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Abstract
A number of technological improvements have prompted a great concern on ‘dynamism’ in vehicle routing problems

(VRP). In real-world applications, the dynamic information happens simultaneously with the plan being carried out. In

order to effectively solve dynamic VRP (DVRP), many optimization strategies have been introduced in the literature. A

new variant of vehicle routing problem is proposed which combines DVRP with time windows and capacity constraints,

named capacitated DVRP with time windows (CDVRPTW). Apart from the traditional way of handling the problem, this

paper proposes a novel strategy that incorporates improved firefly algorithm (IFA) into the framework of spiking neural

P (SN P) systems, named spiking neural firefly optimization (SFO). A mathematical model of the problem is formulated,

and the solution scheme is designed by associating a number of SN P systems that work in parallel to find optimal solutions

in a reasonable time. Additionally, the parameters in the IFA are optimized by adjusting the rule probabilities using SN

P systems. Being a NP-hard problem with real-world applications, the benefits of this study are far-reaching. The proposed

scheme has been tested on benchmark instances and proved novelty, feasibility, and potentiality of the system.
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1 Introduction

Natural computing (NC) [1] refers to the process inspired

by structure, function, and behavior of biological as well as

natural systems. There are many variants of NC, which

include artificial neural networks (ANN) [2], swarm intel-

ligence [3], evolutionary algorithms [4], quantum com-

puting [5], and membrane computing [6]. Membrane

computing (MC) is a branch of computer science that aims

to find new computational and mathematical models from

the structure and functioning of cellular membranes. The

models considered under MC are distributed and parallel

systems called P systems handling multisets of objects in

the cells defined by placing membranes hierarchically or

generally.

Many engineering design optimization problems are

solved using MC in a reasonable time because of its non-

determinism and maximum parallelism features [7]. The

arrangement of membranes categorizes the MC systems

into cell-like, tissue-like, and neural-like systems. The

latter class is the most recent branch of MC, which is

incorporated by spiking neurons into the area of P systems

(SN P systems). SN P systems fall under the third gener-

ation of artificial neural network models. These systems

work by the spiking nature of neurons.

SN P systems can be represented by a directed graph

with nodes referring to spiking neurons, and edges form

synapses between neurons through which communication

takes place. SN P systems with neuron division and dis-

solution [8], budding [9], and spikes and antispikes [10] are

applied in numerous applications and proven to be efficient

and reliable. Earlier SN P systems were treated as lan-

guage-generative devices of 0’s and 1’s [11]. An opti-

mization SN P system to find the solutions of an

unconstrained single objective optimization problem has

been proposed to solve knapsack problems [12]. Spike train
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and timing are the two key factors of SN P systems that are

used for spiking and coding of information [13].

Because of the better theoretical foundations of MC,

many intelligent systems employ new methods and para-

digms [14]. It is used to identify the nuclear export signals

of amino acid sequence, which is a challenge in compu-

tational biology [15]. Recently, SN P systems are

employed in many intelligent and expert domains such as

the semantics of deductive database systems [16] and

parallel multiples [17]. So it is concluded that SN P sys-

tems are more powerful in intelligent and expert systems

from both theoretical and practical sides [18].

An optimization problem [19] is a problem of finding

the best solution from a set of feasible solutions that cannot

be solved in polynomial time limit using any deterministic

method. Numerous methods and schemes are designed to

solve such kinds of problems [20–22]. Most of the existing

schemes in the literature emphasize on arriving at the

optimal solutions quickly rather than focusing on the time

limit. One of the objectives of this paper focuses on the

balance between arriving the best solution and reducing the

time limit. Apart from that, a novel way of choosing,

controlling, and activating spikes is employed.

Capacitated VRP with time windows (CVRPTW)

[23, 24] is a variant of VRP, which has emerged due to the

increasing demands of customers in the specific time span.

It is considered as a nondeterministic polynomial hard (NP-

hard) problem that finds an ideal arrangement of routes to

be serviced by a fleet of vehicles of some fixed capacity to

serve a given arrangement of customers inside the allotted

time windows. The customer’s geographic locations and

demands are unpredictable while designing routes for a

particular vehicle. In this way, it is critical to make a

decision on a choice on the allocation and scheduling of

new demands by considering all the components that are

significantly influenced.

The intention of this paper is to design a spiking neural

framework to solve CVRPTW with dynamism

(CDVRPTW) in a feasible time without sacrificing the

global optimum solutions. The proposed solution scheme is

designed by combining a number of SN P systems coupled

with an improved firefly optimization algorithm (SFO). It is

based on the flashing behavior of fireflies, which is a signal

system to attract other fireflies. As noticed in the literature

[25–27], the firefly algorithm (FA) has been applied to

many engineering design optimization problems. Only

limited articles exist which combine FA and VRP [28–31].

The strong adaptability and robustness, easy to set up,

minimal manual adjustments, and minimal parameters

made it suitable for VRP problems. But, the reason behind

its minimal usage in VRP kind of problems is that it is

prone to local optima. But, in the proposed method, the

authors overcome it by carefully designing the initial

assignments of fireflies and parameter optimization.

The main contributions of the proposed scheme can be

stated as:

1. We propose a spiking neural-based firefly optimization

scheme (SFO) to find solutions to CDVRPTW.

2. The firefly optimization is modified to explore the

solution space faster, and thereby achieving a high

convergence rate.

3. Parameters in the proposed firefly scheme are opti-

mized by adjusting the rule probabilities in the SN P

systems.

4. A notion of movement and attraction of fireflies is

introduced by taking real-world circumstances like

traffic data and dynamic requests.

5. A high degree of parallelism is incorporated in the

cluster level by considering solutions together and

assigning them to different spiking neurons for simul-

taneous computation. Here, cluster means a group of

customers who are geographically mapped by distance.

6. The initial feasible positions for fireflies are carefully

designed using Clarke and Wright [32] algorithm

rather than the random assignment.

7. A mathematical formulation of the problem is made

with real-world constraints.

The remaining sections are organized as follows: Sect. 2

carries out a detailed literature review on the application

and solution approaches to the problem. Section 3 details

the problem description and mathematical formulation of

CDVRPTW. Section 4 outlines a basic SN P system.

Section 5 explains the improved firefly optimization

scheme using SN P systems. Section 6 describes the pro-

posed system design and the various modules involved.

Section 7 talks about the experimental results and discus-

sions in detail. Concluding comments and future scope of

the system are given in Sect. 8.

2 Literature review

The advancement of technology in various fields has pro-

moted the evolution of intelligent transportation systems

(ITS), which uses the history of geolocation techniques

with geographic information systems [33]. Vehicle routing

is aiming for an operational task that is bound to the

competence of dispatches as well as the optimization costs

which are directly reliant on the size of the fleet [34–38].

The applications of routing in various aspects of life have

been found.
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2.1 Transport of goods, services, and peoples

Because of the highly variable traveling time, one should

take factors like traffic, competition, and cooperation

between transport companies into account [39, 40]. All

these applications come under city logistics. Planning real-

time traffic and dynamic routing of a fleet of vehicles,

which require additional modules and attributes, are actu-

alized [41]. A decision support system (DSS) can be used

for a better trade-off between dynamic travel and service

times.

In courier transportation systems, one should take into

account not only the request locations, time window, and

capacity constraints but also traffic data and forbidden

paths. Optimization-enabled automatic fleet management

system (AFMS) has considered for solving such types of

problems [42–44].

Customer satisfaction is an important factor when we

define an FMS. Newspaper delivery is an example of such

type of domains where the complaints will be filed in case

of delay of delivery. In order to reduce costs and improving

customer satisfaction, centralized applications were pro-

posed that made use of cell phones to continuously com-

municate with drivers at the same time of performing

routing [45]. Additionally, future requests are anticipated

using historical data of customers [46].

In grocery delivery services, the merchant designs var-

ious clients that can be considered inside a fixed time

window. At the same time, it is made inaccessible to the

clients when the capacity constraints are violated. The time

windows fixed for a customer are dynamically planned

based on future request in-home delivery problems [47].

