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Abstract
This paper presents an adaptive fuzzy fault-tolerant tracking control for a class of unknown multi-variable nonlinear

systems, with external disturbances, unknown control sign, and actuator faults. By employing fuzzy logic systems, the

unknown nonlinear dynamics and the state-dependent actuator faults are approximated, and by utilizing a Nussbaum-type

function, the issue of unknown control sign is solved. The proposed control scheme is based on two forms, an adaptive

fuzzy controller along with a robust controller that is equipped with a Nussbaum-type gain function, which guarantees

stability with the boundedness of all signals involved in the closed-loop system. To prove the accuracy, and the effec-

tiveness of the proposed control scheme, a simulation example on two-inverted pendulums system is carried out.
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1 Introduction

In recent decades, many researchers have been focusing on

adaptive control techniques using fuzzy logic systems

(FLS) for various classes of nonlinear systems [1–6]. The

stability analysis of the aforementioned works is performed

using Lyapunov technique, where the tracking errors are

shown to converge only to a small residual set due to

approximation errors. For the actual practical control

plants, actuator failures occurring seem unavoidable indi-

vidually or simultaneously, which may drive the control

plants to a catastrophic accident or even destroy the sta-

bility during operation [7, 8], for which security, accuracy,

performance constraints, and fault tolerant remain the key

points in the designed controllers. Hence, the research on

how to design fault-tolerant control schemes that lead

systems to keep the desired performances and operate in

the best conditions with enhanced safety and reliability,

even if actuators are normal or faulty, is of great interest

[9–14].

Fault-tolerant control (FTC) is grouped into passive and

active techniques. Promptly, the passive fault-tolerant

control (PFTC) technique is withdrawn from the newest

control approaches and replaced by active fault-tolerant

control (AFTC) techniques due to the fixed control laws

and predefined faults description [15, 16]. Active fault-

tolerant control is based on fault detection using a module

called fault detection and diagnosis (FDD); therefore, the

fault will be isolated and estimated to recognize the con-

troller [17–19]. Many techniques have been investigated

widely in AFTC area; in the midst of these works, adaptive

fuzzy control is the upper hand, due to the guaranteed

transient and steady-state performances, and the capability

of tackling the unknown uncertainties. Moreover, adaptive

fuzzy control allows the online update of the controller

without the help of an explicit FDI module [20–27].

Recent years have witnessed several adaptive control

approaches for many classes of nonlinear systems [28],

e.g., strict-feedback [29], output-feedback systems [30, 31],

pure-feedback systems [32], and so on. This technique is

based essentially on universal approximators such as fuzzy

logic system (FLS) and neural networks (NN) when the

plant model is uncertain or too complex which makes the

designing of a suitable controller very hard [33–35]. Plenty
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of works have focused on H1 technique to ensure the

attenuation of the tracking error to a certain given level

[36, 37]; a reliable adaptive H1 static output-feedback

control against Markovian jumping sensor failures is car-

ried out in [36]; a fault detection filter is proposed for

stochastic parameter varying Markovian jump systems

[37]. In [38], an overview of model-free adaptive control

schemes, using dynamic linearization, for an unknown

nonlinear plant was proposed. Based on the Razumikhin

lemma and a dynamic signal, an adaptive neural network-

based fault-tolerant control is synthesized to deal only with

unmodeled dynamics and only lock-in-place and loss of

effectiveness faults [39]. Initial value compensation lean-

ing data-driven ILC was investigated and applied on a

batch reactor and fed-batch ethanol fermentation [40]. A

novel linear descriptor reduced-order observer for Marko-

vian jump systems has been proposed in [41] with decou-

pling technology to allow the direct estimation of state and

sensor faults. However, only loss of accuracy faults kind is

considered. An enhanced result to deal with simultaneous

actuator and sensor loss of accuracy faults has been

developed in [42] using a new descriptor reduced-order

sliding mode observer for Markovian jump systems. In

[43], adaptive fault-tolerant control is applied on a flexible

spacecraft with state-dependent actuator failures using

simple linear sets of system states and errors combination.

In [44], the authors presented an active fault-tolerant con-

trol using neural networks combined with sliding mode and

H2 performance index, applied on a spacecraft system

under actuator faults (only loss of effectiveness type). In

[45], authors presented an adaptive fuzzy actuator failure

compensation control for strict-feedback nonlinear systems

taking into account both of loss of effectiveness and lock-

in-place actuator faults. In [46], the authors proposed a

dynamic surface-based control approach using Nussbaum-

type function for attitude stabilization of a spacecraft under

actuator saturation. In [47], an approximation-based active

FTC using the backstepping approach for MIMO uncertain

nonlinear systems is synthesized, where four scenarios of

velocity sensor faults (drift, loss of accuracy, bias, and loss

of effectiveness) are considered. In [48], authors have

investigated an adaptive observer based on backstepping

approach with time-varying sensor failures. Only, few

works have been carried out on the case of four scenarios

of sensor and actuator failures (drift, loss of accuracy, bias,

and loss of effectiveness) for nonlinear systems. Authors in

[49] have investigated an adaptive fuzzy fault-tolerant

control scheme for a class of nonlinear systems with

simultaneous actuator and sensor failures. A combination

method based on fuzzy systems (FSs) and backstepping

approach allowed the online estimation of the adaptive

parameters and guaranteed the boundedness of all signals

in the closed-loop system. In [50], an active fault-tolerant

control scheme has been developed for a class of MIMO

nonlinear systems with sensor failures based on dynamic

surface control (DSC). In [51–53], authors have presented

an active fault-tolerant tracking scheme with only the

attitude measurement of a spacecraft subjected to one or

two kinds of actuator failures. Active fault-tolerant control

for a class of nonlinear systems with nonlinear actuator

faults with only loss of effectiveness and loss of accuracy

has been studied in [54].

In general, the control gain sign (CGS) which is also

commonly called in the literature as the control direction

sign is required to be known a priori during the design

stage. Moreover, in the practical areas, there are plenty of

nonlinear systems with unknown control gain sign (CGS).

Owing to the fact that one cannot determine the direction

along which the controller operates, that is why the issue of

designing a successful adaptive control scheme without a

priori knowledge of CGS is receiving increasing attention.

