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Abstract
Water is the source of human life and water pollution is becoming more and more serious with the development of cities.

The supervision and treatment of water resources have become a big problem of urban development. Water quality

monitoring is not timely, flood warning is not timely is directly related to the livelihood of the people. And the devel-

opment of smart water utilities can solve problems timely and accurately. By placing water quality sensors in the urban

water supply network, real-time monitoring of water quality can be performed to prevent incidents of drinking water

pollution. After an incident of drinking water pollution occurs, reverse locating the pollution source through the infor-

mation detected by the water quality sensors represents a challenging problem because in the actual water supply network,

the direction and speed of the water flow will change with the water demand of the residents, thus leading to uncertainty in

this problem. In conventional studies of pollution source location problems, it is often assumed that the water demand is

fixed. However, due to the variability of the water demand of residents, this problem is actually a dynamic change problem

and thus can be considered as a dynamic optimization problem. In this study, a Poisson distribution model was used to

simulate the change of water demand among urban residents. On this basis, we proposed an improved genetic algorithm to

solve the pollution source location problem and implemented two different water supply networks to perform the simu-

lation experiments, which could accurately locate the pollution sources. The simulation results were compared with the

standard genetic algorithm to verify the accuracy and robustness of the proposed algorithm.

Keywords Pollution source location � Water quality monitoring � Sensor networks � Poisson distribution �
Simulation optimization � Genetic algorithm

1 Introduction

Smart city is inseparable from the support of smart water

utilities. The core issue of smart water utilities is the big

data processing, which determines the degree of smart.

Smart water utilities by counting instrument, the wireless

network, water quality on-line monitoring equipment such

as hydraulic pressure gauge real-time running status of

urban water supply and drainage system, perception and

adopt the way of visualization of organic integration of

water management and water supply and drainage facili-

ties, form the ‘‘Internet of things’’ urban water affair, and

massive amounts of water can be timely analysis and

processing of information, and make corresponding pro-

cessing results auxiliary decision-making recommenda-

tions, in a more elaborate and dynamic way of the water

management system of the whole process of production,

management and service, so as to achieve the status of

‘‘smart’’.

Urban water supply networks are large and open and

thus vulnerable to destruction caused by accidents or

deliberate pollution incidents. In order to preventing sig-

nificant disasters and losses caused by drinking water

pollution incidents from impacting society and residents, it

is necessary to set up the sensors at the water sources or the
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key nodes in the water supply networks for real-time

monitoring [1–4]. With the collected information by the

water quality monitoring sensors, the pollution source can

be located and the precise position of the pollution source

as well as the injection time can be determined; subse-

quently, the water supply network can be partially blocked,

thus reducing the economic losses and social impacts of the

pollution. Therefore, it is of great practical significance to

carry out research on pollution source location problems.

Locating the pollution source is the technical premise of

real-time monitoring and early warning for drinking water

safety. Based on the detected information from water

quality sensors, the possible location, time, current state

and diffusion trend of the pollutant can be obtained

according to the water quality monitoring and information

feedback, thus allowing for the pollution to be treated in a

timely manner and reducing the associated harm.

The research of pollution source location problem pri-

marily used particle trace-back method in early stage, and

apportioned each node’s state according to the information

from the monitoring sensors in the former time. Shang

et al. presented particle trace-back in accordance with the

time sequence. The in reverse time and the pollutants as a

particle from the source node which was detected to be

polluted, and then reverse traced the pollution source

location [5]. Laird et al. used the source position trace-back

algorithm to identify the multiple pollution sources [6]. De

Sanctis et al. used particle trace-back algorithm, which

real-time identified possible pollution sources by compar-

ing the hydraulic and water quality consistency, this

algorithm has achieved good results for the pollution

sources identification problem [7]. Costa et al. proposed the

methodology, in his methodology the information detected

by successive positive readings of sensors and the experi-

mental results are not so good [8].

Using the machine learning algorithms to sort the net-

work nodes with pollution possibilities, thus the nodes that

are most susceptible by pollution incidents is given, which

is a contaminant source identification method used by

many scholars. Huang et al. developed a data mining

method and use this method in conjunction with a maxi-

mum likelihood provides the means to identify the location

and time of an intrusion event. This algorithm can find the

pollution sources location soon, but cannot find the multi-

sources [9]. Perelman et al. used Bayesian networks (BNs)

statistics to estimate the possibility of the pollution injec-

tion and its propagation in the water supply networks. The

authors developed the clustering method and applied it to

formulate a simplified expression of the water supply net-

works with nodal connectivity properties [10]. Wang

et al. investigate the support vector regression (SVR) in

order to speed the likelihood evaluation of the Markov

Chain Monte Carlo (MCMC) methods, because the MCMC

for Bayesian analyses allow for the characterization of the

uncertainty in the pollution event profile, but the MCMC

implementation is most computationally expensive [11].

