ2
s

ð18Þ

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

� 
Xn

i¼1

f ðxiÞ � f � xið Þ
f ðxiÞ

� 
2

vuut ð19Þ

MAPE ¼ 100%

n

Xn

i¼1

f ðxiÞ � f � xið Þ
f ðxiÞ

����

���� ð20Þ

MRE ¼ 1

n

� 
Xn

i¼1

f ðxiÞ � f � xið Þj j
f ðxiÞj j ð21Þ

where f xð Þ is the actual value and f � xð Þ is the predicted

value, �f xð Þ are the means of actual and predicted values,

and n is the number of datasets.

Because the discontinuities, water conditions, and uni-

axial compressive strength of intact rock are very effective

in determining the ground conditions of the tunnel route,

and since the geomechanical parameter of RMR considers

all of the aforementioned properties, the RMR parameter is

used to define the geology conditions of the tunnel route. It
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should be noted that in this study, the RMR values are

expressed as an interval, but in the GPR, SVR, and DT

tools, the mean of these two numbers is used. For example,

if the RMR parameter is 5–10, the value in the tools is

considered equal to 7.5.

Fig. 3 Project location of Garan tunnel
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Fig. 4 a Geological map of Garan tunnel, b Garan tunnel cross section associated with its projected support system

Table 2 The pre-construction training datasets of the RMR along Garan tunnel rout

Tunnel chainage (m) RMR Tunnel chainage (m) RMR Tunnel chainage (m) RMR Tunnel chainage (m) RMR

0 (inlet portal) 15–25 500 35–40 990 (BH3) 40–45 1500 10–15

50 25–30 550 30–35 1000 35–40 1550 5–10

100 25–30 600 30–35 1050 35–40 1600 5–10

150 30–35 650 30–35 1100 30–35 1650 5–10

200 30–35 700 25–30 1150 25–30 1690 (BH4) 10–15

210 (BH1) 25–35 710 (BH2) 20–25 1200 25–30 1700 10–15

250 20–25 750 25–30 1250 25–30 1750 15–20

300 25–30 800 20–25 1300 20–25 1800 15–20

350 25–30 850 25–30 1350 15–20 1850 15–20

400 30–35 900 35–40 1400 15–20 1900 (outlet portal) 15–20

450 25–30 950 40–45 1450 15–20
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Table 3 Pre-updating initial values of the GPR, SVR, and DT parameters for the RMR parameter prediction

Tool Parameter Value or type

GPR KernelFunction (form of the covariance function) ‘SquaredExponential’

BasisFunction (explicit basis in the GPR model) ‘Constant’

Beta (initial value of the coefficients for the explicit basis) 21.7096

Sigma (initial value for the noise standard deviation of the Gaussian process model) 4.2506

FitMethod (method to estimate parameters of the GPR model) Exact Gaussian Process Regression

SVR Kernel function ‘Gaussian’

Epsilon (half the width of epsilon-insensitive band) 1.1490

Solver (optimization routine) ‘SMO’

Bias 21.0725

Mu 948.5612

Sigma 558.1550

DT ‘PredictorSelection’—algorithm used to select the best split predictor ’allsplits’

SplitCriterion—split criterion ‘MSE’

‘Prune’—flag to estimate optimal sequence of pruned subtrees on’

‘MaxNumSplits’—maximal number of decision splits 138

‘MinLeafSize’—minimum number of leaf node observations 12

‘MinParentSize’—minimum number of branch node observations 24

Table 4 The pre-updating

results for RMR parameter
Parameter Tool R2 MAE MSE RMSE RRMSE MAPE (%) MRE

RMR GPR 0.83 2.9415 16.1023 4.0127 0.2534 17.2342 0.172342

SVR 0.77 3.2662 22.3540 4.7280 0.2479 18.0983 0.180983

DT 0.76 3.7534 22.5331 4.7469 0.2821 20.3073 0.203073
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Fig. 5 The pre-updating predicted results of GPR, SVR, and DT tools for RMR parameter along Garan tunnel route
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4 Results analysis and comparison

In this paper, predictions are made in two steps of pre-

updating and post-updating. In the following subsections,

the results of each step will be discussed in more detail.