Nussbaum-type functions have been effectively developed

for single linear systems [55]. Few results for nonlinear

systems are achieved using the grouping of the unknown

control coefficients with linear transformation technique as

in [56]. Later, researchers have focused on incorporating

Nussbaum gain in various adaptive control schemes for

various classes of nonlinear systems [57–63]. In [57], a

Nussbaum-type function is employed to tackle the issue of

the unknown control direction of strict-feedback systems

class with input quantization using a high-gain fuzzy state

observer, combined with backstepping technique. In [58],

the same Nussbaum-type function and the mean value

theorem are used to develop an adaptive fault-tolerant

control for pure-feedback nonlinear systems with sensor

failures. In [59] and the references therein, an adaptive

controller based on fuzzy systems is developed for a class

of feedback linearizable uncertain MIMO nonlinear sys-

tems with prescribed performances and unknown control

gain sign. To avoid Nussbaum-type functions, authors in

[60] assumed that the control gain sign is considered as an

unknown constant parameter which is updated online via

an appropriate adaptation law. In [61], a fuzzy backstep-

ping approach based on adaptive fault-tolerant control is

synthesized taking into account actuator faults and

unknown control gain sign. The advantage of this method

resides in the number of adaptive parameters which is less

than the order on the same system. A robust Nussbaum-

type function has been developed in [62] for a class of

nonlinear systems with input nonlinearities, unknown

control gain sign, and external disturbances that are

addressed simultaneously and applied on a MIMO Robotic

System. In [63], a region-dependent segmentation analysis

technique is coupled with Nussbaum-type function to cir-

cumvent the issues of the unknown control gain sign and

sensor faults for a class of nonlinear systems.
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Motivated by the aforementioned papers, the presented

work focuses on adaptive fuzzy fault-tolerant tracking

control (AFFTTC) for a class of unknown MIMO nonlinear

systems subjected to nonlinear state-dependent actuator

failures, external disturbances, and unknown control

directions. The developed control law is an adaptive fuzzy

controller with a robust control term, which is equipped

with Nussbaum-type function to allow a fast approximation

and resolve the unknown control directions issue. The

stability of the proposed control scheme is carried out using

Lyapunov theory. In contrast to the aforementioned works,

the main contributions of the presented work are sixfold:

1. Unlike in Refs. [51–53], where authors required data

about the actuator faults models, in the proposed

controller any data about the actuator faults models are

required in the design stage; therefore, the proposed

controller deals automatically with unknown actuator

faults.

2. Unlike in Refs. [35, 39, 41, 44, 45, 51–54, 58], where

just a few kinds actuator faults are considered which

impressively confines the applicability of these AFTC

techniques, in the proposed control scheme four kinds

of state-dependent actuator faults are considered with

bias, drift, loss of effectiveness, and loss of accuracy.

3. Unlike in Refs. [47, 48, 50, 61], where restrictive

assumptions on external disturbances are imposed. In

Ref [48]., the disturbance is described as an exogenous

neutral stable system, while in Refs. [47, 50] it is

modeled based on time-varying free models with

derivable bounds, and in Ref. [61] authors assumed

that disturbances are bounded with nonnegative

smooth functions. In our scheme, only the disturbance

boundedness condition is needed without additional

information.

4. Contrary to Refs. [17–19, 41], where the approaches

are based on fault detection and isolation (FDI) module

to locate faults before handling them, in the proposed

scheme, the FDI is completely avoided thanks to the

ability of the developed controller to deal online with

the occurring faults, which makes it fast and accurate

control scheme without any time wasting.

5. In Refs. [47, 48, 50], authors assumed that the control

gain is a known nonlinear function and as a simple

constant in Refs. [44, 54]; however, in the proposed

approach, it is considered as a general unknown

nonlinear function to cover many practical systems

such as an inverted pendulum, an induction motor

drive, a single-link robot arm, a mass-spring-damper

system, a flexible spacecraft, a quadrotor.

6. Contrary to Refs. [1–33, 43–50], where the sign of the

control gain (CGSs) is assumed to be known a priori,

which is a restrictive condition on the developed

control schemes, and therefore limits its applicability;

in the proposed approach, the control gain sign is

considered completely unknown, which make our

approach more general with less restrictive conditions

on the controlled plant.

The emphasis of this work is summarized as follows:

Sect. 2 introduces the system description and problem

formulation. In Sect. 3, the developed control scheme is

presented with the stability proof. Numerical simulation on

two-inverted pendulum is given in Sect. 4. Finally, a recap

of the proposed technique is presented in Sect. 5.

2 Plant model and control objective

2.1 Problem formulation

Consider a class of unknown MIMO nonlinear systems

described by the following q subsystems, where the

dynamic is described by the following equations as in

[43, 47, 49, 50]:

X

i

:

_xi;1 ¼ xi;2
_xi;2 ¼ xi;3

..

.

_xi;j ¼ fi xð Þ þ gi xð Þui þ di tð Þ; i ¼ 1; 2; . . .; q; j ¼ 1; 2; . . .; ni
yi ¼ xi;1

8
>>>>><

>>>>>:

ð1Þ

where x ¼ x1;1; x1;2; . . .; x1;n1
; . . .; xq;1; xq;2; . . .; xq;nq

� �T
�<n

is the state vector, ni is the order of the ith subsystem with

n ¼
Pq

i¼1 ni; u ¼ u1; . . .; uq
� �T2 <q is the system input

vector; d tð Þ ¼ d1 tð Þ; d2 tð Þ; . . .:; dq tð Þ
� �T

�<q denotes the

external disturbances vector; yi 2 <p is the output vector; fi
and gi; i ¼ 1; 2; . . .; q are unknown smooth nonlinear

functions.

The system model described in Eq. (1) is free from

actuator faults (healthy case). However, real systems may

be subjected to actuator faults at any moment during its

operation, so that it is important to point out how to design

a suitable control strategy that is capable to drive the sys-

tem outputs yi tð Þ to track promptly and accurately the

desired trajectory ydi tð Þ and deal automatically with the

unknown dynamics, actuator faults and keep the desired

performances.

In this work, an adaptive fuzzy fault-tolerant tracking

control (AFFTTC) is developed with unknown system

dynamics, disturbances, and three additives (drift, loss of

accuracy, and bias) and one multiplicative (loss of effec-

tiveness) actuator faults as in [47, 49, 50]. Table 1

describes the aforementioned faults.
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2.2 Actuator fault models

The faults considered in Table 1 are time-varying models

taking into account time-varying bias, drift, loss of accu-

racy, and loss of effectiveness. To expand our approach to

deal with state-dependent nonlinear actuator faults as in

[43], Table 2 shows the new integrated faults.

Using the aforementioned definitions described in

Table 2, one can write the faulty actuator as

ufi tð Þ ¼ qi x; tð Þui tð Þ þ �ui x; tð Þ ð2Þ

and replacing Eq. (2) into Eq. (1) we get

X

i

:

_xi;1 ¼ xi;2
_xi;2 ¼ xi;3

..

.

_xi;j ¼ fi xð Þ þ gi qi x; tð Þui tð Þ þ �ui x; tð Þð Þ
þ di tð Þ; i ¼ 1; 2; . . .:; q; j ¼ 1; 2; . . .; ni

yi ¼ xi;1

8
>>>>>><

>>>>>>:

ð3Þ

Then

X

i

:

_xi;1 ¼ xi;2
_xi;2 ¼ xi;3

..

.

_xi;j ¼ fi xð Þ þ gið qi x; tð Þ � 1ð Þui tð Þ þ �ui x; tð Þ
þ ui tð ÞÞ þ di tð Þ; i ¼ 1; 2; . . .; q; j ¼ 1; 2; . . .; ni

yi ¼ xi;1

8
>>>>>><

>>>>>>:

ð4Þ

and finally, we get,

X

i

:

_xi;1 ¼ xi;2
_xi;2 ¼ xi;3

..

.