Greedy randomized adaptive search procedure (GRASP)

and adaptive large neighborhood search (ALNS) were

proposed which consider uncertainty by introducing sce-

narios for possible demand realizations [48]. Dynamic

stacker crane problems [49, 50] which considered container

carriers with loading and unloading ships are coming under

operations research applications. In addition, factories and

hospitals are other application domains where products or

medical instruments, respectively, must be transferred [51].

Transport of peoples is characterized by additional

constraints such as regulation on waiting, service, and

travel times. Cab system is the most common online

individual transportation system where the customer’s

requests are composed of pick time and location coupled

with the dropping location. Many variants are available

like advance booking, sharing, etc., which leaves a limited

chance for optimization. The multicab metropolitan trans-

portation system is focused on where more than one cus-

tomer’s request can be serviced [52]. Other application

domains include transport of children to schools, disabled

people to work locations, patients to medical centers, etc.

[53–55]. Air taxis are other domains where the limitations

of the traditional airline are reduced.

2.2 Solution approaches

Ranging from linear programming (LP) to meta-heuristics,

there are many schemes, which solve DVRP and its

variants.

2.2.1 Dynamic and deterministic synchronous optimization
techniques

The timely change of critical information forces new hin-

drances in the absence of stochastic information. In this

specific situation, exact methods are irrelevant since the

optimal solutions are time-dependent. So most of the

approaches on DVRP rely on heuristics that find the best

solutions to the current instance. The first optimization

focused on the dynamic arc routing problem (DARP),

which reconfigures the route each time a new request has

been made. The main drawback was the lack of dimen-

sionality, which prevents its application to large instances.

Decision epochs or time slices are later introduced in the

literature. All these schemes relied on the algorithms of

static routing, but the main drawback was the updating of

routing, which increases delays at the customers’ ends

[56, 57].

A real-time truckload pickup and delivery (PDP) was

addressed [58], where a fleet of trucks has to serve requests

arriving dynamically. It is proposed a rolling horizon

approach based on LP. A dynamic column generator

scheme for DVRPTW has been addressed [59]. The

experimental results based on Solomon’s benchmark

instances reveal that it yields better results in terms of fit-

ness function, but time for performing computation was

very high.

An ant colony system (ACS) [60] to solve DVRP was

developed by using the time slice strategy. At each time

slice, the requests are checked and are handled till the end

of that time slice. They used pheromone trace to transfer

good solutions to the next time window. Similar approa-

ches were also addressed in [61, 62]. The main drawback

of this scheme is that the intensity of pheromone concen-

tration may vanish as the number of iterations increases. It

may lead to having uncertain time to converge for larger

instances.

2.2.2 Dynamic and deterministic continuous optimization
techniques

These kinds of strategies perform optimization throughout

and keep information about good solutions in memory [63].
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When a dynamic request has been made, it uses the

memory where the previous information was stored to plan

and serve new requests. Therefore, the computational

capacity is maximized. In addition, the vehicles are una-

ware of the next requests to be served until they complete

the service of the previous request. The introduction of

parallel tabu search (TS) was the first continuous opti-

mization approach to courier services. A pool of good route

and customer pairs is maintained in memory, and this

information was referred for designing initial feasible

solutions. At the point when a client makes a request, it is

checked in the memory to choose whether it ought to be

accepted or discarded. Different variants like DVRP and

DARP have additionally been implemented using a similar

scheme [64, 65]. The main drawback of the TS is that, even

though it is semi-deterministic, it produces fewer quality

solutions in the long run because of the hard constraint

settings.

A generalization of TS using a multiple plan approach

(MPA) was designed to populate and maintain routing

plans to generate a distinguished solution. Pool updates

were performed whenever a vehicle finishes the serving of

a customer. Nevertheless, it was very crucial in high-di-

mensional problems. Genetic algorithms (GA) with a

human dispatcher to study the D-PDP variant were pro-

posed [66, 67]. The measure of dynamism was low for GA

in spite of the fact that it keeps running all through the

horizon and continually updating the changes.

2.2.3 Dynamic and stochastic schemes

A truckload PDP based on the Markov decision process

(MDP) was formulated [68]. A notion of probability has

then been added to solve VRP along with MDP [69].

However, it lacked dimensionality and was not suitable for

real-world applications. The approximate dynamic pro-

gram (ADP) was designed in order to reduce the limitations

of traditional DP [70]. It was successfully applied to FMS

[35, 37]. But, the main limitation of ADP was that a single

observation may change the whole value function, thereby

modifying the constraints which further distorts successive

observations. The LP with dynamic and stochastic content

has also been designed [58, 71]. Later, emergency vehicle

dispatching and routing was developed and was used by

Haghani and Yang [72]. The problems with these schemes

were again the curse of dimensionality.

2.2.4 Sampling

It relies on the generation of scenarios. A scenario is an

outline of known and future events at each time unit on the

horizon. Multiple scenario approach (MSA) has been

connected to Solomon’s benchmark instances [73] and

performed substantially better than the state-of-the-art

algorithms. The MSA with a consensus scheme has been

used to tackle DVRP [74], and an event-driven framework

with MSA [75] has been implemented later. Dynamic

sample scenario hedge heuristics (DSHH) divides the

horizon into intervals. Routing is done by assigning a

subset of requests to the vehicles relying upon the fre-

quencies of their assignments [76]. It later promoted the

design of branch and regret heuristics. Though all of the

above schemes performed well with dynamism, maintain-

ing and modifying scenarios at each time units added

complexity of the system.

2.2.5 Other strategies

Waiting strategy was introduced in [77] in order to serve

dynamic requests in the neighborhood of a served request

and plan accordingly [78–82]. Relocation strategy was also

designed in case of emergency vehicle routing problems

and is applied in D-VRP, DVRPTW, DTSPTW, etc. [83].

All these strategies were based on delaying the customer’s

request assignments to vehicles in a priority manner. So

some customers may enter a long waiting period which in

turn affects the overall system performance. Also, an

adaptive spiking neural P system [84] is designed to handle

VRP problems, but it did not discuss any dynamic requests

and assignments of customers.

Due to the high complexity of VRP and its variants,

state-of-the-art algorithms are very far from the real-time

requirements in terms of quality and efficiency. Therefore,

there are many factors that need to be considered such as

how to find feasible solutions, how to avoid local optimum,

how to control the convergence rate, and how to optimize

the problem within the acceptable range. The proposed

scheme presents an improved firefly optimization

scheme using SN P systems to find solutions for

CDVRPTW. It incorporates optimization, parallelism, and

determinism into the SN P system framework. To the best

of the author’s knowledge, this is the first work of its kind

that solves CDVRPTW by taking advantage of both FA

and SN P systems with the intelligent exploration and

exploitation of solution space. Analysis of the experimental

outcomes justifies the novelty of the proposed scheme.

3 Problem description and mathematical
model

In this section, a brief description of CDVRPTW will be

explained together with the mathematical formulation of

the problem. The measures for dynamism are also

explained.
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3.1 Capacitated dynamic vehicle routing
problems with time windows (CDVRPTW)

The CDVRPTW is a variant of VRP that has emerged

because of recent improvements in real-world communi-

cations. Larsen [85] introduced two aspects of DVRP: Not

all information on the routing process is available when it

begins; information may change even after the routes have

been constructed.

To understand the problem, Fig. 1 illustrates the route

planning of a CDVRPTW. Here, there are 3 vertices (A, B,

and C) that correspond to 3 different customers with known

requests at t = t0. The edges connecting the customers

denote different parameters like traveling cost, traveling

distance, etc., that are to be optimized. The initial route

assignment to serve known requests (Depot, A, B, C,

Depot) is planned before the vehicle leaves the system.