4.1 Pre-updating results

Before starting a tunneling project, a geological map is

prepared by the engineers (Fig. 4a). This map is obtained

Table 5 The pre-updating

prediction results for the RMR

parameter along the Garan

tunnel route

Parameter Tool R2 MAE MSE RMSE RRMSE MAPE (%) MRE

RMR GPR 0.9347 2.2518 8.3195 2.8843 0.2451 15.7904 0.157904

SVR 0.9239 2.9303 12.080 3.4756 0.2605 16.8646 0.168646

DT 0.8541 3.2037 15.472 3.9334 0.2805 19.2777 0.192777
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Fig. 6 The pre-updating results of prediction errors of GPR, SVR, and DT tools for RMR parameter along Garan tunnel route
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Fig. 7 The pre-updating results

of prediction performance of

GPR, SVR, and DT tools on the

RMR parameter
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from preliminary investigations of the study area through

different surveys of geotechnical, geophysical, etc.

In this map, the status of important geological parame-

ters that influence the tunnel construction is specified in the

Table 7 Pre-updating values of the GPR, SVR, and DT parameters for predicting the construction time and costs

Tool Parameter Value or type

Time GPR KernelFunction (form of the covariance function) ‘Exponential’

BasisFunction (explicit basis in the GPR model) ‘Constant’

Beta (initial value of the coefficients for the explicit basis) 0.5613

Sigma (initial value for the standard deviation of the Gaussian process model) 0.0296

FitMethod (method to estimate parameters of the GPR model) ‘Exact Gaussian Process Regression’

SVR Kernel function ‘Gaussian’

Epsilon (half the width of epsilon-insensitive band) 0.0254

Solver (optimization routine) ‘SMO’

Bias 0.4877

Mu 46.5461

Sigma 26.0222

DT ‘PredictorSelection’—algorithm used to select the best split predictor ‘allsplits’

SplitCriterion—split criterion ‘MSE’

‘Prune’—flag to estimate optimal sequence of pruned subtrees ‘on’

‘MaxNumSplits’—maximal number of decision splits 140

‘MinLeafSize’—minimum number of leaf node observations 4

‘MinParentSize’—minimum number of branch node observations 10

Costs GPR KernelFunction (form of the covariance function) ‘Exponential’

BasisFunction (explicit basis in the GPR model) ‘Constant’

Beta (initial value of the coefficients for the explicit basis) 5.0107e?03

Sigma (initial value for the standard deviation of the Gaussian process model) 40.2888

FitMethod (method to estimate parameters of the GPR model) ‘Exact Gaussian Process Regression’

SVR Kernel function ‘Gaussian’

Epsilon (half the width of epsilon-insensitive band) 50

Solver (optimization routine) ‘SMO’

Bias 5.2248e?03

Mu 46.5461

Sigma 26.0222

DT ‘PredictorSelection’—algorithm used to select the best split predictor ‘allsplits’

SplitCriterion—split criterion ‘MSE’

‘Prune’—flag to estimate the optimal sequence of pruned subtrees ‘on’

‘MaxNumSplits’—maximal number of decision splits 140

‘MinLeafSize’—minimum number of leaf node observations 4

‘MinParentSize’—minimum number of branch node observations 10

Table 8 The pre-updating

prediction results of

construction time and

construction costs parameters

Parameter Tool R2 MAE MSE RMSE RRMSE MAPE (%) MRE

Time (days) GPR 0.97 0.026009 0.00097798 0.031273 0.05261 3.98974 0.03989

SVR 0.97 0.026206 0.00104670 0.032352 0.05555 4.11389 0.04113

DT 0.97 0.027596 0.00115760 0.034024 0.05742 4.34550 0.04345

Costs (US$) GPR 1.00 31.348 1948.9 44.146 0.00616 0.40179 0.00401

SVR 0.99 39.510 2280.4 47.753 0.00713 0.42149 0.00421

DT 0.99 37.884 2691.0 51.875 0.00746 0.46303 0.00463
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tunnel path. One of these parameters is the RMR param-

eter. In this paper, these data are used as the preliminary

training data of the forecasting models. Note that these data

are not very accurate due to the unknown subsurface

conditions before the tunnel construction, but at the first

stage of forecasts, there is no alternative. The initial

training data of the RMR parameter available for the Garan

tunnel route are presented in Table 2.