Wang et al. present a dynamic framework combined with

Monte Carlo simulation model and the Bayesian approach,

which is to couple with an application of a groundwater

modelling scheme in pollution source identification of

groundwater [12]. Machine learning as a predictive method

based on probability.

In recent years, locating pollution sources in a water

supply network based on simulation–optimization methods

has become a hot research spot. Simulation–optimization

methods mainly find the pollution node with the smallest

error by comparing information from the monitoring point

(the node where the water quality sensor is set) with the

concentration information of various pollution events at the

monitoring point to determine the source of the pollution

(including the attributes of injection position, time, etc.).

The problem of pollution source location is based on the

assumption that the pollutant is injected into any node of

the water supply networks, and it is constructed through

simulating the cumulative concentration of the monitoring

points. Supposing a forward simulation model, the known

pollution source information can be used to simulate the

cumulative pollution concentration of the monitoring

points. The pollution source location problem is a reverse

problem of the above process, and finding the source of

pollution with the minimal difference value between the

simulated cumulative concentration and the actual detected

cumulative concentration at the monitoring point is an

optimization problem. Simulation–optimization methods

are problem solving approaches that use an optimization

algorithm driven simulator (i.e. EPANET). Optimization

algorithms have strong local and global optimisation ability

and good convergence, the unique advantages and mech-

anisms of optimisation algorithms have attracted the

attention of scholars and have been successfully applied in

many fields [13–37].

In 2005, by matching monitoring point information with

pollution events in a random pollution matrix, the location

of the pollution, the injection speed, etc. were backtracked

[38]. Guan proposed a simulation–optimization method for

the nonlinear problem of pollution source location. By

continuously reading the sensors data to optimize the pre-

dictions and correct the pollution source, the pollution

source and pollutant release history could be finally iden-

tified [39]. Preis and Ostfeld present a simple, straightfor-

ward genetic algorithm (GA) method to enhance the

security of water supply networks for pollution source

identification and the limitations of the related previous

works coupled with the proposed method [40]. Preis and

Ostfeld also developed the pollution source detection

model and proposed an improved GA method for pollution
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source detection. The proposed algorithm’s performance is

demonstrated using two application examples, demon-

strating the tradeoff between sensor types [41]. Zechman

et al. proposed an evolutionary strategy-based method to

find the most suitable pollution source using global

heuristic search algorithm based on monitoring point

information [42]. Vankayala et al. think the water demand

is uncertainty in the water distribution system, so the pol-

lution source identification problem maybe uncertainty too.

The authors using GA as the optimizer and EPANET tool

as the simulator to solve the pollution source location

problem. In this method, by minimizing the difference

between the simulation and observation concentrations at

the sensor nodes to find the pollution source location and

concentration [43]. In 2010, a simulation–optimization

method was also applied to track pollution sources. Sodium

hypochlorite instead of a pollution source was used in that

study for the simulation, and then different input parame-

ters were compared [44]. Drake and Zechman think the

pollution source maybe multiple in water distribution sys-

tem. The author proposed Niched Co-Evolution Strategies

(NCES) to prevent the error location of a pollution source

and improve response strategy [45]. Liu et al. used a self-

adaptive dynamic optimization algorithm to location the

pollution source with searching for the pollution source

features (start time, position, and release history) and by

adding new sensors continuously to get the only optimal

solution through slow convergence [46]. Hu et al. proposed

a mapreduce-based parallel niche GA for the pollution

source location problem, they used the niche GA as the

optimizer and EPANET software as the simulation tool

[47]. Yan et al. have used intelligent optimization algo-

rithms to study the pollution source location problem and

achieved a series of results [48–54].