While the vehicle follows the route AB, one dynamic

request appeared at t = t1 (Fig. 2) in that cluster. So, the

vehicle needs to reroute its path as (Depot, A, B, C, D,

Depot) if the total capacity of the vehicle is greater than or

equal to the sum of all capacities of each customer in the

route.

3.2 The degree of dynamism

The performance of a DVRP is estimated based on the

number of dynamic demands and the time when these

demands arise, though static VRP depends on the number

of clients and their distribution. The measure of ‘dy-

namism’ would be significant when we investigate the

performance of a particular algorithm under constraints.

The role of the new request during the calculation phase of

a routing framework can be used to analyze dynamism.

The measure here is the number of dynamic demands with

respect to the total demands. This proportion is known as

the degree of dynamism and is expressed by [86]:

dod ¼ Number of dynamic requests

Total number of requests
ð1Þ

This measure relies only on the number of requests but not

on the time limits.

Dynamism within fixed time windows has several

routing applications where the service must start and finish

within a fixed known interval of time. In the case of time

windows, dynamism is expressed by effective dod (edod).

It is a measure of the average of how later the customer

requests are accepted compared to the latest time the

requests could be received. Let tk be the time at which kth

request is received, let ek and lk, respectively, be the start

and end of a particular time window, and the planning

horizon is defined between 0 and T such that 0 B tk � T .

We define reaction time (rk) as the distance between the

time the request is made and the latest time at which the

service should starts. The reaction time of kth request

(Fig. 3) is defined by:

rk ¼ lk � tk ð2Þ

In case of time windows ðtwÞ, the effective dod (edod) can

be defined as:

Vertices = {A, B, C, Depot}
Edges = {Depot-A, A-B, B-C, C-Depot}

Fig. 1 Route planning in the static environment (at t = t0)

Fig. 2 Route planning in the dynamic environment (at t = t1)

Fig. 3 The reaction time of two customers under time windows
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edod � tw ¼ 1

n

Xn

k¼1

T � lk � tkð Þ
T

� �

¼ 1

n

Xn

k¼1

1 � rk
T

� � ð3Þ

where 0 � edod � tw � 1 and lk � tk � T ; k ¼ 1; 2; . . .; n,

where n is the sum of immediate requests and advanced

requests during the horizon. In the proposed work, the

DVRP model is treated as a set of static VRP by the event

scheduler. The event scheduler is responsible for receiving

customer requests and creating static problems. Then, it

sends the problems to the optimization procedure (here

SFO) and returns the optimal solutions.

3.3 Mathematical model of the problem

CDVRPTW can be considered as a complete graph-theo-

retical problem with G = (V, E), where V = {V0…VB}, the

vertex set and E = {(Vi, Vj): Vi, Vj 2 V and i 6¼ j }, the edge

set. The vertex V0 corresponds to the depot. Each vertex Vk

2 V has parameters, namely a request Pk, arrival time Tak ,

the waiting time Twk
, service time Tsk , and the time window

[Tek ,Tlk ]. C
t
kj is the transportation cost from customer j to

customer k in the time period t. Each vehicle k has a

nonnegative capacity Wk. The total number of time periods

is denoted by T, and fc and tc, respectively, are the fixed

cost and traveling cost/unit time of the vehicle.

xki ¼
1; if customer k is delivered by vehicle i
0; otherwise

�

ytkj ¼
1; if vehicle serves the customer j from customer k in t
0; otherwise

�

ð4Þ

The objective of the problem is to minimize the total

cost, which is a summation of the fixed cost of vehicles and

the routing cost:

minimize F ¼ fc �
X

k2V

X

j2V� V0f g

XT

t¼1

ytkj þ tc

�
X

k2V

X

j2V� V0f g

XT

t¼1

ðCt
kj � ytkjÞ

ð5Þ

subject to the following constraints:

(a) Allocation of customers to vehicles: Each customer

has been allotted to only one vehicle at a given time:

XB

k¼0;k 6¼j

XT

t¼1

ytkj ¼ 1; j ¼ 1; 2; . . .;B;

XB

j¼1;j 6¼k

XT

t¼1

ytkj ¼ 1; k ¼ 1; 2; . . .;B ð6Þ

(b) The capacity of the depot: The number of vehicles

departed from the depot does not exceed the total

number of vehicles (N) at the depot:

XB

j¼1

XT

t¼1

yt0j �N ð7Þ

(c) The same vehicle services customers on the same

cluster:

XN

i¼1

N xki � xji
� �

�M
XT

t¼1

ytkj � 1

 !
; 8k; j; k 6¼ j

XN

i¼1

Nðxki � xjiÞ�M 1 �
XT

t¼1

ytkj

 !
; 8k; j; k 6¼ j

ð8Þ

where M is a very large number which is defined as

the maximum of the differences between the latest

time of kth customer and earliest time of jth (con-

secutive) customer, 8k; j; k 6¼ j in the route.

(d) Every customer node must be serviced by a single

vehicle:

XB

i¼1

xjk ¼ 1; 8j ¼ 1; 2; . . .;B ð9Þ

(e) Vehicle capacity (WkÞ: The load to deliver to

customers by a vehicle should not exceed the vehicle

capacity for a customer demand Pk.

XB

k¼1

Pkxki �Wk; 8i ¼ 1; 2; . . .;N ð10Þ

(f) Eliminating alternate path: There should not be any

circuit if the vehicle serves the customer j from

customer k at t. Here |A| is the total number of

customers in the path.

X

k;j2A�A;k 6¼j

XT

t¼1

ytkj � Aj j � 1;A

2 1; 2; . . .;Bf g 8k; j; k 6¼ j

ð11Þ

(g) Time window constraints: The constraints on time to

service a customer should not exceed the time

window.

Tak þ Twk
þ Tsk þ Ct

kj �M 1 � ytkj

� �
� Taj;

Taj � Tlj;

Twk
¼ max Tek � Tak ; 0f g

ð12Þ

(h) The values of xki and ytkj should be:
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ytkj ¼ 0; 1; 8k; j; i
xki ¼ 0; 1; 8i; k

ð13Þ

4 Spiking neural P systems

An SN P system [87] of degree m C 1 can be expressed by

a tuple,

P ¼ S; r1; . . .; rm; Sn;Ot

� �

where

(1) S = {a} is a singleton alphabet called spike.

(2) r1,…, rm are neurons of the form:

ri= (Qj
0, sj,0, wj,0, Rj), 1 B j B m, where

(a) Qj
0 is a finite set of states.

(b) sj,0 [ Qj is the initial state.

(c) wj,0 [ S* is the initial multiset.

(d) Rj is a finite set of rules of the form:

s w ? s0 x ygo zout, where s, s0 [ Qj
0, w,

x [ S*, ygo [ (S 9 {go})*, and zout [
(S 9 {out})*, with the restriction that

zout = k for all j [ {1, 2,…, m} different

from i0.

(3) Sn � {1, 2,…,m} x {1,2,…, m} with (j, j) 62 Sn 8 j

2 1; 2; . . .;mf g are called synapses between

neurons.

(4) Ot indicates the set of output neurons ro, o 2
{1,2,…, m}.

The rule set Ri defines the standard rules of the SN

P system. The term ‘go’ means the spikes have to leave

immediately the neuron to the neighboring neurons through

synapses. Those objects that are marked with ‘out’ leave

the system. Thus, when the configuration reaches a state

where no rule can be applied, the computation halts.

5 An improved FA based on SN P systems

There are a few complications in using the classical FA to

solve dynamic VRP problems: (1) The solution space of

classical FA is continuous in the real domain, while the

solution space of VRP is discrete integer domain. (2) The

component c, the light absorption coefficient plays a key

role in the light absorbance. In the event that the estimation

of c is low, at that point it makes FA falls into a local

minimum, while a larger estimation of c forces lower

convergence rate. The domain of c is [0.01, 100] in general.