For this step of predictions (pre-updating prediction step

for RMR parameter), the initial values for the hyperpa-

rameters of the GPR, SVR, and DT tools are presented in

Table 3. The validation criteria results of fivefold cross-

validation are presented in Table 4. According to the

results, all the machine learning tools of GPR, SVR, and

DT have presented a good accuracy in the predictions. All

the predictions are close together. However, the GPR

provides more accurate results compared to the SVR and

DT models.

To obtain the RMR status along the Garan tunnel route,

after the fivefold cross-validation, the obtained models of

the GPR, SVR, and DT tools were exported, and the

datasets available along Garan tunnel route were applied as

the test datasets in the exported models. Finally, the RMR

parameter status was predicted by the GPR, SVR, and DT

tools, as shown in Fig. 5. Also, to validate the prediction

results accuracy of the GPR, SVR, and DT tools along the

Garan tunnel route, the actual RMR status of the tunnel

route is shown in Fig. 5. Looking at Fig. 5, it can be seen
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that all the methods have presented close results together.

Also, a comparison of the prediction results with the actual

model of the Garan tunnel route shows the high accuracy of

the GPR, SVR, and DT tools in predicting the RMR

parameter.

The prediction errors of the GPR, SVR, and DT tools in

predicting the RMR parameter along the Garan tunnel

route are shown in Fig. 6. The mean error values for the

GPR, SVR, and DT tools are less than 2.2518, 2.9303, and

3.2037, respectively. In Fig. 7, the R2 values of the

regression results by the GPR, SVR, and DT tools versus

the field-observed RMR parameter are shown. The R2

values for the GPR, SVR, and DT tools are evaluated by

0.9347, 0.239, and 0.8541, respectively.

Through comparisons made between the prediction

results of the RMR parameter along the Garan tunnel route

with the actual mode, Table 5 was obtained. In Table 5, the

results of the different validation criteria for this step of

prediction are presented. From all of these results obtained

for the Garan tunnel route, it can be concluded that the

GPR, SVR, and DT results are close together and to the

actual mode, but still, GPR performs better prediction

results than SVR, and SVR results are more accurate than

DT.

In the next step, to predict the time and cost of con-

structing the tunnel, several input data presented in Table 6

were used as the train datasets of the GPR, SVR, and DT.

These data were collected from the previously constructed

road tunnels, which were similar to the Garan tunnel in

terms of drilling, support system, area, and cross-sectional

shape of the tunnel. The data of Table 6 explain the rela-

tionship between the RMR parameter and the time and

costs of tunnel construction. For this step of prediction, the

initial values used for the parameters of the GPR, SVR, and

DT are presented in Table 7.

After applying the datasets presented in Table 6 as the

training datasets of the GPR, SVR, and DT tools, the dif-

ferent evaluation statistical criteria resulting from the

fivefold cross-validation were obtained as shown in

Table 8. Looking at Table 8, still, like the previous pre-

diction step (for RMR parameter), the GPR results have

more accuracy than the SVR and DT results. Also, SVR

provides higher accuracy compared to the DT.

Then, the fivefold cross-validation models obtained by

the regression learner app of the MATLAB 2018 tool were

exported and the construction time and construction costs

of Garan tunnel route were applied in the exported models

as the test datasets. Finally, according to Figs. 8 and 9,

respectively, the construction time and construction costs

of the Garan tunnel were predicted in the whole tunnel

route. Also, to validate the prediction results along the

Garan tunnel route, the actual construction time and costs

are shown in Figs. 8 and 9, respectively. Considering

Figs. 8 and 9, it can be concluded that all the GPR, SVR,

and DT tools have presented good results, and they all are

close together.

The prediction errors of the GPR, SVR, and DT for the

two parameters of construction time and construction costs

along the Garan road tunnel are shown in Figs. 10 and 11,

respectively. For the construction time, the mean error

values of the GPR, SVR, and DT are less than 0.0143 days,

0.0170 days, and 0.0175 days, respectively. These values

for the construction costs are less than US$20.6073,

US$23.3594, and US$30.4157, respectively. In Figs. 12

and 13, the R2 values of the regression results by the GPR,

SVR, and DT tools versus the field-observed construction

time and costs along the tunnel route are shown. For the
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construction time (Fig. 12), the R2 values of the GPR,

SVR, and DT are equal to 0.9645, 0.9424, and 0.9369,

respectively. Also, for the construction costs (Fig. 13), the

R2 values of the GPR, SVR, and DT are equal to 0.9412,

0.9362, and 0.9141, respectively.