Currently, most related research assumes that the urban

residents’ water demand is a known constant input,

whereas in reality, due to dynamic changes of the water

demand, the model has dynamic variability at the input. To

increase the accuracy of the positioning model, the change

in water demand needs to be defined as an unknown input

during the modelling process. This study used the Poisson

distribution model to simulate the dynamic change of urban

residents’ water demand, which is used as the input for the

problem model. This study also proposed an improved GA

as the optimization algorithm for the pollution source

location problem under variety water demand. Finally, the

accuracy and robustness of the propose algorithm is veri-

fied via simulation experiments.

2 Pollution source location problem model

Pollution of the water supply network associated with the

injection of pollutants is a complicated and random process

involving the type of pollutants, the injection point, the

injection amount, the injection time, the injection duration,

etc. In the process of establishing actual modelling, it is

generally assumed that the pollutant is a conserved sub-

stance that does not react with other substances in the pipe

network and only gradually dilutes with the water flow.

Moreover, the pollutant running speed is considered con-

sistent with the average flow velocity of the pipe segment.

Pollutants are injected into the pipe network only through

the nodes, and the probability of injection for all nodes is

either equal or set according to the population covered by

the nodes. The injection from the pipe segment to the pipe

network is not considered, and the injection of important

facilities, such as water sources and water towers, is not

considered. The sensors can monitor the concentration of

any pollutant in real time. When the concentration of a

pollutant exceeds the set threshold, then this pollution

event can be detected at the monitoring point. The injection

of the pollutant may occur at any node and any time, and

intermittent injections are not considered for the injection

point, injection amount, injection time, and injection

duration of the pollutant. The research object of this paper

is the case of single node pollution injection and the sim-

ulator is EPANET, EPANET simulators can simulate the

characteristics of water supply network and the simulation

process of pollutant intrusion, and can track the chemical

concentration, pipeline flow and node pressure in the entire

water supply network [55].

From the perspective of optimization, the pollution

source location problem is to attain the minimum differ-

ence of the cumulative concentration by simulating and the

actual cumulative concentration of the pollution event at

the monitoring sensor by detecting. When the variance is 0

or less than a given threshold e, the pollution event is

considered to be an actually occurring pollutant injection

event. Through the analysis of the pollution source location

problem, we found that the pollution source location

problem is uncertain. The uncertainty of the water supply

network pollution source location system includes three

aspects: (1) observation and sensor measurement errors due

to sampling deviation and detection error; (2) model errors

due to simplification and incorrect assumptions in the water

quality model; and (3) the uncertain water demand due to

the unknown real-time water demand fluctuations, which is

mainly caused by inherent changes in water consumption

levels and the water demand of the consumers at the node.

Due to the above uncertainties, the problem of locating the

pollution source in a water supply network cannot be
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solved using a deterministic method (i.e. assuming the

system operates under fully known conditions). This study

did not consider observation and model errors. The

uncertainty in the water demand for residents is because the

actual water consumption of residents is uncontrollable.

The data of when and how much water is needed cannot be

fixed. When the pipe network is polluted, the uncertain

water use of the residents will result in different water flow

paths, thus leading to changes in the flowing path and

concentration of the pollutants and causing uncertain

characteristics in the location pollution source problem.

In this study, the urban residents’ water demand data are

uncertain, and the pollution injection start time and dura-

tion are assumed that the known, that is, the pollution

source location problem can be simplify to locating the

pollution source position and the cumulative concentration

of the injected pollutant. The pollution source location

problem model is shown in Eq. (1).

FindfL;C0g

minmize F ¼ max
k¼1;...;Ns

XT

t¼1

Cobs
k ðtÞ � C�

kL;C0; t
� �2

( )
ð1Þ

where F refers to the prediction error, L refers to the node

of location point of the pollution source, C0 refers to the

concentration of the pollutant in the known pollution

injection time, t refers to the current time step, T refers to

the total number of sampling time steps, k refers to the

position of a certain sensor, NS refers to the total number of

sensors, Cobs
k refers to the true cumulative concentration at

the sensor position k, and C�
k ðL;C0Þ refers to the cumula-

tive simulated concentration observed at the sensor of

position k. Here, the dynamic change in water demand is

the cumulative simulated concentration C�
k applied to the

calculation rather than the true cumulative concentration

Cobs
k , and the threshold is an empirical value.

3 Resident water demand model based
on the Poisson distribution

3.1 Resident water demand model

Residents’ water demand has a certain regularity.

Vankayala et al. in Ref. [43] mentioned that to obtain a

time-varying, randomized water demand model for resi-

dents, Buchberger and Wells statistically analysed the

30-day water demand data of 21 households in Milford

Township in Ohio (USA) in 1996 to determine the regu-

larity of water demand based on the statistics of the

observed data. In this study, the water demand data of

Milford Township was used for the experimental testing.