The step length factor a controls the population diver-

sity, which improves the searching capability and avoids

premature convergence. The domain of a is [0, 1]. We

adopted the discrete iterative position function to make the

solution space suitable for VRP. In addition, the initial

feasible positions of fireflies are designed by the Clarke and

Wright algorithm which improves the solution space of the

problem. Furthermore, the parameters a and b0 are opti-

mized using SN P systems. Also, the light absorption

coefficient c is reinitialized each time the scheme enters

stagnation or when no improvements have made for a

certain number of consecutive iterations.

The firefly movement can be expressed by:

Xnew
i ¼ Xold

i þ b� Xj€Xi

� �
	 a rand � 0:5ð Þ ð14Þ

where Xj €Xi denotes the movement direction of the fire-

fly. It is defined as follows:

Xj €Xi ¼
Xj � Xi 62 Xi

0; otherwise

�
ð15Þ

The a rand � 0:5ð Þ and b are used to control the distance

between fireflies j and i. Let Di be the distance of firefly i

moving to firefly j and can be defined as:

Di ¼
Xj€Xi 	 a rand � 0:5ð Þ\b
0; otherwise

�
ð16Þ

Definition 1 The brightness of ith firefly can be repre-

sented as:

Ii ¼ f ið Þ ð17Þ

where f ið Þ denotes the fitness value of ith firefly which is

evaluated by the objective function defined in Eq. 5.

Definition 2 The attraction factors between firefly i and

firefly j are b rð Þ ¼ b0e
�cr2

, where b0 is the attraction degree

at c = 0.

Definition 3 The probability of firefly i to move toward

firefly j at the kth dimension is:

Let Pk
ij tð Þ ¼

bdfk
1
	
rij

d0
� �

P
j 62allowed b

d
fk

1
	
rij

d0
� � ;

where bfk ¼ b0e
�cr2

ij

ð18Þ

The parameters d and d0 are used to weight the corre-

sponding terms based on requirements.

If the system attains stagnation, the value of c is reini-

tialized. So the value of c is not fixed, and it varies after a

certain number of iterations where there is no progress in

the solution space. A firefly will move through the path
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with a low light absorption coefficient. The smaller the

light absorption coefficient, the higher the brightness.

The FA can also be modified to direct fireflies not to

blindly follow the distance metric, but also consider the

obstacles, traffic data, and dynamic requests coming in

between them.

The idea is as follows: Suppose firefly 1 is at position P1

and firefly 2 is at position P2. Let AB is any obstacle. In

addition, let the brightness of firefly 1 at P1 is less com-

pared to the brightness of firefly 2 at P2. Let X and Y are

light sources with absorption coefficient c1 and c2,

respectively, and c1\ c2. Firefly 1 will first choose the

random path through Y, as the distance is less compared to

the path through X. However, while moving to P2, the

brightness of firefly 1 will be reduced due to the light

source at Y and will lead to nonoptimal solutions in future.

Even though the distance is high through X, the firefly 1

must select this path since the absorption coefficient is less

and will eventually move to better solution space. If we

map this scenario to the VRP domain, the light source can

be treated as traffic data or dynamic requests that should be

taken care of while deciding the route for the vehicles.

Figure 4 shows this scenario.

Determination of the parameters a and b0. The param-

eters a and b0 play important roles in FA. By playing out

an attentive hunt of the parameter space, the preferred

parameter settings those acquired through observational

means could be anticipated. The domain of both the

parameters is [0, 1]. In order to optimize the parameters

using SN P systems, we are considering binary values.

Here seven bits are taken to denote every parameter value.

If the binary string is 1001111 for a or 79 in decimal

representation, the actual value of a is 79
127

= 0.62 in two-

point precision, i.e., if the decimal number estimation of

the binary string is y, the actual estimation is y
127

. The same

calculations can be applied for b0 also. So, 127 values are

mapped to an interval of width 1. If the number of bits for

representing value is high, exactness can be further

improved, but the length of the spike train will be

increased. The (a, b0) denotes parameter string, and 3 such

strings are connected on each spike train.

The encodings are:

(a, b0) = {(87/127, 31/127), (127/127, 0/127), (65/127,

42/127)}

(a, b0) = {(0.68, 0.24), (1.00, 0.00), (0.51, 0.33)}

An SN P system is designed to produce a binary string,

which is used to encode the values of the parameters. Then,

it activates the evolution rules based on probability and the

output from multiple neurons are collected. A number H of

such SN P systems are connected through an adapter,

which is responsible for dealing with population and

probability adjustment.

The flow diagram of parameter optimization is given in

Fig. 5. The family of SN P systems connected through the

adapter module is shown in Fig. 6. A graphical represen-

tation of IFA using SN P system optimization is depicted in

Fig. 7.

Definition 4 An optimization SN P system of degree mo-

C 1 can be formally defined by [88]:

P = (O, r1…rmo
, rI1, rI2, S, Io)

1. O = {a} is the singleton alphabet.

2. r1… rmo
are neurons of the form r1 = (1, Rk, Pk),

and Rk = {rk
1, rk

2} is the rule set of the form,

rk
1 = {a ? a} rk

2 = {a ? k} and Pk = {Pk
1,Pk

2} is a

set of probabilities of rule set Rk, where

Pk
1 ? Pk

2 = 1, rI1 = rI2 = ({1, a ? a}).

3. S = {(k, l) (1 B k B mo ? 1 K l = mo ? 2)W
k ¼ mo þ 2

V
l ¼ mo þ 1ð Þg

4. Io = {1, 2…mo} is the set of output neurons.

Generating Initial Solutions First, we need to design

initial feasible solutions considering customer allocation

and path planning. A random assignment of visit day

combination for each customer is planned using the Clarke

and Wright savings algorithm. Here, the routes cannot be

merged without violating the time duration or capacity

constraints. Because of this, the number of vehicles for

serving the routes may not be adequate. In such cases, route

merging is carried out in which the route with the fewest

customer is merged to other nearby routes minimizing the

cost. However, this leads to solutions that violate time and

capacity constraints. This procedure is redone until the

number of routes and the number of vehicles are equal.

The Procedure The improved FA is applied to

CDVRPTW at the cluster level. A cluster is a group of

customers who are geographically mapped based on the

distance. Each vehicle is treated as a firefly, and it moves

toward a brighter customer from a less bright one. This

brightness depends on the distance between the customers,

traffic data, and dynamic requests. The route is created by

visiting customers until all customers have been visited. As

detailed in Sect. 3.3 the sum of fixed costs and transport

costs of all routes of the solution has been considered as the

objective function. Therefore, altogether CDVRPTW is a

minimization problem in which the fireflies with a lower

value of objective function are the most attractive ones.

The comparison of distances between fireflies is made

cluster by cluster. For example, two fireflies of cluster

i composed of 10 customers can be represented as:
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X1(clusteri) = {0, 2, 3, 5, 7, 8, 1, 4, 6, 9}

X2(clusteri) = {2, 0, 5, 3, 7, 8, 1, 4, 6, 9}

The hamming distance between X1 and X2 for the ith

cluster is 4. This analysis is made for every cluster, and the

total distance between two fireflies is the sum of all the

distances for every cluster.

In addition, instead of focusing only on the best optimal

solution, the first 3 optimal solutions are selected and are

assigned to 3 different spiking neurons. The reason for

selecting the first 3 optimal solutions can be stated as a

measure of the balance between exploitation and control.

The number of solutions selecting for next iterations should

be mature enough to find the global optimal solutions in a

reasonable time using the minimum number of spiking

neurons. Choosing a higher number of solutions may lead

to an increase in the complexity of controlling and coor-

dinating neuronal communications. The remaining solu-

tions are collected for random movement to get diverse

solution space. So, in the successive iterations, the chances

of getting trapped in local minimum can be avoided and the

Fig. 4 The flashing process of

fireflies under real-world

scenarios

Fig. 5 Flow diagram of SN P system parameter optimization

Fig. 6 A family of SN P systems connected through an adapter for

rule selection
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Fig. 7 Graphical representation

of IFA using SN P system

optimization
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optimal solutions can be generated more efficiently. It

further improves the convergence rate due to the simulta-

neous exploration of solution space.