Through comparison of the construction time and cost

results predicted by the GPR, SVR, and DT tools along the

Garan tunnel route with the actual mode, the statistical

evaluation criteria applied in this article were estimated

(Table 9). From all of these results, it can be seen that the

GPR, SVR, and DT tools have presented good results. Still,

the GPR results are better than the SVR and DT. Also,

SVR has presented more accurate results than DT.

Until now, the status of the RMR, construction time, and

construction costs were predicted by the GPR, SVR, and

DT tools before Garan tunnel construction (pre-updating

step). All the results predicted by the GPR, SVR, and DT

tools were compared together through the different statis-

tical evaluation criteria in the two modes of fivefold cross-

validation and along Garan tunnel route. Comparing the

predicted results with the field-observed mode, it was

concluded that the GPR tool provides more accurate results

than the SVR and DT. Also, the SVR performs better

results than DT. All of these predictions were related to the

construction of the Garan tunnel, in which datasets were

gathered from the pre-existing tunnel and the previously
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constructed road tunnels. In the next step, in addition to the

initial datasets, new input datasets obtained during the

tunnel construction are used to train the GPR, SVR, and

DT tools, and the previously predicted results will be

updated. Also, the impact of these updates on the predicted

results will be investigated.

4.2 Post-updating results

To update the previously forecasted results, about 200 m

from both inlet and outlet portals of the tunnel was

assumed as the constructed parts, and the data obtained in

these locations were used as the new train datasets. Also,

for the post-updating stage, the initial values used for the

parameters of the GPR, SVR, and DT tools for each of the

three parameters of RMR, construction time, and con-

struction costs are presented in Table 10.

To update the previously predicted results of the RMR

parameter, in addition to the pre-updating training datasets

(Table 2), the more training datasets were obtained from

the constructed parts of the tunnel and the number of the

dataset was raised. Therefore, machine learning tools are

applicable to the broader range [50]. The post-updating

results of the RMR parameter are presented in Table 11

through the statistical evaluation criteria. For this predic-

tion step, the GPR results still have more accuracy than the

SVR and DT. Also, SVR still provides better results than

DT.

After applying the actual RMR parameter of the Garan

tunnel route in the fivefold cross-validation exported

models, the RMR parameter was predicted along the whole

tunnel route by all of the GPR, SVR, and DT tools

(Fig. 14). According to Fig. 14, all the results predicted by

the GPR, SVR, and DT tools are very good and close

together.

In Fig. 15, the error values of the GPR, SVR, and DT

tools in predicting the RMR parameter are shown along the

Garan tunnel route for the post-updating step. The mean

error values for the GPR, SVR, and DT tools are less than

0.6049, 1.1269, and 2.0827, respectively. In comparison

with the pre-updating results, the average values of errors

in predicting the status of the RMR parameter are reduced

Table 9 The pre-updating

prediction results of

construction time and costs

parameters along the Garan

tunnel route

Parameter Tool R2 MAE MSE RMSE RRMSE MAPE (%) MRE

Time (days) GPR 0.9645 0.0143 0.0003 0.0181 0.0277 2.1762 0.0217

SVR 0.9424 0.0170 0.0005 0.0235 0.0360 2.8591 0.0285

DT 0.9369 0.0175 0.0005 0.0238 0.0409 2.8780 0.0287

Costs (US$) GPR 0.9412 20.6073 739.9957 27.2028 0.0045 0.3473 0.0034

SVR 0.9362 23.3594 962.1546 31.0186 0.0052 0.3954 0.0039

DT 0.9141 30.4157 1151.9117 33.9398 0.0057 0.5149 0.0051

R² = 0.9412
R² = 0.9362
R² = 0.9141
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Table 10 The post-updating values of the GPR, SVR, and DT parameters for the prediction of RMR, construction time, and construction costs

Tool Parameter Value or type

RMR GPR KernelFunction (form of the covariance function) ‘Matern5/2’

BasisFunction (explicit basis in the GPR model) ‘Constant’