The hourly water weighted factor can be obtained from the

daily total water demand data. The hourly total water

demand data can be obtained using the weighted factor and

the daily basic water demand data in a given pipe network.

The total water demand per hour is then divided into nodes

according to the weighted factor of each node. Using the

water demand data of Milford Township from Ref. [43],

we can get the mean hourly water demand with MATLAB

2014a as shown in Fig. 1. Although the water demand of

residents is dynamic, it follows a certain rule. We can give

the instantaneous residents’ water demand of any node in a

water supply networks using the Poisson distribution

model, so the Poisson distribution model is used to simu-

late the residents’ water demand rule in this study.

3.2 Poisson distribution model

The Poisson distribution model [56–58] is a discrete

probability distribution commonly found in statistics and

probability. The Poisson distribution model can give the

instantaneous residents’ water demand of any water supply

networks node. According to the water consumption of

residents of Milford over a month, the instantaneous time

and spatial variability of the water flow were quantified. In

this study, we used Poisson rectangular pulse process to

characterize the duration, frequency and intensity of resi-

dents’ water demand with a single household. These

characteristics can be modelled as a non-homogeneous

Poisson rectangular pulse process (PRP). Assuming the

frequency of water demand follows the Poisson distribu-

tion, i.e. an arrival process with a rate parameter that varies

with time. When used in a single household, the water use

frequency is approximated as a rectangular pulse with

random time and random intensity as shown in Fig. 2.

According to the Poisson distribution model, multiple

pulses cannot occur at the same starting time. Due to the

limited duration of each pulse, two or more pulses in dif-

ferent start times maybe overlap in a limited time. When

this happens, the total amount of water used by multiple

residents in their homes is the sum of the individual pulse

intensities.

When a server is busy, the water use demand is assumed

to be a rectangular pulse of random duration and random

intensity. Assume that Y1 is the water usage intensity of the

Resident 1 in the water server, regardless of the type or

amount of the water used. When the server is busy, Y1 is

the mean and difference of an independent, positive con-

tinuous and identically distributed random variable; and

when the server is idle, the intensity of water use is zero. In

any instant use of water, one or more servers can be very

busy. To consider these possibilities, let Y1 representing the

sum of the water pulse intensities at the same time for

Resident 1 as shown in Eq. (2).
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Y1ðkÞ ¼
Xk

i¼0

ðY1Þi; k ¼ 0; 1; 2; . . . ð2Þ

where ðY1Þ0 ¼ Y1ð0Þ ¼ 0 because when all the water ser-

vers are idle, there is no water flow. Since k is a given fixed

sum and the water use intensity is assumed to be inde-

pendent of each other, the mean of Y1ðkÞ is ka1 and the

variance is kb21. The cumulative distribution function is

shown in Eq. (3).

G1ðq; kÞ ¼ P½Y1ðkÞ� q� ð3Þ

Equation (3) represents the multiple convolution of the

cumulative distribution function for each intensity. When

all water servers are idle, no water is used, or

G1ðq; 0Þ ¼ 1; q� 0; whereas if at least one water server is

busy, the water usage must exceed zero, or

G1ð0; kÞ ¼ 0; k� 1. Where limt�[1 P1ðk; tÞ ¼ P1ðkÞ ¼
PðK1 ¼ kÞ is recorded as the equilibrium probability,

which is obtained based on the Erlang loss Eq. (4):

P1ðkÞ ¼ P1ð0Þ
k1
l1

� �k
1

k!
; k ¼ 0; 1; 2; . . .;m ð4Þ

Because the probability is constantP
k P1ðkÞ ¼ 1; k ¼ 0; 1; . . .;m, the probability that Resi-

dent 1 has no busy server can be calculated by Eq. (5).

P1ð0Þ ¼
1

Pm
k¼0

k1
l1

� �k
1
k!

¼ exp � k1
l1

� �
ð5Þ

The dimensionless term k1
l1

is often used as a factor of

utilization rate in queuing theory and gives a measure of a

server’s average use, which is represented as q1 ¼ k1=l1.
Equation (5) is substituted into Eq. (4) to obtain Eq. (6).
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Fig. 1 Mean hourly water

demand of Milford Township
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P1ðkÞ ¼
qk1e

P1

k!
; k ¼ 0; 1; 2; . . . ð6Þ

Assume that Q1 is the flow of water through the reser-

voir in the amount of water used by Resident 1. Because

the flow is an aggregate of K1 busy server responses, Q1

can be described via Eq. (7).