The initial value of parameter c is set to 0.95. The value

is chosen from several studies [89, 90] and will vary once

the system enters into stagnation, and in that case, the value

is reinitialized.

6 Spiking neural firefly optimization system
(SFO) design

The proposed system is based on the flashing behavior of

fireflies. A collection of different SN P systems is com-

bined to produce the required spiking neural firefly opti-

mization scheme (SFO). The SN P systems employed in

the proposed scheme include arithmetic operator P sys-

tems, spike generator P systems, sorting P systems, random

number generator P systems, objective function P systems,

and improved firefly optimization P systems. The proposed

SFO system is of the form:

PSFO ¼ Parith;Psg;Prg;Psort;Pfunction;PIFA

� �
;

where Parith includes operations for addition, subtraction,

multiplication, and division using SN P systems [91].

Psg and Prg are used for spike and random generators,

respectively [92, 93]. Pfunction indicates the SN P system

for objective function evaluation based on the proposed

scheme. Psort indicates the P system for sorting [94], and

PIFA is used to denote the improved firefly algorithm using

the SN P system for optimization as described in Sect. 5.

Figure 8 shows the block diagram of the proposed SFO.

Lines and arrows indicate the interactions between differ-

ent modules in SFO. Lines are used for bidirectional

communications, and arrows are used for unidirectional

communications.

6.1 Design of PIFA

Definition 5 We define a PIFA of degree mIFA C 3 of the

form,

PIFA ¼ O; r; syn; Iin; Ioð Þ

1. O is the singleton alphabet called a spike.

2. r is the set of neurons in the IFA system.

r ¼ rs [ rbest [ rsec ond�best [ rthird�best [ rremaining[
radmin [ rIin [ rIowhere r ¼ r1. . .rmIFA

: Iin,Io indicate

input and output neurons, respectively. rs is the

mediator neuron. { rbest [ rsecond�best [ rthird�best

[rremaining [ radmin } is referring to a firefly system

where rbest [ rsecond�best [ rthird�best is the best,

second-best, and third-best neurons of the solutions.

The radmin is a central neuron that contains the optimal

solutions after each iteration. The PIFA starts with the

initial configuration Initc and then enters into flashing

configuration Flashc and halting with Haltc:

Every neuron in PIFA is of the form,

radmin ¼ nl;Rlð Þ; 1� l�mIFA;

rbesti ¼ ni;Rið Þ; 1� i�mIFA;

rsecond�bestj ¼ nj;Rj

� �
; 1� j�mIFA;

rthird�bestk ¼ nk;Rkð Þ; 1� k�mIFA;

rIin ¼ nin;Rinð Þ and rIo ¼ no;Roð Þ
radmin is responsible for keeping the values of firefly

positions and updating the best, second-best, and third-

best solutions. The number of spikes is indicated by

n with the index denoting the corresponding neuron.

Every firefly has five neurons out of which four neu-

rons are used to indicate its levels (best, second-best,

third-best, and remaining) and one admin neuron to

track the updated values.

3. Synapses:

syn ¼ ðradmin; radminÞ;f
radmin; rbestð Þ; radmin; rsecond�bestð Þ;
ðradmin; rthird�bestÞ; radmin; rremaining

� �
;

radmin; rIoð Þ; radmin; rIinð Þ;
radmin;Psg

� �
; radmin;Psortð Þ

radmin;Parithð Þ; radmin;Prg

� �
;

radmin;Pfunction

� �
; radmin;PIFAð Þ;

rbest;Parithð Þ; rsecond�best;Parithð Þ;
rthird�best;Parithð Þ; rremaining;Parith

� �


4. The input neuron Iin receives parameters of the

algorithm to initialize the system. The parameters

include the initial position of fireflies and the maximum

number of iterations.

5. The output neurons Io act as monitors by checking the

optimal solutions and maximum iterations of the

algorithm. It is also responsible for sending the best,

the second-best, and the third-best values and activates

forgetting rules to re-instantiate or terminate the whole

system.

Each firefly is denoted by a set of {fradmin; rbest;
rsecond�best; rthird�bestandrremainingg neurons. The mediator

neuron rs distributes position for all admin neurons radmin
and further broadcasts values of the best, the second-best,

the third-best solutions, and iteration number. The power of

the signal [95] is employed to give the needed power to

reach to all admin neurons.

The Admin Neuron (radmin) The admin neurons are

associated with a set of rules to perform the steps of the
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algorithm. Each admin neuron radmin has one initial spike

and is loaded in the initial configuration ðInitcÞ:
The tasks of radmin are:

1. Accept algorithm variables and firefly positions to send

to the best, second-best, third-best, and remaining

neurons.

2. Calculate the values of the optimization equation and

find feasible solutions.

3. Update the best optimal firefly in each stage.

All the rules are considered and controlled by time steps.

This allows the incorporation of delay mechanisms in all

rules, which is appropriate for various neuron stage acti-

vations. The admin neuron radmin starts receiving spikes

from mediator neuron rs, and system changes its transition

from Initc to Flashc state. Then it sends the positional

information of fireflies from mediator neurons to

rbest; rsecond�best; rthird�best; and rremaining neurons. At the

same time Pfunction is invoked by radmin to perform objec-

tive function evaluation. After this, it clears the neurons by

activating the forgetting rules. After finishing the objective

function evaluation, it invokes Psort in order to sort and

rank the solutions, which are needed for the

rbest; rsecond�best; rthird�best; andrremaining neurons. All the

synapses, which are no longer needed, are deleted, and the

rbest; rsecond�best; rthird�best; andrremaining neurons update the

positions in the current iteration. After this, all admin

neurons enter halt configuration Haltc.

The rbest; rsec ond�best; rthird�best; and rremaining

Neurons These neurons are used for calculating the firefly

positions in 4 levels. The number of spikes for instantiating

these neurons is two. The new positions are calculated and

updated by sending encoded information in spikes to the

respective neurons at fixed time steps. After each iteration,

the spikes are cleared by forgetting rules. The structure of

the neurons representing the fireflies at runtime is shown in

Fig. 9.

The Input Neuron The input neuron is responsible for

giving the algorithm parameters and constant values along

with initial feasible solutions for the fireflies to start exe-

cution. After receiving the parameters, it changes the

configuration from Initc to Flashc. The respective neurons

are updated with the iteration number, initial feasible

Fig. 8 Block diagram of the

proposed SFO system
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solutions, and initial firefly positions. It can also receive

incoming spikes from rIo containing 3 optimal solutions

and the remaining solutions.

The Mediator Neuron ðrsÞ The functionalities of the

mediator neurons are to act as mediators between the

supporting SN P systems and PIFA and are provided with

the power of signal strategy. The main function is to

broadcast the values or objects to respective neurons to

indicate the lifetime of spikes. The mediator neuron

receives spikes from input neurons and distributes the

parameters and positions to the admin neurons by con-

trolling the synapses.

The Output Neuron ðrIoÞ The responsibilities of output

neurons include:

1. Increment the iteration number by 1 each time the

algorithm proceeds.

2. Halt when the current iteration value and the maximum

iteration value are the same.

3. Send spikes of position vectors to each of the

rbest; rsecond�best; rthird�best; and rremaining neurons.

4. Send the final output to the surroundings.

6.2 Supporting SN P systems

The supporting SN P systems include SN P systems for

random number generations, objective function evaluation,

arithmetic operations, sorting, and spike generators. An SN

P system for objective function evaluation is designed to

adapt to the fireflies’ flashing behavior based on the pro-

posed scheme, while the remaining systems are found in

the literature.

Definition 6 An SN P system for objective function

evaluation (( Pfunction) of degree mfunction C 1 can be

defined by the tuple:

Pfunction ¼ O; ri; sn; Ifin; Ifo
� �

where

1. O = {a} is the singleton alphabet called spike.

2. Set of neurons of the form,

ri ¼ ni;Rið Þ; 1� i�mfunction;

where ni are the initial spikes in neuron ri, which are

employed according to the objective function. Ri is the

rule set for calculating the new firefly positions and is

encoded as u aPð Þ which will be broadcast to the admin

neurons.