_xi;j ¼ fi xð Þ þ giui tð Þ þ gið qi x; tð Þ � 1ð Þui tð Þ
þ �ui x; tð ÞÞ þ di tð Þ; i ¼ 1; 2; . . .; q; j ¼ 1; 2; . . .; ni

yi ¼ xi;1

8
>>>>>><

>>>>>>:

ð5Þ

Let define fai x; uð Þ ¼ gið qi x; tð Þ � 1ð Þui þ �ui x; tð ÞÞ, one

can find

X

i

:

_xi;1 ¼ xi;2
_xi;2 ¼ xi;3

..

.

_xi;j ¼ fi xð Þ þ giui tð Þ þ fai x; uð Þ þ di tð Þ;
i ¼ 1; 2; . . .; q; j ¼ 1; 2; . . .; ni

yi ¼ xi;1

8
>>>>>><

>>>>>>:

ð6Þ

Remark 1 It is worth noting that the newly defined func-

tion fai x; uð Þ represents the actuator failure taking into

Table 1 Actuator faults

Actuator(s) Fault kinds Conditions Fault name

ui tð Þ ui tð Þ þ bi _bi tð Þ ¼ 0;

bi tfi
� �

6¼ 0

Bias (lock in place)

ui tð Þ þ bi tð Þ bi tð Þj j ¼ kit;

0\k � 1

for all t� tfi

Drift

ui tð Þ þ bi tð Þ bi tð Þj j\ �b0i;

_bi tð Þ ! 0

for all t� tfi

Loss of accuracy

ki tð Þui tð Þ 0\ �ki � ki tð Þ� 1

for all t� tfi

Loss of effectiveness

Where tfi is the time instant of failure for the ith actuator and bi
denotes the accuracy coefficient such that bi� � �b0i; �b0i½ �, with �b0i [ 0.

ki� �ki; 1½ �, and �ki [ 0 is the minimum actuator effectiveness coeffi-

cient, in which bi and ki are slowly varying parameters within

� �b0i; �b0i½ � and �ki; 1½ �, respectively

Table 2 Expanded actuator faults

Actuator(s) Fault kinds Conditions Fault name

ui tð Þ ui tð Þ þ �ui x; tð Þ if �ui x; tð Þ is a constant Lock in place; also called Biasð Þ
if �ui x; tð Þ ¼ kit; 0\k � 1 Driftð Þ
if �ui x; tð Þ is a nonlinear time varying and

state-dependent function

State-dependent loss of accuracyð Þ

qi x; tð Þui tð Þ if qi x; tð Þ ¼ 1 Totally effectiveð Þ
if qi x; tð Þ ¼ 0 Totally loss of effectivenessð Þ
if qi x; tð Þ is a nonlinear time varying and

state-dependent function; where qi x; tð Þ� 0; 1½ �
State-dependent loss of effectivenessð Þ
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account all the kinds mentioned in Table 2. Moreover, the

model of the considered faults is introduced directly in the

dynamic equations of the system and the dynamic is

changed according to the above development (Eqs. 3–6),

while in [43–45], the faults model is introduced directly as

an additional function, except in (see Refs. [47, 49, 50]).

Over this paper, the following assumptions are made:

Assumption 1 The desired trajectory ydi �<q and its time

derivatives _ydi; €ydi are supposed to be known, smooth, and

bounded.

Assumption 2 The control gains gi xð Þ and the CGSs are

unknown with g
i
� gi xð Þ� �gi, where �gi and g

i
are unknown

positive constants.

Assumption 3 The external disturbances are considered

bounded as dij j � d0i with d0i are unknown positive con-

stants, d0i [ 0:

Remark 2 In this paper, the tracking trajectories with their

derivatives are assumed to be known (assumption 1) as in

[43–60]. Assumption 2 is introduced to guarantee the

controllability of studied system Eq. (6). Assumption 3

reasonably indicates that the disturbance must be bounded,

which can be commonly found in many papers ([41–63]

and so on).

First, it is assumed that the nonlinear functions given by

fi xð Þ, gi xð Þ and fai x; uð Þ are unknown and also the control

gain signs (CGSs) are unknown. Therefore, it is not easy to

design a suitable control law which allows the system

outputs yi tð Þ to track promptly and accurately a given

certain desired trajectories ydi tð Þ and ensure the bounded-

ness of all signals in the closed-loop system. For this sit-

uation, we propose a control strategy based on a

combination between fuzzy logic systems (FLSs) and

Nussbaum-type function (NTF) to approximate the non-

linearities and tackle the issue of the unknown control gain

signs.

2.3 Fuzzy logic systems

Fuzzy logic systems (FLSs) are capable of approximating

any real continuous function over a compact set with an

arbitrary precision [64]. Let define x ¼ x1; . . .; xn½ �T be the

input of the fuzzy system (FS) and y is considered as an

output. For each input xi is associated mi fuzzy sets F j
i in Xi

its universe of discourse, as for xi 2 Xi there is at least one

degree of membership given by lF j
i
xið Þ 6¼ 0 where i ¼

1; 2; . . .; n and j ¼ 1; 2; . . .;mi. The rules base of the (FS)

has N ¼
Qn

i¼1 mi fuzzy rules taking the following form:

Rk : if x1 isF
^k

1 and. . .and xn isF
^k

n Then y ¼ fk xð Þ;
k ¼ 1; . . .;N

where F
^k

i 2 F1
i ; . . .;F

mi
i

� �
are linguistic values and fk xð Þ is

a numerical function of the output variable. In general,

fk xð Þ is a polynomial function dependent on input vari-

ables. In the case when fk xð Þ is a polynomial of zero order,

it takes the form as fk xð Þ ¼ ak, which is commonly called

Takagi–Sugeno zero order (TSZ-O). Throughout this paper

(TSZ-O) will be used. Each rule has a numerical conclu-

sion, and the output of the (FS) is tacking out by calcu-

lating a weighted average as shown below:

y xð Þ ¼ wT xð Þh ð7Þ

where

• h ¼ a1. . .aN½ �: Conclusion values.

• w xð Þ ¼ w1 xð Þ. . .wN xð Þ½ �T ;

wN xð Þ ¼ lk xð Þ
PN

j¼1 lj xð Þ
; k ¼ 1; . . .;N ð8Þ

with lk xð Þ ¼
Qn

i¼1 l
F

^k

i

;F
^k

i 2 F1
i ; . . .;F

mi
i

� �
, weight of

fuzzy rules.

2.4 Nussbaum-type function and some lemmas

Any continuous function N sð Þ : R ! R is cited a Nuss-

baum-type function if the following properties are

achieved:

lim
v!þ1

sup
1

v

Zv

0

N sð Þds

0

@

1

A ¼ þ1

lim
v!þ1

inf
1

v

Zv

0

N sð Þds

0
@

1
A ¼ �1

8
>>>>>><

>>>>>>:

ð9Þ

For example, the continuous functions s ! es
2

cos p
2

� �
s

� �

and s ! s2cos sð Þ are Nussbaum-type functions. In this

paper, the even Nussbaum function s2cos sð Þ is used.