Q1 ¼
XK1

i¼0

ðY1Þi;K1 � 0 ð7Þ

In Eq. (6), K1 is fixed and the busy servers’ number K1

here is random. Because K1 obeys the Poisson distribution

and Y1 is an independent random variable with identically

distributed, Q1 becomes a complex Poisson distribution

process.

The Q1 at time n is presented as ðQ1jK1 ¼ kÞ ¼ Y1ðkÞ,
and then the number of busy servers used by Resident 1 is

adjusted to EðQn
1Þ ¼

P1
k¼0 E½Yn

1 ðkÞ� � P.
Let n ¼ 1, then the average value of Q1 is obtained by

combining Eq. (7) as shown in Eq. (8).

EðQ1Þ ¼
X1

k¼0

ðka1Þ �
qk1e

P1

k!
¼ q1a1 ð8Þ

The variance of Q1 can be obtained using the mean

value of Q1 as shown in Eq. (9).

varðQ1Þ ¼ EðQ2
1Þ � E2ðQ1Þ ¼ q1ða21 þ b21Þ ð9Þ

Combined with the mean and variance of the Poisson

process [Eqs. (8) and (9)], the model for a single household

water demand can be obtained, and it can be used to obtain

the data of a single-family residential water use at any time

point.

For multiple household water demand, the water

demand of a single household,Qj, is expanded to represent

the water demand of the resident j. The flow of n residents

through reservoir n in K�
n busy servers is:

Q�
n ¼

Pn
i¼0 Qj ¼

PK�
n

i¼0 ðY�
NÞi; K�

n � 0. The mean and vari-

ance are presented in Eqs. (10) and (11), respectively.

EðQ�
nÞ ¼ E

XKn

i¼1

ðY�
NÞi

" #
¼ EðK�

nÞEðY�
NÞ ¼

Xn

j¼1

qjaj ð10Þ

varðQ�
nÞ ¼ var

XKn

i¼1

ðY�
NÞi

" #
¼ EðK�

nÞEðY�
NÞ

2

¼
Xn

j¼1

qjða2j þ b2j Þ ð11Þ

According to the mean and variance of the Poisson

process [Eqs. (10) and (11)], the water demand model for

multiple households can be obtained, and it can be used to

obtain the data of a multi-family residential water use at

any time point.

Using the Poisson distribution model, the dynamically

changing water demand in the experimental water supply

networks can be obtained. Since the Poisson process is

discrete, the obtained data represent the water demand of

the residents at each time point, and the demand data curve

can be obtained by connecting the water demand data of

each moment as shown in Fig. 3, the grey line represents

the water demand generated by the Poisson distribution

model, and the black line represents the water demand

shown in Sect. 3.1.

4 Pollution source location method based
on the improved genetic algorithm

When using the simulation–optimization model for the

pollution source location problem, the state of the

hydraulic water quality is outputted positively through the

EPANET simulator, and the results are compared with the

sensor’s information actually detected by the monitoring

sensor. If the difference value is less than the given

threshold, then the optimization algorithm’s optimal solu-

tion is the pollution source position; otherwise, the iteration

of the optimization algorithm continues to perform until the

stop condition is met, and then the algorithm ends. The

overall framework of the simulation–optimization is shown

in Fig. 4.

As shown in Fig. 4, the optimization algorithm acts as

an optimizer to generate the pollution event and the sim-

ulation software EPANET uses to simulate the pollution

event and output the actual pollutant concentrations at each

node. In this study, an improved genetic algorithm is used

as the optimization algorithm. In the population, each

individual represents a pollution event. The EPANET

simulator can simulate the pollution event and output the

actual pollutant concentration information of the nodes in

the water supply networks. Via comparisons with the real

information detected by the monitoring sensor, the indi-

vidual fitness can be calculated. A smaller fitness value

corresponds to a greater likelihood that the pollution event

is a real source of pollution.