3. sn ¼ fðIfin;PIFAÞ; . . .; ðIfo;PIFAÞ
4. The input neuron Ifin receives spikes which are

encoded by the initial position information of fireflies

from PIFA

5. The Ifo is the output neuron which sends the fitness

value encoded by u aP:value
� �

to PIFA

The pseudocode of the proposed SFO system is given in

algorithm 1. The algorithm starts by initializing the

parameters according to the dataset. It uses the function-

alities of the supporting SN P systems. The values are

analyzed in each iteration to see whether the optimal

Fig. 9 Structure of neurons in

PIFA for 2 fireflies
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solutions are reached or not. The encoded result u X1ð Þ and

X1:valueð Þ, the best firefly is finally returned by the output

neuron.

7 Experimental results and discussion

In this section, the performance of the proposed SFO sys-

tem to solve CDVRPTW will be rigorously assessed. As

far as the authors are concerned, there are no benchmark

datasets on CDVRPTW till date. So the SFO is tested on

DVRP instances and CVRPTW instances separately, and

the results are analyzed. The various parameter settings are

given in Table 1. All the experiments are simulated using

MATLAB with Intel xenon 2.93 GHz processor, 12 GB

RAM, and Windows 10 OS.

7.1 Experiment 1: DVRP datasets

SFO is tested by an average of 40 runs on the dataset,

which are open and available at http://neo.lcc.uma.es/vrp/

(dataset 1). A comparison of solution quality in terms of

best and average values is compared with ACO, k-ACO,

E-ACO [96], VNS [97], and GA-DVRP [98], and the

results are analyzed.

Also, the utilization rate of a vehicle is an important

measure for verifying the performance of the proposed

approach. It estimates whether each of the vehicles used

fully or not. It is analyzed in Fig. 10. From the figure, it can

be noted that the utilization rates of vehicles are high in

SFO (13 out of 20 instances) scheme. In the other 7

instances, SFO is inferior to E-ACO but superior to GA,

ACO, and VNS. In addition, the best and average values of

the solution quality of six approaches can be analyzed from

Table 2. The best results are in boldface. The proposed

SFO achieves 17 out of 20 best values and 15 out of 20

average values compared with other best-known schemes.

The K-ACO attains the worst performance compared to the

other three algorithms. In order to clearly differentiate

these schemes, K-ACO is chosen as a benchmark to plot

how the improvement of the remaining algorithms is

compared with K-ACO. A boxplot is given for analyzing

the improvement percentage of various schemes. The

minimum, the maximum, the sample median, and the first

and third quartiles are shown in Fig. 11. From the analysis

of boxplots, it is noted that the improvement percentage of

SFO is superior to other schemes in terms of solution

quality.

From the analysis of all of the above results, we con-

cluded that the proposed SFO system attains substantially

better performance compared to other existing best-known

schemes.

7.2 Experiment 2: CVRPTW datasets

The proposed SFO is applied over Solomon’s benchmark

instances (dataset 2), which are partitioned into 6 cate-

gories: C1, C2, R1, R2, RC1, and RC2. The time window

at depot is restricted for R1, C1, and RC1 so that only

limited customers can be accommodated. But, for R2, C2,

Table 1 Parameter settings
Parameter Value

a 0.2

b 1

c (initial value) .95

MaxIter 100–300

Population size 30

H 60
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and RC2 the time window is broad with the goal that

numerous clients can be overhauled in a similar route. The

results of the proposed system are analyzed with the

existing CVRPTW schemes, ant colony optimization

(ACO) [99], ACO with tabu search [100], hybrid

multiobjective evolutionary algorithm (HMOEA) [101],

tissue P system with MOEA (PDVA) [102], and multiob-

jective goal programming (MOGP) [103]. A comparison is

made on the vehicle utilization rate and solution quality

and is given in Fig. 12 and Table 3, respectively. SFO
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Fig. 10 A comparison of the

utilization rate of various

schemes for dataset 1

Table 2 Comparison of solution quality in terms of best and average values of various schemes (dataset 1)

Problem ACO K-ACO E-ACO VNS GA-DVRP SFO

Best Average Best Average Best Average Best Average Best Average Best Average

i71 311.18 358.69 286.42 315 259.71 297.08 304.32 325.18 288.3 319.49 240.1 312.8

C50 631.3 681.86 611.27 652.45 607.21 647.21 599.53 653.84 566.01 597.34 689.7 595.8

c75 1009 1042 982.30 1136.90 924.71 1045.44 981.64 1040.00 944.46 990.78 911.5 997.1

c100 973.26 1066.16 1021.00 1162 973 1044.96 1022.92 1087.18 943.89 988.15 1089 919.8

c100b 944.23 1023.60 921.41 1000.80 869.22 950.17 866.71 942.81 869.41 904.03 768.9 795.7

c120 1416.45 1525.15 1137.50 1297 1108.15 1197.68 1285.21 1469.24 1288.66 1399.40 1100 1176.5

c150 1345.73 145550 1480.00 1730.90 1378.63 1472.40 1334.73 1441.37 1273.50 1359.25 1271.4 1472

c199 1771.04 1844.82 1732.00 1971 1561.1 1836.9 1679.65 1769.95 1646.36 1700.54 1532.7 1683.2

tai75a 1841 1945.2 1657.10 2083.30 1690.91 1983.92 1806.81 1954.25 1744.78 1823.71 1483.9 1593.1

tai75b 1535.43 1704.06 1541.90 1680.70 1509.6 1647.78 2250.5 2462.50 2181.31 2290.95 1324.6 1502.3

tai75c 1574.98 1653.58 1395.10 1591.60 1329.42 1470.60 3479.44 3680.35 3280.79 3449.32 1318.9 1412.8

tai75d 1472.35 1529.00 1494 1663.10 1409 1661.73 1480.7 1560.71 1441.35 1546.18 1322.4 1795.2

tai100a 2375.92 2428.4 2497.6 2714.20 2281.7 2550.61 2169.1 2319.72 2119.03 2212.58 2281.6 2315.9

tai100b 2283.97 2347.90 2365.80 2624.70 2255.83 2500.72 2934.86 3089.57 2885.94 3073.58 2134.8 2219.8

tai100c 1562 1655.91 1548 1764.50 1442.45 1743.1 1621.03 1746.07 1433.73 1502.56 1326.9 1519.8

tai100d 2008.13 2061 1958.80 2228 1581 1844 1490.58 1557.81 1504.63 1589.76 1498.2 1755.6

tai150a 3644.78 3840.18 3800.60 4216.40 3307.63 3684.03 2674.29 2928.77 2593.78 2759.96 2489 5187.1

tai150b 3166.88 3327.47 3270.2 3654.80 3128.00 3439.38 1446.50 1541.98 1408.48 1434.56 1315.9 3212

tai150c 2311.48 3016 2795.00 2886.20 2583.4 2729.15 1969.94 2100.38 1793.64 1916.03 1589.7 2615.1

tai150d 3058.81 3203.75 2981.20 3245.21 2809 3186.1 2954.54 3147.88 2911.47 3010.34 2698.7 3095.4

average 1787 1885.5 1856.83 2064.07 1650 1846.64 1717.65 2540.06 1655.976 1743.426 1577.385 1808.85

Count 0 1 1 0 0 1 0 0 3 3 17 15

The best results are bolded
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achieved 5 out of 6 of the best solution values over 6

algorithms. From the analysis of results, it is noted that the

vehicle utilization rate of SFO is superior to other best-

known schemes. Also, the solution improvement percent-

age is calculated as ACO tabu as a benchmark scheme and

the performance of various algorithms is plotted using

boxplots in Fig. 13. From the boxplot, it is concluded that

SFO is having the best solution improvement percentage

and ACO is having the worst improvement over other

schemes.