Lemma 1 [65] V :ð Þ and s :ð Þ are smooth functions defined

on 0; tf
� �

with V tð Þ� 0; 8t 2 0; tf
� �

;N :ð Þ is an even smooth

Nussbaum-type function. If the following inequality holds

for 8t 2 0; tf
� �

: V tð Þ� c0 þ
R t

0
g fð ÞN s fð Þð Þ þ c1ð Þ _s fð Þdf

where g tð Þ is piecewise continuous time function which

takes values in the unknown closed interval I ¼ g; �g
h i

with

0 62 I; c1 is any positive number and c0 represents some

suitable constant, then V :ð Þ, s :ð Þ andR t

0
g fð ÞN s fð Þð Þ þ c1ð Þ _s fð Þdf are bounded on 0; tf

� �
.
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3 Adaptive fuzzy control

The main objective of the proposed scheme is to design an

adaptive fuzzy fault-tolerant tracking control laws ui tð Þ to

ensure that the system outputs yi tð Þ track as possible the

desired trajectories ydi tð Þ and guarantee the stability of the

closed-loop system and the convergence of the tracking

errors to the origin in the presence of unknown nonlin-

earities, actuator faults, external disturbances, and

unknown control directions.

Remark 3 It is important to point out that authors in [50]

and some references therein introduced a first-order filter to

improve the approximation because they are based on an

ordinary approximation which complicates the control law

with many design parameters. In the proposed approach,

fuzzy systems can give us a prompt and accurate approx-

imation according to Ref. [64]. Moreover, Nussbaum-type

function will enhance the robustness of the closed-loop

system and resolve the problem of unknown CGSs.

The nonlinear functions and the unknown actuator faults

can be approximated, over a compact set Xx, using fuzzy

systems (FSs) as described in Eq. (7) as follows

fi xð Þ ¼ f̂i x; h�fi

� 	
þ efi xð Þ

gi xð Þ ¼ ĝi x; h�gi

� 	
þ egi xð Þ

fai x; uð Þ ¼ f̂ai x; u; h�fai

� 	
þ efai x; uð Þ

8
>>><

>>>:
ð10Þ

where efi xð Þ, egi xð Þ, and efai xð Þ are the fuzzy approximation

errors; h�fi h�gi and h�fai , are, respectively, the optimal

parameters minimizing the approximation errors efi xð Þ,
egi xð Þ, and efai xð Þ.

h�fi ¼ arg min
hfi

sup
x

fi xð Þ�
f̂i x; hfi
� �












� �

h�gi ¼ arg min
hgi

sup
x

gi xð Þ�
ĝi x; hgi
� �












� �

h�fai ¼ arg min
hfai

sup
x

fai x; uð Þ�
f̂ai x; u; hfai
� �












� �

8
>>>>>>>><

>>>>>>>>:

ð11Þ

The optimal parameters given by h�fi , h�gi , and h�fai are

unknown constants given only for theoretical development

in the stability stage, and their values are also not needed to

design the proposed control laws. So, we can write:

fi xð Þ � f̂i x; hfi
� �

¼ wT
fi
xð Þ~hfi þ efi xð Þ

gi xð Þ � ĝi x; hgi
� �

¼ wT
gi

xð Þ~hgi þ egi xð Þ
fai x; uð Þ � f̂ai x; u; hfai

� �
¼ wT

fai
x; uð Þ~hfai þ efai x; uð Þ

8
>><

>>:
ð12Þ

where ~hfi ¼ h�fi � hfi , ~hgi ¼ h�gi � hgi , and ~hfai ¼ h�fai � hfai
are the parameter estimation errors.

Assumption 4 Fuzzy approximation errors are bounded

for all x �Xx as

efi xð Þ


 

� �efi; egi xð Þ



 

� �egi and efai x; uð Þ


 

� �efai :

where �efi; �egi; �efai are unknown positive constants that will

be designed later.

Remark 4 Assumption 4 is reasonable since we assumed

that fuzzy systems have universal approximation property

[64]. Furthermore, this assumption will ensure the bound-

edness of the approximation errors [49, 60].

Based on the above approximations, the following

adaptive control law is proposed:

ui ¼ uic þ uir ð13Þ

The proposed adaptive control law is a combination of

adaptive fuzzy systems (AFSs) and Nussbaum-type func-

tion (NTF). The first term uic is introduced to circumvent

the unknown nonlinear systems, unknown actuator faults,

and control gain signs, while the second is a robust term

inserted to deal with disturbances and approximation

errors.

The adaptive term will take the following form

uic ¼
ĝi xð Þ

e0 þ ĝ2
i xð Þ �f̂i xð Þ � f̂ai x; uð Þ þ y

nð Þ
di þ kTei

�

þaĝi x; hð ÞNi sið ÞGi

	 ð14Þ

where e0 : is a very small positive constant and

Gi ¼ eT
i PiB.

Remark 5 The proposed term
ĝi xð Þ

ĝ2
i xð Þþe0

in Eq. (14) is intro-

duced to ensure that the proposed adaptive controller term

is well defined even when ĝi xð Þ tends to zero, for which the

term ĝ�1
i xð Þ is replaced by

ĝi xð Þ
ĝ2
i xð Þþe0

and can be considered as

the Levenberg–Marquardt regularized inverse for a scalar

function [49].

The robust controller term will take the following form:

uir ¼ urbiNi sið Þ ð15Þ

where

urbi ¼
eT
i PiB



 

ui � d2
i

eTi PiB
ð16Þ

Nussbaum-type function is described as follows:

Ni sið Þ ¼ s2
i cos sið Þ ð17Þ

ui ¼ êui þ êgi uic � aiNi sið ÞGij j þ �ui0j j ð18Þ

where ui is considered as a function of the approximation

errors due to the use of fuzzy logic systems.
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The intermediate adaptive control law will take the

following form:

�ui0 ¼ e0

e0 þ ĝ2
i xð Þ �f̂i xð Þ � f̂ai x; uð Þ þ y

nð Þ
di

�

þkTei þ aĝi x; hð ÞNi sið ÞGi

� ð19Þ

êui; êgi are the estimates of the following unknown

parameters:

�eui ¼ �efi þ d0i þ �efai and �egi

where �eui is an unknown parameter depending on the upper

bound of the system and the external disturbances, and �egi
is an unknown parameter depending on the upper bound of

the control gain function.

Let us define the following adaptive parameters as:

_hfi ¼ �cwfi xð ÞeT
i PiB ð20Þ

_hfai ¼ �cwfai xð ÞeT
i PiB ð21Þ

_hgi ¼ �cwgi xð ÞeT
i PiB uic � aNi sið ÞGið Þ ð22Þ

_̂efu ¼ ce e
T
i PiB



 

 ð23Þ
_̂eg ¼ ce e

T
i PiB



 

 uic � aNi sið ÞGij j ð24Þ

_si ¼ eT
i PiBurbi þ aeT

i PiB
2 ð25Þ

_di ¼ �rndi ð26Þ

where

c[ 0; ce [ 0; rn [ 0; di 0ð Þ[ 0

Remark 6 Authors in [47–50, 52, 54] assume that the time

derivative of the considered actuator faults must be boun-

ded, which is a restrictive condition and limits the appli-

cability of the designed controller. In this paper, this

assumption is avoided and no longer needed in controller

analysis or design.

The proposed control approach is recapped in Fig. 1,

and the following theorem discloses the stability of the

closed-loop system.

Theorem 1 For the considered system in Eq. (6) with

satisfied Assumptions (1–4), the proposed AFFTTC in Eq.