4.1 Problem code

To solve the above framework model, this paper proposed

a genetic algorithm based on hybrid coding. The genetic

algorithm is based on Darwin’s theory of biological evo-

lution. By simulating the evolutionary process of living

creatures in nature, the solution space is filtered and sear-

ched by the rule of ‘‘survival of the fittest’’, and the optimal

solution is then obtained. In nature, species wither greater

adaptability present more appropriate adaptations to the

environment and a greater likelihood of survival. The
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variables of the pollution source location problem include

the pollution source location, start time, duration, and

pollutant injection vector. Based on the properties of the

variable, this study uses the combination of integer coding

and real coding to encode the pollution source location

problem, and the genetic operation of the algorithm was

modified according to the corresponding coding mode,

which accelerated the speed at which the optimal solution

was obtained and improved the convergence speed of the

algorithm.

In the population, each individual represents a pollution

event, and an individual contains four variables: {node

position, pollution injection time, duration, pollutant

injection mass}, where the first three variables are integer

variables using integer coding and the fourth variable is a

real number vector encoded in real numbers. For example,

if the pollution source node is 73, the pollutant injection
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Fig. 3 Water demand generated

by the Poisson model
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time is 2:00, the pollutant duration is 4 h, and the pollution

source injection mass is (200, 216.5, 310.9, 300), then the

individual code corresponding to this pollutant injection

event is {00073024} and {200, 216.5, 310.9, 300}.

4.2 Genetic operation

The problem code in this paper combines the integer and

real number coding. It is also a combination of two

methods in the corresponding cross operation and mutation

operation. In the cross operation, the integer coding adopts

double point cross transformation and the real number

coding adopts real number recombination; in the mutation

operation, the integer coding adopts a single point mutation

and Gaussian mutation.

Cross operation Assume that in individual 1, the pol-

lution source position is 125, the starting injection time is

10:00, the injection duration is 3 h, the injection concen-

tration changes once every hour, and the injection mass

vector is (215.1, 345.8, 457.8); and assume that in indi-

vidual 2, the pollution source position is 96, the starting

injection time is 3:00, the injection duration is 4 h, the

injection concentration changes once every hour, and the

injection mass vector is (300.1, 123.4, 39.1, 356.8).

According to the coding method proposed in this paper, the

encoded individuals are as follows:

Individual 1: {00125103} {215.1, 345.8, 457.8}

Individual 2: {00096034} {300.1, 123.4, 39.1, 356.8}

As shown above, the former integer is encoded as an

array of integers with a fixed length of 8 bits using two-

point cross transformation, that is, randomly selecting two

positions for cross transformation. Suppose that two num-

bers 3 and 6 are randomly selected, meaning that the genes

at the position 3 to position 6 genes of Individual 1 are

exchanged with those of Individual 2, thus obtaining two

new individuals after the cross transformation:

Individual 3: {00096003} {215.1, 345.8, 457.8};

Individual 4: {00125134} {300.1, 123.4, 39.1, 356.8}.

The latter real number is encoded as an array of real

number with variable lengths, which varies according to

the length of time. The algorithm for real reorganization is

as follows:

Sub-individual 1 = a 9 parent individual 1 ? (1 - a) 9

parent individual 2;

Sub-individual 2 = (1 - a) 9 parent individual

1 ? a 9 parent individual 2;

Where a is a random scale factor. After the real number

recombination of the real number coding of the above

Individual 3 and Individual 4, the crossing sub-individual

can be obtained (assuming a is randomly selected as 0.7):

Sub-individual 1: {00096003} {240.6, 279.08, 332.19}

Sub-individual 2: {00125134} {274.6, 190.12, 164.71,

249.76}

Since the real part of Individual 3 has only three digits

and that of Individual 4 has four digits, the corresponding

real number is 0 when the fourth bit of Individual 4 is

calculated.

Mutation operation Similar to the cross operation, the

mutation operation is also performed separately in two

parts. The integer part is a single point mutation, and the

real part is a Gaussian mutation. Assuming that the Sub-

individual 1 after the above cross operation is retained for

the mutation operation, the former part is first subjected to

a single point mutation, and the eighth bit is randomly

selected for mutation, resulting in {00096005} after the

mutation.

The latter part is a Gaussian mutation in which a random

number obeying Gaussian distribution is generated to

replace the mass in the current mass vector. The mathe-

matical expectation of the random number generated by the

algorithm should be the mass value of the current mutation.

In this study, six random numbers obeying U(0,1) are

generated by simulation, and their mathematical expecta-

tion is considered an approximation of the random numbers

in Gaussian distribution. Assuming that the approximate

Gaussian distribution random number is 0.85, the upper

bound of the injection mass is 500 and the lower bound is

10; therefore, the mutation is as follows:

Real number after mutation = [(0.85 9 (500 - 10) ?