Beta (initial value of the coefficients for the explicit basis) 21.6675

Sigma (initial value for the standard deviation of the Gaussian process model) 3.9565

FitMethod (method to estimate parameters of the GPR model) ‘Exact Gaussian Process Regression’

SVR Kernel function ‘Gaussian’

Epsilon (half the width of epsilon-insensitive band) 1.1861

Solver (optimization routine) ‘SMO’

Bias 21.1476

Mu 948.7417

Sigma 587.0006

DT ‘PredictorSelection’—algorithm used to select the best split predictor ‘allsplits’

SplitCriterion—split criterion ‘MSE’

‘Prune’—flag to estimate the optimal sequence of pruned subtrees ‘on’

‘MaxNumSplits’—maximal number of decision splits 150

‘MinLeafSize’—minimum number of leaf node observations 4

‘MinParentSize’—minimum number of branch node observations 10

Time GPR KernelFunction (form of the covariance function) ‘Exponential’

BasisFunction (explicit basis in the GPR model) ‘Constant’

Beta (initial value of the coefficients for the explicit basis) 0.5621

Sigma (initial value for the standard deviation of the Gaussian process model) 0.0267

FitMethod (method to estimate parameters of the GPR model) ‘Exact Gaussian Process Regression’

SVR Kernel function ‘Gaussian’

Epsilon (half the width of epsilon-insensitive band) 0.0252

Solver (optimization routine) ‘SMO’

Bias 0.4839

Mu 35.7018

Sigma 25.4124

DT ‘PredictorSelection’—algorithm used to select the best split predictor ‘allsplits’

SplitCriterion—split criterion ‘MSE’

‘Prune’—flag to estimate the optimal sequence of pruned subtrees ‘on’

‘MaxNumSplits’—maximal number of decision splits 222

‘MinLeafSize’—minimum number of leaf node observations 4

‘MinParentSize’—minimum number of branch node observations 10

Costs GPR KernelFunction (form of the covariance function) ‘Exponential’

BasisFunction (explicit basis in the GPR model) ‘Constant’

Beta (initial value of the coefficients for the explicit basis) 5.0031 ? 03

Sigma (initial value for the standard deviation of the Gaussian process model) 34.8192

FitMethod (method to estimate parameters of the GPR model) ‘Exact Gaussian Process Regression’

SVR Kernel function ‘Gaussian’

Epsilon (half the width of epsilon-insensitive band) 43.5693

Solver (optimization routine) ‘SMO’

Bias 2.2174e?03

Mu 35.7018

Sigma 25.4124

DT ‘PredictorSelection’—algorithm used to select the best split predictor ‘allsplits’

SplitCriterion—split criterion ‘MSE’

‘Prune’—flag to estimate the optimal sequence of pruned subtrees ‘on’
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Table 10 contiued

Tool Parameter Value or type

‘MaxNumSplits’—maximal number of decision splits 222

‘MinLeafSize’—minimum number of leaf node observations 1

‘MinParentSize’—minimum number of branch node observations 10

Table 11 The post-updating

results of the RMR parameter
Parameter Tool R2 MAE MSE RMSE RRMSE MAPE (%) MRE

RMR GPR 0.9065 1.6391 9.5817 3.0954 0.1504 8.3182 0.083182

SVR 0.9167 2.1726 11.606 3.4068 0.1859 11.2034 0.112034

DT 0.8691 2.5492 12.916 3.5939 0.2115 14.2883 0.142883
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by 1.647, 1.8034, and 1.121, for GPR, SVR, and DT,

respectively. Also, according to Fig. 16, in predicting the

status of the RMR parameter, the R2 values for the GPR,

SVR, and DT increased by 0.059, 0.0582, and 0.0883,

respectively.

Comparing the updated predictions of the RMR

parameter along the Garan tunnel route with the actual

RMR, the different statistical validation criteria are eval-

uated as shown in Table 12. From all of these results, it can

be concluded that the GPR, SVR, and DT results are close

together and to the actual mode, but GPR performs better

than SVR, and SVR performs better than DT. Also, there is

a significant upgrade potential while constructing the tun-

nel in predicting the RMR parameter.