(13) with the adaptive term Eq. (14), robust term Eq. (15),

and the adaptation laws Eqs. (20–26) ensure the bound-

edness of all signals in the closed-loop system and the

convergence of the tracking errors to the origin.

Proof To achieve the control objective, a novel AFFTTC

scheme will be synthesized for the system in Eq. (6) with

the following steps.

Consider the tracking errors as follows:

ei ¼ ydi � yi ð27Þ

The n time derivative of the tracking error is given

below

e
nð Þ
i ¼ y

nð Þ
di � y

nð Þ
i ð27aÞ

Using Eq. (6), one can find

e
nð Þ
i ¼ y

nð Þ
di � fi xð Þ � gi xð Þui � fai x; uð Þ � di ð28Þ

by adding and subtracting f̂i xð Þ; f̂ai x; uð Þ and ĝi xð Þuic,
Eq. (28) will be in the following form

e
nð Þ
i ¼ y

nð Þ
di � fi xð Þ þ f̂i xð Þ � gi xð Þuic þ ĝi xð Þuic � ĝi xð Þuic
� f̂i xð Þ � gi xð Þuir � fai x; uð Þ � di þ f̂ai x; uð Þ
� f̂ai x; uð Þ

ð29Þ

Based on some mathematical manipulations, one can get

e
nð Þ
i ¼ y

nð Þ
di � fi xð Þ � f̂i xð Þ

� �

� fai x; uð Þ � f̂ai x; uð Þ
� �

� gi xð Þ � ĝi xð Þð Þuic
� ĝi xð Þuic � f̂i xð Þ � gi xð Þuir � f̂ai x; uð Þ � di ð30Þ

Replacing Eq. (12) into Eq. (30) one can find

e
nð Þ
i ¼ y

nð Þ
di � wT

fi
xð Þ~hfi � efi xð Þ � wT

fai
x; uð Þ~hfai � efai x; uð Þ

� wT
gi xð Þ~hgiuic � egi xð Þuic � ĝi xð Þuic � f̂i xð Þ

� gi xð Þuir � f̂ai x; uð Þ � di

ð31Þ

Replacing Eq. (13) into Eq. (31) one can write

e
nð Þ
i ¼ y

nð Þ
di � wT

fi
xð Þ~hfi � efi xð Þ � wT

fai
x; uð Þ~hfai � efai x; uð Þ

� wT
gi xð Þ~hgiuic � egi xð Þuic

� ĝi xð Þ ĝi xð Þ
e0 þ ĝ2

i xð Þ �f̂i xð Þ � f̂ai x; uð Þ þ y
nð Þ
di þ kT

i ei

�

þaĝi xð ÞNi sið ÞGiÞ� � f̂i xð Þ � gi xð Þuir � f̂ai x; uð Þ � di

ð32Þ

Adding and subtracting kT
i ei and aĝi xð ÞNi sið ÞGi then

e
nð Þ
i ¼ y

nð Þ
di � wT

fi
xð Þ~hfi � efi xð Þ � wT

fai
x; uð Þ~hfai � efai x; uð Þ

� wT
gi xð Þ~hgiuic � egi xð Þuic þ

ĝ2
i xð Þf̂i xð Þ

e0 þ ĝ2
i xð Þ

þ ĝ2
i xð Þf̂ai x; uð Þ
e0 þ ĝ2

i xð Þ � ĝ2
i xð Þy nð Þ

di

e0 þ ĝ2
i xð Þ �

ĝ2
i xð ÞkTei

e0 þ ĝ2
i xð Þ

� ĝ2
i xð Þ aĝi xð ÞNi sið ÞGið Þ

e0 þ ĝ2
i xð Þ � f̂i xð Þ � gi xð Þuir

� f̂ai x; uð Þ � di þ kT
i ei � kT

i ei þ aĝi xð ÞNi sið ÞGi

� aĝi xð ÞNi sið ÞGi

ð33Þ
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Using Eq. (19), one can find the following result

e
nð Þ
i ¼ y

nð Þ
di � wT

fi
xð Þ~hfi � efi xð Þ � wT

fai
x; uð Þ~hfai � efai x; uð Þ

� wT
gi xð Þ~hgiuic � egi xð Þuic þ �ui0 � gi xð Þuir � di

� kT
i ei � aĝi xð ÞNi sið ÞGi

ð34Þ

Adding and subtracting agi xð ÞNi sið ÞGi, Eq. (34) leads to

e
nð Þ
i ¼ y

nð Þ
di � wT

fi
xð Þ~hfi � efi xð Þ � wT

fai
x; uð Þ~hfai � efai x; uð Þ

� wT
gi xð Þ~hgiuic � egi xð Þuic þ �ui0 � gi xð Þuir � di

� kT
i ei � aĝi xð ÞNi sið ÞGi þ agi xð ÞNi sið ÞGi

� agi xð ÞNi sið ÞGi

ð35Þ

Based on some manipulations, one can write

Fig. 1 Schematic of the

proposed control strategy

(AFFTTC)
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e
nð Þ
i ¼ y

nð Þ
di � wT

fi
xð Þ~hfi � efi xð Þ � wT

fai
x; uð Þ~hfai � efai x; uð Þ

� wT
gi xð Þ~hgi uic � aNi sið ÞGið Þ

� egi xð Þ uic � aNi sið ÞGið Þ þ �ui0 � gi xð Þuir � di
� kT

i ei � agi xð ÞNi sið ÞGi

ð36Þ

At this stage, we can write the dynamic of the errors as

follows:

_ei tð Þ ¼ Aiei tð Þ þ B y
nð Þ
di � wT

fi
xð Þ~hfi � efi xð Þ � wT

fai
x; uð Þ~hfai

h

�efai x; uð Þ � wT
gi xð Þ~hgi uic � aNi sið ÞGið Þ

�egi xð Þ uic � aNi sið ÞGið Þ þ �ui0 � gi xð Þuir
�di � agi xð ÞNi sið ÞGi�

ð37Þ

where

Ai ¼

0

0

..

.

0

�kni

1

0

..

.

0

�k n�1ð Þi

0

1

..

.

0

� � �

0

0

..

.

0

� � �

� � �
� � �
. .
.

� � �
. . .

0

0

..

.

0

� � �

0

0

..

.

1

�k1i

2

66666664

3

77777775

;

B ¼

0

..

.

0

1

2

6664

3

7775

Until sI � Aij jð Þ ¼ s nð Þ þ k1i s
n�1ð Þ þ . . .þ kni is

stable Ai stableð Þ, we know that there exists a symmetric

positive definite matrix Pi n; nð Þ that satisfies the following

Lyapunov equation:

AT
i Pi þ PiA

T
i ¼ �Qi ð38Þ

where Qi are symmetric positive definite matrix of arbitrary

dimensions ðn	 n).