10) ? Sub-individual 1]/2

The individual after the mutation is

{00096005}{333.55, 352.79, 379.34, 213.25, 39.8}. Since

the real part of the original individual has only 3 bits and

the 8th bit of the integer part is 5 after the mutation, ran-

dom initialization is performed for the last two bits.

4.3 Procedures of the algorithm

In this study, we using the simulation–optimization

scheme for the pollution source location problem and

proposed an improved GA. The improved GA is used as

the optimizer, and simulation software EPANET is used as

the simulator to simulate the pollution events. The detail

procedures of the improved genetic algorithm are as

follows:

Step 1 Coding Assuming that the pollution position is

121, the injection starting time is 2, the duration is 2 h,

the time step is 30 min, and the pollutant injection

quality is 300.5, 180.7, 240.9, 300.0. The coding is two

arrays: array 1 {00121, 300, 02, 2} and array 2 {300.5,

180.7, 240.9, 300.0};
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Step 2 Initialization The population size is N, and each

individual is initialized with array 1 and then initialized

with array 2 according to the duration, where the length

of array 2 = the duration 9 (1 h/time step);

Step 3 Selection operation N individuals are selected by

roulette;

Step 4 Cross operation As mentioned above, a double-

point cross operation is applied for array 1, and real

number reorganization is applied for array 2;

Step 5 Mutation operation As mentioned above, a single

point mutation is applied for array 1, and Gaussian

variation is applied for array 2;

Step 6 Judgement Whether the stop condition is met is

determined. If not, go to Step3; otherwise, the program

ends.

5 Experimental simulation and analysis

5.1 Parameter setting

In this study, we use two test water supply networks for the

algorithm comparison experiment and verification of the

algorithm’s performance. The dataset of these two water

supply networks are from the website http://emps.exeter.

ac.uk/engineering/research/cws/downloads/benchmarks/

expansion/. One network is test network 1, which contains

92 nodes, 3 reservoirs, 2 pools, 2 pumps, and 4 sensors {18,

29, 47, 67} as shown in Fig. 5; and the other is test network

2, which contains 430 nodes, 4 reservoirs, 3 pools, 11

pumps, and 10 sensors {6, 22, 30, 34, 40, 42, 43, 76, 80,

87} as shown in Fig. 6. The threshold of the concentration

detected by the sensor is assumed to be 0.0001 mg/l. All

the nodes in the network are assumed to provide water only

for the residential water supply area. Simulation software is

EPANET 2.0, and the specific parameters of the two net-

works are shown in Table 1. The parameters for the genetic

algorithm used in the experiment are shown in Table 2.

In this study, assuming that the actual pollution has a

single source, two sets of experiments are mainly per-

formed in this study. In order to verify the accuracy of the

proposed algorithm, we design the experiment 1 on the

benchmark water supply networks. In experiment 1, the

proposed algorithm is compared with the algorithm in the

study by Praveen [37]. Experiment 2 is to verify the pro-

posed algorithm’s robustness via comparisons among

experiments on a large size of water supply network.

Fig. 5 Position of the sensors

and pollution source location in

test networks 1
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5.2 Verification of the algorithm accuracy

The goal of the pollution source location algorithm is to

accurate locate of the pollution source and get the con-

centration of the injected pollution. In test network 1, four

sensors are set up, and the Poisson model as water demand

model was used to test the standard GA and the improved

GA to verify the accuracy of the improved algorithm. The

two sets of experimental scenarios are as follows:

• Scenario 1 Poisson model and standard GA

• Scenario 2 Poisson model and improved GA

It should be noted that the concentration of the pollution

source in Scenario 1 is maximized. For example, if the

injection concentration is 2674.21, then it is set to 3000

when the experiment is performed. However, this

assumption is not applied to Scenario 2.

For each scenario, the Poisson model was used to gen-

erate a random water demand of 800 groups to conduct

experiments on network 1 using the corresponding opti-

mization method. In this study, using the hit probability to

describe the algorithm’s accuracy, that is, the amount of

water demand in a real pollution scenario obtained by

optimizing and simulating the water demand for several

times divided by the total number of residents’ water

demand. The calculation formula of the hit probability is as

Eq. (12).