Theorem 1 The time complexity of SFO is (r 9 T(IFA)

?T (SS)? T ðIinÞ ? T (Io)) 9 maxIter where r is a con-

stant used to weight the term which can be either 1 (if

T(IFA) alone is considered) or 2 (if radmin and T(IFA) are

considered) and T(IFA) is the time units of firefly neurons.

T (SS) denotes the total time needed for all the supporting

SN P systems. TðIinÞ and T (Io) refer to the time steps

needed for the input and output neurons, respectively, and

maxIter is the maximum number of iterations of the

algorithm.

Proof Let the SFO system have n fireflies, each of which

involves 5n neurons in total. The solution neurons run in

parallel and operate sequentially with their admin neurons.

Therefore, the needed time is T(IFA). The n firefly

operations depend on T (SS). The maximal parallelism in

SN P systems allows polynomial time complexity in

solving optimization problems according to the number of

supporting systems. Therefore, it is concluded that the total

time complexity of SFO is purely dependent on the maxIter

and T(SS). h

The results from Theorem 1, Tables 2, and 3, Figs. 10,

11, 12, and 13 indicate the following conclusions:

1. The proposed SFO is superior to the best-known

schemes in terms of solution quality and vehicle

utilization rate.

2. With respect to the stopping conditions, the better

balance between exploration and exploitation has

stronger optimization capacity in polynomial time

(Theorem 1).

3. The solution improvement percentage of SFO is higher

compared to the best-known schemes.

7.3 Statistical analysis

Based on the experimental outcomes, a set of statistical

analysis of algorithms over the instances has been made.

We adopted a parametric test, pairwise t test to check the

significance of SFO over other schemes and nonparametric

test, Wilcoxon’s, and Friedman’s test to see whether the

outcomes of the algorithms are significantly different or not

regardless of the relationship between them. In addition, a

Holm–Bonferroni [104] ranking scheme is adopted on the

basis of the average solution quality obtained over 20 test

instances for dataset 1 and 6 problem categories for dataset

2. All the experiments are conducted on IBM SPSS

Statistics software with a significance level of 0.05.

Fig. 11 Comparison of solution

improvement percentage of

various algorithms for dataset 1

(K-ACO as the benchmark

scheme)
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for dataset 2
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7.3.1 Pairwise t test

The proposed SFO is compared with the state-of-the-art

algorithms using the t test and is tabulated in Tables 4 and 5,

respectively, for dataset 1 and dataset 2. The null hypothesis

for the paired t test is assumed, as the true mean difference

between paired samples is zero. On the other hand, the

alternative hypothesis is that the true mean difference

between paired samples is not zero. The significance level is

set as 0.05. Since all the pairs have significance\0.05, it

leads to the rejection of the null hypothesis. So there is a

pairwise difference of means among the samples.

7.3.2 Wilcoxon’s and Friedman’s test

These methods are used to analyze the pairwise differences

among the algorithms considered for experimentation. For

Wilcoxon’s test, the hypothesis is assumed as follows:

H0 The medians of the pairs are identical

H1 The medians for the pairs are not identical

The result of Wilcoxon’s test (WT) for dataset 1 is given

in Table 6. For dataset 2, the test is not as significant as the

number of samples is less than 10.

For the pairs ACO and SFO, the value of z = -2.9493.

The corresponding p value is 0.00318. In addition, the

value of w is 26. The critical value for w at n = 20 is 43. So

the result is significant which leads to the rejection of the

null hypothesis.

For the pairs K-ACO and SFO, the value of

z = - 3.5839. The corresponding p value is 0.01209. In

Table 3 Comparison of solution

values for various schemes

(dataset 2)

R1 R2 C1 C2 RC1 RC2

ACO 1383.2 1098.2 881.44 641.25 1211.12 1209.44

PDVA 1228.6 1033.53 828.38 591.49 1362.09 1068.26

HMOEA 1187.35 951.74 828.74 590.69 1355.36 1068.26

ACO tabu 1213.16 952.3 841.92 612.75 1415.62 1120.37

MOGP 1258.89 994.99 828.94 591.49 1384.3 1157.41

SFO 1076.65 912.09 832.13 453.7 1185.32 996.25

The best results are bolded

Fig. 13 Comparison of solution

improvement percentage of

various schemes for dataset 2

(ACO tabu as the benchmark

scheme)

Table 4 T test: paired samples statistics for dataset 1

Mean N SD SE mean Sig

Pair 1

ACO 1761.8915 20 857.2475 191.6864 .003

SFO 1419.395 20 605.8148 135.4643

Pair 2

E-ACO 1650.4835 20 831.3698 185.8999 .000

SFO 1419.395 20 605.8148 135.4643

Pair 3

K-ACO 1984.8967 20 975.99005 212.97849 .000

SFO 1419.395 20 605.8148 135.46

Pair 4

GA-VRP 1655.976 20 803.84 107.025 0.0395

SFO 1419.395 20 605.8148 135.46 0.0173

Pair 5

VNS 1717.6410 20 830.7174 185.75

SFO 1419.395 20 605.8148 135.46 0.0173
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addition, the value of w is 9. So the result is significant

which leads to the rejection of the null hypothesis.

For the pairs EACO and SFO, the value of z is

- 3.1359. The p value is .00168. In addition, the value of

w is 21. The critical value of w at N = 20 is 23, which

leads to the rejection of H 0. The result is significant.

For the pairs VNS and SFO, the value of z is - 3.2106;

the p value is .00132. The result is significant at p\0.05.

Also, the value of w is 19. The critical value at N = 20 is

43 which leads to the rejection of the null hypothesis.

For the pairs GADVRP and SFO, the value of z is

- 3.2106. The p value is .00132. The result is significant at

p \ 0.05. In addition, the value of w is 19. The critical

value at N = 20 is 43 which leads to the rejection of the

null hypothesis.

The Friedman test (FT) is used to evaluate the differ-

ences between the number of samples. It relies on the rank

ordering of data rather than means and variances. The

value of Friedman’s test statistics for dataset 1 and dataset

2 is shown in Tables 7 and 8, respectively. In both cases,

the p value is very small and is\ 0.05. It indicates if the

different treatments really are identical, what is the chance

that random sampling would result in the sum of ranks as

far apart as observed in the experiment. If p is small, reject

the idea that all of the differences between columns are due

to random sampling. Since the p value for both the datasets

are small, the result is significant.

7.3.3 Holm–Bonferroni ranking

After analyzing the results so far, the algorithms are ranked

on the basis of the solution quality for both datasets. Based

on the ranks, SFO is taken as a reference scheme and the

corresponding cumulative normal distribution values are

calculated. It is then compared with the D/j values where

j = 1,2,…5 (5 schemes except SFO) with D = 0.05. The

results are given in Table 9 and 10. The significance is

given as ‘Accepted’ if the null hypothesis (no difference in

performance between the considered algorithms) is true

otherwise ‘Rejected’ if the null hypothesis is false.

For dataset 2, it is noted that the performance of

HMOEA and PDVA has the same performance as that of

SFO. Therefore, it is concluded that the membrane-based

algorithms and evolutionary schemes have similar perfor-

mance to that of SFO compared to other schemes.

The experimental outcomes from Tables 4, 5, 6, 7, 8, 9,

and 10 reveal the following conclusions:

1. The t test statistics show that SFO is really better than

other schemes since there are significant differences

between the solutions for both datasets.

2. From the calculated p values of WT and FT over the

pairs, it is noted that the SFO is statistically superior to

other schemes.

3. The Holm–Bonferroni ranking shows that the SFO is

the highest in ranking and is able to outperform all

nonmembrane-based schemes.

The results summarized above appear competitive with

respect to state-of-the-art algorithms.

Table 5 T test: paired samples statistics for dataset 2

Mean N SD SE Sig.