Then, the augmented Lyapunov-like equation is descri-

bed by

V ¼ 1

2

Xq

i¼1

eTi Piei
� �2þ 1

c
~hT
fi
~hfi þ

1

c
~hT
fai
~hfai þ

1

c
~hT
gi
~hgi þ

1

ce
~e2
ui

þ 1

ce
~e2
gi þ

1

rn
d2
i

ð39Þ

where

c; ce; rn [ 0; ~eui ¼ �eui � êui; ~egi ¼ �egi � êgi

The time derivative of the augmented Lyapunov-like

equation is described as follows

_V ¼
Xq

i¼1

1

2
_eT
i Piei

� �
þ 1

2
eT
i Pi _ei

� �
� 1

c
~hT
fi
_hfi �

1

c
~hT
fai
_hfai

� 1

c
~hT
gi
_hgi �

1

ce
~eui _̂eui �

1

ce
~egi _̂egi þ

1

rn
_didi

ð40Þ

Replacing Eq. (36) into Eq. (40), one can find

_V ¼
Xq

i¼1

1

2
eT
i AT

i Pi þ PiA
T
i

� �
ei þ eT

i PiB

y
nð Þ
di � wT

fi
xð Þ~hfi � efi xð Þ � wT

fai
x; uð Þ~hfai � efai x; uð Þ

h

�wT
gi xð Þ~hgi uic � aNi sið ÞGið Þ � egi xð Þ uic � aNi sið ÞGið Þ

þ�ui0 � gi xð Þuir � di � agi xð ÞNi sið ÞGi�

� 1

c
~hT
fi
_hfi �

1

c
~hT
fai
_hfai �

1

c
~hT
gi
_hgi �

1

ce
~eui _̂eui �

1

ce
~egi _̂egi þ

1

rn
_didi

ð41Þ

From Eq. (37) one can obtain

Remark 7 To give the best perceivability and demonstrate

the adequacy of the proposed control technique contrasted

with other related works, a comparison is made in Table 3.

_V ¼
Xq

i¼1

� 1

2
eT
i Qei þ eT

i PiB

y
nð Þ
di � wT

fi
xð Þ~hfi � efi xð Þ � wT

fai
x; uð Þ~hfai � efai x; uð Þ

h

�wT
gi xð Þ~hgi uic � aNi sið ÞGið Þ � egi xð Þ uic � aNi sið ÞGið Þ

þ�ui0 � gi xð Þuir � di � agi xð ÞNi sið ÞGi�

� 1

c
~hT
fi
_hfi �

1

c
~hT
fai
_hfai �

1

c
~hT
gi
_hgi �

1

ce
~eui _̂eui �

1

ce
~egi _̂egi þ

1

rn
_didi

ð42Þ

which can be rearranged as follows

_V ¼
Xq

i¼1

� 1

2
eT
i Qei � aeT

i PiBgi xð ÞNi sið ÞGi þ _V1 þ _V2

ð43Þ

where

_V1 ¼
Xq

i¼1

�~hT
fi

1

c
_hfi þ wfi xð ÞeT

i PiB

� �

� ~hTfai
1

c
_hfai þ wfai x; uð ÞeT

i PiB

� �

� ~hTgi
1

c
_hgi þ eT

i PiBwgi xð Þ uic � aNi sið ÞGið Þ
� �

ð44Þ

Using Eqs. (20–22), Eq. (44) can be simplified to

_V1 ¼ 0 ð45Þ

Neural Computing and Applications (2021) 33:191–208 199

123



_V2 ¼
Xq

i¼1

�eT
i PiBgi xð Þuir � eT

i PiBgief xð Þ

� eT
i PiBgiefai x; uð Þ � eT

i PiBgieg xð Þðuc � aNi sið ÞGiÞ

� eT
i PiBdi þ eT

i PiB�ui0 �
1

ce
~eui _̂eui �

1

ce
~egi _̂egi þ

1

rn
_didi

ð46Þ

using Assumptions (3, 4), _V2 can be upper bounded by:

_V2 �
Xq

i¼1

�eT
i PiBgi xð Þuir þ eT

i PiB�ui0


 

þ eT

i PiB


 

�efai

þ eT
i PiB



 

�efi þ eT
i PiB



 

di þ eT
i PiB uic � aNi sið ÞGið Þ



 

�egi

� 1

ce
�efui � êfui
� �

_̂efui �
1

ce
�egi � êgi
� �

_̂egi þ
1

rn
_didi

ð47Þ

Using the fact that �eui ¼ �efi þ d0i þ �efai , one can find

_V2 �
Xq

i¼1

�eT
i PiBgi xð Þuir þ eT

i PiB�ui0


 

þ eT

i PiB


 

�efui

þ eT
i PiB uic � aNi sið ÞGið Þ



 

�egi �
1

ce
�efui � êfui
� �

_̂efui

� 1

ce
�egi � êgi
� �

_̂egi þ
1

rn
_didi

ð48Þ

Substituting Eqs. (23, 24, 26) into Eq. (48) one can

rewrite

_V2 �
Xq

i¼1

�eT
i PiBgi xð Þuir þ eT

i PiB�ui0


 

þ eT

i PiB


 

êfui

þ eT
i PiB uic � aNi sið ÞGið Þ



 

êgi � d2
i

ð49Þ

using Eq. (18), Eq. (49) can be simplified to

_V2 �
Xq

i¼1

�eT
i PiBgi xð Þuir þ eT

i PiB


 

ui � d2

i ð50Þ

Adding and subtracting eT
i PiBurbi, Eq. (50) becomes

_V2 �
Xq

i¼1

�eTi PiBgi xð Þuir þ eT
i PiB



 

ui � d2
i

þ eT
i PiBurbi � eT

i PiBurbi

ð51Þ

Using Eq. (16) one obtains

_V2 �
Xq

i¼1

�eT
i PiBgi xð Þuir þ eT

i PiBurbi ð52Þ

Substituting the results obtained in Eqs. (45, 52), _V can

be bounded as

_V �
Xq

i¼1

� 1

2
eT
i Qei � aeT

i PiBgi xð ÞNi sið ÞGi � eT
i PiBgi xð Þuir

þ eT
i PiBurbi

ð53Þ

Table 3 Comparative study

Our proposed control scheme Other schemes References

No-fault models are needed for actuator faults, due to the

automatic updating of the controller

Need information about actuator faults models [51–53]

No restrictive assumption is made on the considered

faults, which makes the proposed controller more

general

The assumption is made on the considered faults,

which limits the theoretical developed only if the

assumption is true

[43–50]

Four kinds of time-varying and state-dependent actuator

failures are considered (see Table 2)

One or two kinds of time-varying sensor faults are

considered

[35, 41, 44, 45, 51–54, 58]

The external disturbances are handled theoretically

instead of approximation, which minimizes the

execution time

The external disturbances are approximated and some

assumptions are also made

[47, 48, 50, 61]

Fault detection and isolation module (FDI) is avoided

since the controller deals automatically even in a faulty-

case or healthy case, which reduces the time consuming

by the detection and the isolation stage

FDI module is needed to design the controller [17–19, 41]

The control gain functions gi xð Þ, are considered nonlinear

and unknown

The considered control gain is a known simple

constant (see [44, 54]), except in [47, 48, 50] where

is a known nonlinear function

[44, 47, 48, 50, 54]

The control gain signs CGSs is not needed to be known a

priori

The control gain sign is considered to be known a

priori

[1–33, 43–50]

The control gain signs (CGSs) are not approximated since

Nussbaum-type function is used which avoid the time

consuming by the approximation procedure

The control gain signs CGSs are approximated [60]
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From Eq. (15), one can obtain