P ¼ Nr

Ns

ð12Þ

In Eq. (12), P indicates the hit probability, Nr indicates

the number of residents’ water demand to find a true pol-

lution source, and Ns indicates the total number of resi-

dents’ water demand in the simulation.

As shown in Fig. 7, Scenario 1 uses the Poisson model

and the standard genetic algorithm to identify possible

pollution source nodes, which are marked with the dia-

mond and triangle in the figure. The triangle is the

Fig. 6 Position of the sensors and pollution source location in test

networks 2

Table 1 Parameters of the

water networks
Parameter Test network 1 Test network 2

Size of the network 97 430

Type of the pollution source Single source Single source

Water demand Generated by the Poisson distribution model

Hydraulic time step 1 h 1 h

Good water quality time 5 min 30 min

Total simulation time 24 h 48 h

Pollution injection node 15 374

Pollution injection time – 0:00

Pollution injection duration – 1 h

Number of sensors 12/12/4 4

Pollution injection mass 2674.21 300
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pollution source’s real location, and the diamond is the

interference of the pollution source node introduced by the

dynamic variability of the algorithm. The hit probability

for the pollution source location is 56%. The experimental

results of Scenario 2 showed that the hit probability for the

pollution source location is 100%; therefore, the obtained

result only showed the node position marked with a tri-

angle. By adding the improved strategy in the standard GA,

the algorithm can effectively jump out of the local optimal

and the water supply networks is relatively small and does

not contain many nodes; therefore, the interference term

can be eliminated, and the real pollution source can be

found. The comparison of Scenario 1 with Scenario 2

shows that the proposed algorithm has a better hit

probability.

5.3 Verification of the algorithm’s robustness

Experiment 1 showed that the accuracy of the improved

algorithm for test network 1 was higher between the two

tested algorithms; thus, whether the algorithm is still valid

for the large size of water supply networks is now con-

firmed. In Experiment 2, 10 sensors were set up in test

networks 2 and two scenarios were implemented:

• Scenario 3 Poisson model and standard GA

• Scenario 4 Poisson model and improved GA

The experimental results are shown in Fig. 8 for Sce-

nario 3 and Scenario 4 of test network 2. For test networks

2, the hit probabilities of the pollution source location for

Scenario 3 and Scenario 4 are 30% and 61%, respectively.

The triangle represents the location of the true pollution

source, and the circle represents the locations found by the

improved algorithm that may be pollution sources other

than the true pollution source.

The comparison with the results of experiment 1 show

that the standard GA is not suitable for locating the pol-

lution source in a large size of water supply networks.

However, for the improved algorithm, although it could not

find the exact position of the pollution source with the hit

Table 2 Parameter settings for

the experimental comparisons

of the algorithm

Parameter GA Improved GA

Size of the population c 80 80

Number of iterations m 40 40

Amount of water demand realized 800 800

Cross probability 0.8 0.8

Mutation probability Gaussian mutation Gaussian mutation

Fig. 7 Experiment 1 results

Neural Computing and Applications (2021) 33:209–222 219

123



probability 100%, the probability of finding the true loca-

tion of pollution source was twofold higher than that of the

standard GA; therefore, the improved GA can solve the

problem of pollution source location in a large size of water

supply networks.

6 Conclusions

With the rapid development of economy, the quality of

people’s life has been continuously improved, and the

ecological environment has been deteriorating at an

unprecedented speed, which leads to the frequent occur-

rence of large-scale water pollution incidents in cities and

towns by accident or on purpose. The open operation and

easy intrusion of water supply networks have led to the

frequent occurrence of sudden pollution incidents in a

water supply networks. To reduce the significant economic

losses and adverse social impacts caused by pollution of

the water supply network, the pollution source must be

located, and studies of this problem have an important

practical significance. In this paper, an urban resident water

supply network was used as the research object. EPANET

2.0 software was used as the simulation platform to study

the pollution source location problem under variety water

demand. According to the dynamic change of residents’

water demand, the pollution source location problem was

transformed into a dynamic optimization problem, and

used the optimization algorithm to solve this problem. In

order to solve the variety water demand of residents, the

Poisson distribution model was used to simulate the variety

water demand of residents and an improved genetic was

proposed as the optimization algorithm. The accuracy of

the proposed algorithm was verified by simulation experi-

ments on benchmark water supply networks, and the

robustness of the proposed algorithm was verified by two

different size of water supply networks.
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