The actual datasets of the RMR, construction time, and

construction costs parameters that were obtained during

Garan tunnel construction (200 m from both inlet and

outlet portals) are given in Table 13. In order to update the

previous prediction results of the construction time and

costs parameters along the Garan tunnel route, in addition

to the preliminary datasets obtained from the previously

constructed road tunnels (Table 6), the new obtained

datasets presented in Table 13 were also used to train the

forecasting tools.

The post-updating results for the construction time and

costs obtained by the GPR, SVR, and DT tools are com-

pared together in Table 14 through the different statistical

evaluation criteria. As the pre-updating step, GPR pre-

sented more accurate results than the SVR and DT tools.

Also, the SVR tool still has shown a better potential ability

in the predictions than the DT.

Using the construction time and costs datasets of the

Garan tunnel route as the input datasets in the exported

models of the fivefold cross-validation, the GPR, SVR, and

DT tools have predicted the construction time and costs

along Garan tunnel route as shown in Figs. 17 and 18,

respectively. In Figs. 17 and 18, the updated forecasts of

the GPR, SVR, and DT tools on the construction time and

costs parameters are compared with the actual parameter

one in each location along the tunnel route. According to

Figs. 17 and 18, the more proximity between the predicted

Table 12 The post-updating

prediction results of the RMR

parameter along the Garan

tunnel route

Parameter Tool R2 MAE MSE RMSE RRMSE MAPE (%) MRE

RMR GPR 0.9937 0.6049 0.6633 0.8144 0.0564 3.7215 0.037215

SVR 0.9821 1.1269 1.8436 1.3577 0.1133 7.3370 0.073370

DT 0.9424 2.0827 6.7651 2.6009 0.2114 13.7110 0.137110

R² = 0.9937
R² = 0.9821

R² = 0.9424
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results and the actual state of the construction time and

costs can be seen compared to the pre-updating step.

In Fig. 19, the post-updating error values of the GPR,

SVR, and DT tools on the construction time are shown

along the tunnel route. According to Fig. 19, the mean

error values of the GPR, SVR, and DT tools are less than

0.0073 days, 0.0138 days, and 0.0142, respectively. These

values for the construction costs predicted by the GPR,

SVR, and DT (Fig. 20) are less than 8.7907 US$, 10.3969

US$, and 10.7844 US$, respectively. Therefore, in com-

parison with the pre-updating step, the mean error values

of the GPR, SVR, and DT tools for the construction time of

the tunnel route are reduced by 0.007 days, 0.0033 days,

and 0.0033 days, respectively. The mean error values of

the GPR, SVR, and DT tools for the predicted construction

costs along the tunnel route compared to the pre-updating

levels are reduced by 11.8166 US$, 12.9625 US$, and

19.6312 US$, respectively.

As shown in Fig. 21, in comparison with the pre-up-

dating step, the R2 values of the construction time pre-

dicted by the GPR, SVR, and DT tools for the Garan tunnel

route have increased by 0.0266, 0.0201, and 0.0129,

respectively. Also, according to Fig. 22, comparing with

the pre-updating results, the R2 values of the tunnel route

construction costs predicted by the GPR, SVR, and DT

tools have increased by 0.0449, 0.0464, and 0.0653,

respectively.

Also, to further support the post-updating prediction

results of the GPR, SVR, and DT tools on the construction

time and costs parameters along Garan tunnel route, the

more statistical validation criteria are evaluated by apply-

ing the Garan tunnel route datasets in the models exported

from the post-updating results of the construction time and

costs (Table 15). By studying Table 15, it is clear that all

three GPR, SVR, and DT tools provided high accuracy in

the predictions, but at all stages, the accuracy of the GPR

tool is higher than the SVR; also, SVR performs more

accurate than the DT. Furthermore, from these results, the

effect of the updating process is objective, and the pre-

diction accuracy is increased.

According to the predicted results before and after the

updating step and comparing them with the actual state, it

can be said that GPR, SVR, and DT are the three potential

prediction tools that can be used to predict the tunnel

geology parameters, as well as the time and costs of tunnel

construction. However, the GPR performs better than SVR,

and SVR performs better than DT. In addition, the

updating procedure can significantly reduce uncertainties

regarding the unknown tunnel geology conditions and

tunnel construction time and costs.
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5 Discussion

Undoubtedly, reducing the uncertainties of the under-

ground conditions in tunneling projects is one of the most

serious issues. The most important of these uncertainties is

the geological and geotechnical conditions of the tunnel

route. The uncertainty of these conditions, in turn, increa-

ses the risk of the time and costs of the tunnel construction.