_V �
Xq

i¼1

� 1

2
eT
i Qei � aeT

i PiBgi xð ÞNi sið ÞGi

� eT
i PiBgi xð ÞNi sið Þurbi þ eT

i PiBurbi

ð54Þ

Using the fact that Gi ¼ eT
i PiB, thus, _V can be rewritten

as

_V �
Xq

i¼1

� 1

2
eTi Qei � gi xð ÞNi sið Þ aeT

i PiB
2 þ eT

i PiBurbi
� �

þ eT
i PiBurbi

ð55Þ

Adding and subtracting aeT
i PiB

2; _V can be rewritten as

_V �
Xq

i¼1

� 1

2
eT
i Qei � gi xð ÞNi sið Þ aeT

i PiB
2 þ eT

i PiBurbi
� �

þ eT
i PiBurbi þ aeT

i PiB
2 � aeT

i PiB
2

ð56Þ

Substituting Eq. (25)

_V �
Xq

i¼1

� 1

2
eT
i Qei � aeT

i PiB
2

� �
� gi xð Þ _siNi sið Þ þ _si

ð57Þ

where a[ 0

we can obtain the following inequality

V tð Þ � V 0ð Þ�
Z t

0

� gi vð ÞNi vð Þ þ 1ð Þ _si vð Þdv ð58Þ

Equation (57) can be simplified to

V tð Þ�V 0ð Þ þ
Z t

0

� gi vð ÞNi vð Þ þ 1ð Þ _si vð Þdv ð59Þ

Using Lemma 1, we can conclude from Eq. (59) the

boundedness of:

• V tð Þ, Ni sið Þ

•
Rt

0

� gi vð ÞNi vð Þ þ 1ð Þ _si vð Þdv; t� 0; tf
� �

:

Table 4 Performance comparison

Comparison

steps

Control strategies Our control

strategy

Observations

[43] [47] [49] [50]

Used

techniques

Adaptive

approximation

Backstepping

?sliding

mode

Backstepping ? fuzzy

systems

Dynamic

surface

control (DSC)

Fuzzy adaptive

?Nussbaum-

type functions

Our technique drives the

tracking errors to the

origin, while in

[43, 47, 49, 50] the

tracking errors converge

only to a compact set

Robust

controller

Not considered Not considered Considered Not considered Considered Our robust control deals

with the approximation

errors and actuator

failures and reduce the

chattering problem due to

the used Nussbaum-gain

Simulation Flexible

spacecraft

Quadrotor Quadrotor Two-inverted

pendulums

Two-inverted

pendulums

–

Sensor faults Not considered Time-varying

faults (bias,

drift, loss of

effectiveness,

loss of

accuracy)

Time-varying faults

(bias, drift, loss of

effectiveness, loss of

accuracy)

Time-varying

faults (bias,

drift, loss of

effectiveness,

loss of

accuracy)

Not considered –

Actuator

faults

Time-varying

and state-

dependent

failures

Bias (lock in

place); loss of

effectiveness

(drift is not

considered)

Not considered Time-varying faults

(bias, drift, loss of

effectiveness, loss of

accuracy)

Not considered Time-varying

and state-

dependent

failures

Bias (lock in

place); loss of

effectiveness;

and drift

Only time-varying faults

are considered in [49],

and time-varying with

state-dependent faults in

[43], while in our paper,

time-varying and state-

dependent and drift faults

are considered
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According to [66, 67], since no finite time escape phe-

nomenon may happen, then tf ! 1 (Table 4).

Therefore, ~hfi tð Þ, ~hfai tð Þ; ei tð Þ, ~hgi tð Þ, êf tð Þ, êg tð Þ, di tð Þ,
x tð Þ, and ui tð Þ are bounded, as an intermediate result ei tð Þ is

square integrable and _ei tð Þ is bounded. Moreover, by

invoking Barbalat’s lemma, we can conclude the asymp-

totic convergence of ei tð Þ.

4 Simulation results

To outline the effectiveness and benefits of the recom-

mended AFFTTC, we consider the control issue of two-

inverted pendulums associated with a spring as appeared in

Fig. 2. Every pendulum might be actuated by a torque

input ui tð Þ generated by a servomotor at its base. Let

x1;1; x2;1

� �
¼ h1; h2ð Þ be the angular positions of the pen-

dulums from vertical and x1;2; x2;2

� �
¼ _h1; _h2

� 	
their

angular velocities, respectively. The mathematical equa-

tions of the two-inverted pendulums are given by

[50, 67, 68]:

_x1;1 ¼ x1;2

_x1;2 ¼ m1gr

j1
� kr2

j1

� �
sin x1;1

� �
þ kr

2j1
l� bð Þ þ kr2

4j1
sin x2;1

� �
þ 1

j1
u1 tð Þ þ d _1 tð Þ

_x2;1 ¼ x2;2

_x2;2 ¼ m2gr

j2
� kr2

j2

� �
sin x2;1

� �
þ kr

2j2
l� bð Þ þ kr2

4j2
sin x1;1

� �
þ 1

j2
u2 tð Þ þ d2 tð Þ

8
>>>>>>><

>>>>>>>:

ð60Þ

where m1;m2 are the pendulum end masses; j1; j2 the

moments of inertia; k the spring constant of the connecting

spring; r the pendulum height; l the length of the spring; b

the distance between the pendulum hinges; g the gravita-

tional acceleration.

In this simulation, the objective is to force the angular

positions y ¼ h1; h2½ �T to track accurately the desired tra-

jectories yd ¼ h1d; h2d½ �T under the simultaneous occur-

rence of four types of state-dependent actuator faults and

external disturbances.

The desired trajectories are selected as sinusoidal signals

having the following equation:

yd ¼ sin tð Þ; sin tð Þ½ �T ð61Þ

Disturbances are given by d ¼ sin ptð Þ; 0:5 þ cos 2ptð Þ½ �T

Remark 8 Contrasted to the works in the same area, we

can easily see that the proposed desired trajectories having

a maximum amplitude of 1 rad, while it is only limited to

0.1 rad (see Ref. [57]) and it is around 0.5 rad at maximum

in Refs. [44, 47, 48]. Expanding the amplitude of the

desired trajectories makes it more challenging for testing

the capacity of the proposed scheme controllers. Moreover,

in our paper, the proposed control scheme is based on an

online fuzzy logic system (FLS) and Nussbaum-type

function, which allows selecting these challenging

trajectories.

Within this simulation, fifteen fuzzy systems on the

form of Eq. (13) are introduced to approximate the

unknown functions fi xð Þ; gi xð Þ; fai x; uð Þð Þ. The input vari-

ables of the used fuzzy systems are selected as

x1;1; x1;2; x2;1; x2;2

� �
for fi xð Þ; gi xð Þ and x1;1; x1;2; x2;1; ui

� �

for fai x; uð Þ. For each input variable, we have defined five

Gaussian membership functions with centers Ci ¼
�3:5;�1:5; 0; 1:5; 3:5½ � and a variance equal to r ¼ 1:6.

lF1
i
xið Þ ¼ exp � 1

2

xi � Ci

r

� �2
( )

; i ¼ 1 : 4

The system initial condition is

x 0ð Þ ¼ p
6
; 0;

p
6
; 0

h i

The synthesis parameters of our controller, adaption

laws, and the physical parameters of the two-inverted

pendulums are selected in Tables 5 and 6, respectively.