Pair 1

ACO 1070.775 6 267.4418 109.1827 0.0135

SFO 909.35 255.0638 104.1294

Pair 2

PDVA 909.3567 6 276.9046 113.0458 .0095

SFO 1018.725 255.0638 104.1294

Pair 3

HMOEA 997.0233 6 270.2520 110.3299 0.0204

SFO 909.3567 255.0638 104.1294

Pair 4

ACO tabu 1026.0483 6 284.8475 116.2885 0.0164

SFO 909.3567 255.0638 104.1294

Pair 5

MOGP 1036.0033 6 292.5331 119.4261 .0092

SFO 909.3567 255.0638 104.1294

Table 6 WT test analysis for dataset 1

W value Mean difference Sum of positive ranks Sum of negative ranks Z value Mean SD

ACO and SFO 26 16,634.05 184 26 - 2.9493 105 26.79

K-ACO and SFO 9 1084.16 201 9 - 3.5839 105 26.79

E-ACO and SFO 21 960.78 189 21 - 3.1359 105 26.79

VNS and SFO 19 1027.95 191 19 - 3.2106 105 26.79

GA-VRP and SFO 36 966.28 174 36 - 2.576 105 26.79
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7.3.4 Post Hoc procedures

The main drawback of the FT is that it can only detect

significant differences over multiple comparisons, being

not able to define proper differences among the schemes.

Therefore, a post hoc test [105] is applied to obtain a

p value, which defines the degree of rejection of each

hypothesis. We adopted Conover method with 2 types of

p value adjustment, namely Holm FWER (forward error

rate) and Benjamini–Hochberg FDR method [106]. These

tests are used to discern which of the sample pair combi-

nations are significantly different. Both FWER and FDR

methods are used for reducing type 1 error inflation that

leads to false-positive discovery rate. The FWER and FDR

adjustment for dataset 1 is, respectively, indicated in

Figs. 14 and 15.

Post hoc p values of all possible pairs (of sam-

ples/groups) can be represented as a lower triangular

matrix. Each entry is the p value of row/column pair, i.e.,

the null hypothesis that the group represented by a partic-

ular column name is different from the group by a partic-

ular row name. The pair, which is significant, is shaded

using green color. The nonsignificant pairs are colored

using red.

From Figs. 14 and 15, it is indicated that the pair GA-

DVRP and E-ACO pair is not significant. All the pairs

involving SFO are significant. For dataset 2, there are 4

pairs that are significant in the FWER method and are

indicated in Fig. 16. Among the 4 pairs 3 pairs involving

SFO gives a significant result. In the FDR method, there

are a total of 8 pairs which are significant. Among those, 4

pairs are having SFO which are significant. So finally, it

can be concluded that the significance of SFO is higher

compared to other schemes in both FWER and FWR

methods of post hoc analysis (Fig. 17).

8 Conclusions and future scope

This article suggests an efficient SN P system combined

with firefly optimization architecture for addressing the

problems of vehicle routing, namely CDVRPTW. In this

scheme, we suggested a feasible way of using the SN

P system to develop an optimization method for having the

approximate solutions of the problem instance. It uses

Clarke and Wright algorithm to define initial assignments

of fireflies to find solutions to CDVRPTW. A high degree

of parallelism is employed by carefully designing the

firefly–neuron combinations, and the parameters in the

firefly scheme are well optimized by adjusting the rule

probabilities of SN P systems. The authors presented the

algorithms, complexity analysis, and experimental results

with statistical validation to check the effectiveness of the

algorithm. This study being the first attempt in this kind,

the results appear to be positive and successful relative to

ad hoc optimization algorithms. The experimental out-

comes justify the novelty, effectiveness, and feasibility of

the system.

The main strengths of the proposed system include:

Table 7 FT summary for dataset 1

Calculation summary

Xr
2 = 0.02 * 19,564–360

Xr
2 = 31.28

The Xr
2 statistic is 31.28 (4, N = 20)

The p value is\ .00001

The result is significant at p\ .05

Table 8 FT summary for dataset 2

Calculation summary

Xr
2 = 17.668

The Xr
2 statistic is 17.668 (5, N = 6)

The p value is\ 0.003392

The result is significant at p\ .05

Table 9 Holm–Bonferroni ranking for dataset 1 (reference scheme-

SFO (rank 5.15))

RANK ZJ PJ D/J Output

E-ACO 4.85 - 2.08333 0.01401 0.0185 Rejected

K-ACO 4 - 3.43137 0.007143 0.025 Rejected

GA-DVRP 3 - 5.26961 \ 0.00001 0.05 Rejected

VNS 2.8 - 5.4321 \ 0.00001 0.024 Rejected

ACO 2 - 5.1098 \ 0.00001 0.0328 Rejected

Table 10 Holm–Bonferroni ranking for dataset 2 (reference scheme-

SFO (rank 5.5))

RANK ZJ PJ D/J output

HMOEA 4.833 - 0.617 0.268 0.05 Accepted

PDVA 3.833 - 1.54306 0.0614 0.025 Accepted

ACO tabu 3 - 2.3145 0.008 0.0166 Rejected

MOGP 3 - 2.3145 0.008 0.0166 Rejected

ACO 2 - 3.24037 0.00059 0.01 Rejected
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1. The spiking neural P systems are operating in parallel

on neuron level and sequential on system level. This

point underlines the difference of earlier studies with

the proposed scheme.

2. The optimization procedure is done by a spiking neural

P system not by a human-designed algorithm.

3. The idea can be used for other applications such as

fault diagnosis of power stations, path planning of

robots, unmanned aerial vehicle routing, image

segmentation.

The drawbacks of the proposed scheme are:

1. The time complexity depends on the iterations and

supporting SN P systems. So for applications which

need more number of iterations and supporting

systems, the complexity will be high.

2. The power of signal strategy needs to be carefully

designed for each neuronal communications.

For future works, the authors will try to overcome the

afore-mentioned drawbacks.

Other research dimensions can be stated as follows:

1. Expand the method to handle more complex real-world

dynamic instances.
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2. Improve the convergence rate further by carefully

designing the modules.

3. Consider timed SN P systems to control and coordinate

the whole subsystems
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14. Pérez-Jiménez MJ (2010) A computational complexity theory in

membrane computing. In: WMC 2009. Lecture notes in com-

puter science, vol 5957. Springer, Berlin. https://doi.org/10.

1007/978-3-642-11467-0_10

15. Chen Z, Zhang P, Wang X, Shi X, Wu T, Zheng P (2016) A

computational approach for nuclear export signals identification

using spiking neural P systems. Neural Comput Appl. https://

doi.org/10.1007/s00521-016-2489-z

16. Dı́az-Pernil D, Gutiérrez-Naranjo M (2017) Semantics of

deductive databases with spiking neural P systems. Neurocom-

puting. https://doi.org/10.1016/j.neucom.2017.07.007

17. Diaz C, Frias T, Sanchez G, Perez-Meana H, Toscano K,

Duchen G (2017) A novel parallel multiplier using spiking

neural P systems with dendritic delays. Neurocomputing. https://

doi.org/10.1016/j.neucom.2017.02.009

18. Tingfang W, Wang Y, Jiang S, Yansen S, Shi X (2018) Spiking

neural P systems with rules on synapses and anti-spikes. Theor

Comput Sci 724:13–27. https://doi.org/10.1016/j.tcs.2017.12.

015

19. Deb K (2014) Multi-objective optimization. In: Search

methodologies. Springer, Boston, pp 403–449

20. Bansal JC, Sharma H, Jadon SS et al (2014) Spider monkey

optimization algorithm for numerical optimization. Memet

Comput 6:31. https://doi.org/10.1007/s12293-013-0128-0

21. Brownlee J (2011) Clever algorithms: nature-inspired pro-

gramming recipes, Lulu.com

22. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.

Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.

2013.12.007

23. Zmazek B, Taranenko A, Smid M (2005) Capacitated VRP with

time windows and multiple trips within working day,

pp 104–109. https://doi.org/10.1109/iti.2005.1491105
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