Therefore, it is necessary to reduce the uncertainty about

the geological and geotechnical conditions of the tunnel

route in order to reduce risk about the time and costs of

constructing the tunnel. Usually, in road tunnels, limited

data are available regarding the geological and geotechni-

cal conditions of the tunnel route. Under such circum-

stances, it is not possible to estimate the time and costs of

constructing the tunnel at an acceptable level. To reduce

Table 14 The post-updating

prediction results of the

construction time and

construction costs parameters

Parameter Tool R2 MAE MSE RMSE RRMSE MAPE (%) MRE

Time (days) GPR 0.97 0.022581 0.00084215 0.02902 0.04767 3.57142 0.03571

SVR 0.97 0.024631 0.0010258 0.032028 0.04820 3.55539 0.03555

DT 0.97 0.025457 0.0011001 0.033167 0.04931 3.62189 0.03621

Costs (US$) GPR 1.00 25.223 1444.9 38.012 0.00569 0.34509 0.00345

SVR 1.00 34.293 1757.6 41.923 0.00637 0.36274 0.00362

DT 0.99 30.768 2187.8 46.774 0.00662 0.38458 0.00384
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Fig. 17 The post-updating prediction results of construction time obtained by GPR, SVR, and DT along Garan tunnel route
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Fig. 18 The post-updating prediction results of construction costs obtained by GPR, SVR, and DT along the Garan tunnel route
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these uncertainties, the GPR, SVR, and DT tools were used

to predict tunnel geology and time and costs of its con-

struction. To illustrate the correct functioning of these

tools, they were used in a case study of Garan road tunnel.

To predict the tunnel route geology, the RMR parameter

was considered. Initially, before the construction of the

tunnel, the data about the RMR parameter were available

only in the inlet and outlet portals and borehole locations.

In this stage, only these data were applied to train the

prediction tools. Then, the status of the RMR parameter

was predicted in each location in the tunnel path by each of

the tools. Since no data were available on the construction

time and costs before construction of the tunnel, so to train

the GPR, SVR, and DT tools, the previously constructed

road tunnels were used. With the help of these old tunnels,

for different values of the RMR parameter, different con-

struction time and costs were obtained and used as the train

datasets of the prediction tools. Then, according to the

predetermined RMR values, the time and costs estimations

for each meter of construction in any position in the tunnel

path were predicted by the GPR, SVR, and DT tools.

In the next step, to show the impact of upgrades during

the tunnel construction on the previous predictions, it was

assumed that only 200 m was constructed on the inlet and

outlet of the tunnel route. Using actual data on the RMR

parameter and construction time and costs in the con-

structed parts as the new train datasets, the previous fore-

casted results were updated.

To validate the prediction results of the GPR, SVR, and

DT tools at each step, the fivefold cross-validation was

adopted using the MATLAB tool 2018 through the

regression learner app. In this application, there were

several different model types of GPR, SVR, and DT tools.

At the forecasting stage, all the model types were used

individually, and the results of that model were taken into

account that was more accurate. To assess the perfor-

mances of selected models, seven statistical evaluation

criteria of R2, MAE, MSE, RMSE, RRMSE, MAPE, and
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Fig. 19 The post-updating prediction error results of GPR, SVR, and DT tools for the construction time along Garan tunnel route
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Fig. 20 The post-updating prediction error results of GPR, SVR, and DT tools for the construction costs along Garan tunnel route
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MRE were used. All of these fivefold cross-validation

results are summarized in Table 16. Also, in each step of

the predictions, the fivefold cross-validation models were

exported through MATLAB 2018 tool, and the datasets

available along Garan tunnel route were applied in the

models to predict the RMR, construction time, and con-

struction costs along Garan tunnel path. For the Garan

tunnel route predictions, the predicted results were com-

pared with the actual mode, and like the fivefold cross-

validation results, also, the different statistical evaluation

criteria were evaluated for these results. All of these results

are summarized in Table 17.
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6 Conclusions

In this article, the effects of geological uncertainties in

tunnel construction time and costs were tried to be reduced

through the machine learning tools of GPR, SVR, and DT.