Within this simulation, a white Gaussian noise (WGN)

with centers Ci ¼ 0; 1:5½ � and a variance equal to r ¼ 1:2,

is applied on both angular positions and angular velocities.

Three simulation cases are given below to give a reliable

test of the proposed control scheme with many scenarios.

Fig. 2 Two-inverted pendulums

configuration
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The first simulation case is executed without any faults

(free from actuator failures), and only disturbances are

included.

In Fig. 3a, b, we can easily see the perfect tracking

performances between the desired trajectories yd1; yd2ð Þ
and the angular positions h1; h2ð Þ, while Fig. 3e, f depicts

the tracking errors. Figure 3c, d shows the angular veloc-

ities. The control inputs of the two-inverted pendulums

ðu1; u2Þ are depicted in Fig. 3g, h.

In the second simulation case, time-varying actuator

faults (bias, drift, loss of accuracy, loss of effectiveness)

are applied at the same time on the control inputs ðu1; u2Þ at

Tf � 5 s.

The faults models are described in Table 7. In Fig. 4a, b,

we can easily see the perfect tracking performances

between the desired trajectories yd1; yd2ð Þ and the angular

positions h1; h2ð Þ even in the presence of the aforemen-

tioned faults, while Fig. 4e, f depicts the tracking errors.

Figure 4c, d shows the angular velocities. The control

inputs of the two-inverted pendulums ðu1; u2Þ are depicted

in Fig. 4g, h.

Remark 9 In the works given in [41–44, 46, 47, 50],

authors consider faults for only a short period of time

during the simulation stage, and also a few kinds of faults

are applied at the same time. However, in the contrary, in

our simulation four kinds (see Table 1) of time-varying

actuator faults (bias, drift, loss of accuracy, loss of effec-

tiveness) are applied at the same time on the control inputs

ðu1; u2Þ at Tf � 5 s, which allow us to ensure the desired

performances (tracking and stability) during the whole

simulation period (see the performances comparative in

Table 4).

In the last case, the simulation study is carried out with

time-varying and state-dependent actuator faults (see

Table 2) at Tf � 5 s.

The form of the considered actuator faults is depicted in

(see Table 8). In Fig. 5a, b, we can easily see the perfect

tracking performances between the desired trajectories

yd1; yd2ð Þ and the angular positions h1; h2ð Þ even in the

presence of the aforementioned faults, while Fig. 5e, f

depicts the tracking errors. Figure 5c, d shows the angular

velocities. The control inputs of the two-inverted pendu-

lums ðu1; u2Þ are depicted in Fig. 5g, h.

4.1 Results analysis and comments

It is shown that the control scheme proposed in this paper

leads to a good transient performance against faults, and

tracking errors converge to zero exponentially in different

cases.

• The first case is faults free and only disturbances are

presented. One can see that the system’s outputs follow

the desired trajectories with small tracking errors and

smooth control inputs signals without any peak phe-

nomenon (see Fig. 3).

• In the second case, we added time-varying actuator

faults (see Table 7) with a time-profile starting at

Tf � 5 s. One can see the deviation of the angular

positions corresponding to the first and the second

pendulums. Furthermore, at time instant 6 s, i.e., just

after 1 s from the fault’s occurrence, the proposed

control laws reacted in order to circumvent these faults

and recover the angular positions tracking within short

transient time (see Fig. 4).

• In the last case, state-dependent actuator faults are

considered (see Table 8) with a time-profile starting at

Tf � 5 s. This kind of faults is a little hard to handle due

to either the variation of the system’s state and the time

progression. Only 1.5 s from the faults’ occurrence, we

can see in Fig. 5 the rapid recovering of the angular

positions tracking corresponding to the first and the

second pendulums in the expense of nonsmooth control

signals with peaking phenomena.

Table 5 Controller parameters

Parameter(s) Value(s)

e0 0.001

c; cn 2; 1.5

êui 0ð Þ, êgi 0ð Þ 0

a; rn 3; 7

di 0ð Þ, i ¼ 1:2 1.5

hfi 0ð Þ; hfai 0ð Þi ¼ 1:2 0

hgi 0ð Þ, i ¼ 1:2 �1; 1½ �

Table 6 Two-inverted pendulums physical parameters

Parameter(s) Value(s) Measurement unit

M1 2 kg

M2 2.5 kg

J1 0.5 kg m2

J2 0.625 kg m2

K 100 N m

r; b; l 0.5, 0.4, 0.5 m
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A B

C D

E F

G H

Fig. 3 Evolution of the two-inverted pendulums without any faults. a, b Trajectories tracking of angular positions: actual (blue lines); desired

(red lines); e, f tracking error signal; c, d trajectories tracking of angular velocity: actual (red lines); desired (blue lines); g, h control input signals

(colour figure online)

Table 7 Time-varying actuator

faults
Fault (s) Type Equation Measurement unit

fai Bias (lock in place) 1 N m

Drift 0.7 * t (N m) N m

Loss of accuracy Sin tð Þ þ 0:7 cos tð Þ ðN mÞ N m

Loss of effectiveness 87% N m
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5 Conclusion

In the present paper, an active fault-tolerant control prob-

lem was addressed for a class of MIMO nonlinear systems

under actuator faults, unknown system dynamics, and

external disturbances. Based on a combination between

fuzzy logic systems (FLSs) and Nussbaum-type function,

the developed control scheme can circumvent the problem

of nonlinearities and cope with the problem of the control

gain signs (CGSs). The proposed controller is updated

online, which allows avoiding fault detection and isolation

module (FDI), and can, automatically, deal with both faulty

and healthy cases. The stability is studied by using Lya-

punov technique and Barbalat’s lemma, to guarantee the

global stability of the system and conclude the asymptotic

convergence of the tracking errors. A comparative study in

the theoretical stage was performed, and a simulation

example applied on two-inverted pendulums was

A B

C D

E F

G H

Fig. 4 Evolution of the two-inverted pendulums with time-varying

actuator faults. a, b Trajectories tracking of angular positions: actual

(blue lines); desired (red lines); e, f tracking error signal; c,

d trajectories tracking of angular velocity: actual (red lines); desired

(blue lines); g, h control input signals (colour figure online)
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Table 8 Time-varying and

state-dependent actuator faults
Fault (s) Type Equation Measurement unit

fai Bias (lock in place) 3 N m

Drift 0:7 � t N m

Loss of accuracy 4 þ x1;1

� �
cos 2tð Þ � 2 þ x1;2

� �
sin 2tð Þ N m

Loss of effectiveness 3 þ tan hð�t þ 50x2;1

� �
=10Þ=4 N m

A B

C D

E F

G H

Fig. 5 Evolution of the two-inverted pendulums with time-varying

actuator faults. a, b Trajectories tracking of angular positions: actual

(blue lines); desired (red lines); e, f tracking error signal; c,

d trajectories tracking of angular velocity: actual (red lines); desired

(blue lines); g, h control input signals (colour figure online)
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performed to test the effectiveness and the accuracy of the

proposed method.
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