To train the prediction tools, data were gathered from the

under-studying tunnel observations and the previously

constructed tunnels. To assess the effect of updated out-

comes during the tunnel construction, the tools used were

updated for one time after constructing 200 m from both

inlet and outlet portals of the tunnel. Also, in each stage of

the predictions, the fivefold cross-validation was adopted.

Finally, all the predicted results were validated through

seven validation criteria of MAE, MSE, RMSE, RRMSE,

MAPE, MRE, and R2. The validations showed that the

GPR results were more accurate than the SVR results, and

SVR has more accuracy than the DT. Also, during the

tunnel construction, updating the previously predicted

results by applying the actual data obtained in the con-

structed parts can significantly increase the accuracy of the

predictions comparing to the pre-updating mode. In con-

clusion, according to the results of this study, machine

learning methods are useful tools for solving problems with

complex mechanisms such as geology, construction time,

and construction costs of a road tunnel project. Further-

more, the existing models are suitable to use as predictors

for tunnel future levels.

In this study, only one feature (RMR) was considered to

predict the tunnel path geology, and multiple features can

be considered to have a better description of tunnel

geology.

Table 15 The post-updating

prediction results of the

construction time and costs

parameters along the Garan

tunnel route

Parameter Tool R2 MAE MSE RMSE RRMSE MAPE (%) MRE

Time (days) GPR 0.9911 0.0073 0.00008 0.0090 0.0139 1.1011 0.0110

SVR 0.9625 0.0138 0.00033 0.0182 0.0270 2.0689 0.0206

DT 0.9498 0.0142 0.00046 0.0215 0.0321 2.1552 0.0215

Costs (US$) GPR 0.9861 8.7907 178.2121 13.3496 0.0022 0.1491 0.0014

SVR 0.9826 10.3969 217.8698 14.7604 0.0024 0.1746 0.0017

DT 0.9794 10.7844 261.7609 16.1790 0.0027 0.1827 0.0018

Table 16 A summary of the all fivefold cross-validation results predicted by the GPR, SVR, and DT tools

Prediction step Tool Parameter R2 MAE MSE RMSE RRMSE MAPE (%) MRE

Pre-updating step GPR RMR 0.83 2.9415 16.1023 4.0127 0.2534 17.2342 0.172342

Construction time (days) 0.97 0.026009 0.00097798 0.031273 0.05261 3.98974 0.03989

Construction costs (US$) 1.00 31.348 1948.9 44.146 0.00616 0.40179 0.00401

SVR RMR 0.77 3.2662 22.3540 4.7280 0.2479 18.0983 0.180983

Construction time (days) 0.97 0.026206 0.00104670 0.032352 0.05555 4.11389 0.04113

Construction costs (US$) 0.99 39.510 2280.4 47.753 0.00713 0.42149 0.00421

DT RMR 0.76 3.7534 22.5331 4.7469 0.2821 20.3073 0.203073

Construction time (days) 0.97 0.027596 0.00115760 0.034024 0.05742 4.34550 0.04345

Construction costs (US$) 0.99 37.884 2691.0 51.875 0.00746 0.46303 0.00463

Post-updating step GPR RMR 0.90 1.6391 9.5817 3.0954 0.1504 8.3182 0.083182

Construction time (days) 0.97 0.022581 0.00084215 0.02902 0.04767 3.57142 0.03571

Construction costs (US$) 1.00 25.223 1444.9 38.012 0.00569 0.34509 0.00345

SVR RMR 0.91 2.1726 11.606 3.4068 0.1859 11.2034 0.112034

Construction time (days) 0.97 0.024631 0.0010258 0.032028 0.04820 3.55539 0.03555

Construction costs (US$) 1.00 34.293 1757.6 41.923 0.00637 0.36274 0.00362

DT RMR 0.86 2.5492 12.916 3.5939 0.2115 14.2883 0.142883

Construction time (days) 0.97 0.025457 0.0011001 0.033167 0.04931 3.62189 0.03621

Construction costs (US$) 0.99 30.768 2187.8 46.774 0.00662 0.38458 0.00384
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11. Cerezo-Narváez A, Pastor-Fernández A, Otero-Mateo M,
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