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Abstract
Artificial neural networks have been used for time series modeling and forecasting in many domains. However, they are

often limited in their handling of nonlinear and chaotic data. More recently, reservoir-based recurrent neural net systems,

most notably echo state networks (ESN), have made substantial improvements for time series modeling. Their shallow

nature lends themselves to an efficient training method, but has limitations on nonstationary, nonlinear chaotic time series,

particularly large, multidimensional time series. In this paper, we propose a novel approach for forecasting time series data

based on an additive decomposition (AD) applied to the time series as a preprocessor to a deep echo state network. We

compare the performance of our method, AD-DeepESN, on popular neural net architectures used for time series prediction.

Stationary and nonstationary data sets are used to evaluate the performance of the methods. Our results are compelling,

demonstrating that AD-DeepESN has superior performance, particularly on the most challenging time series that exhibit

non-stationarity and chaotic behavior compared to existing methods.

Keywords Time series forecasting � Reservoir computing � Echo state network � Additive decomposition �
Recurrent neural network

1 Introduction

Time series exist in nearly every domain. Biology [1],

finance [2], social science [3], the energy industry [4], and

climate observations [5] are among the most significant

contributors of these data. The field of time series fore-

casting focuses on the development of methods that can

predict future observations of these data, given historical

data. While the problem is trivial when presented with

signals resulting from linear systems, the question becomes

increasingly complex with dynamical systems, where

nonlinear, nonstationary, stochastic behavior hides the

trend in a given signal. These data pose substantial

challenges due to their unpredictability and inherent

uncertainties.

Predicting time series can be applied in many disci-

plines, and the methods to induce predictive models have

grown tremendously, owed to the field of machine learn-

ing. For instance, machine learning research has made

great strides in accurately predicting future weather

observations [6, 7] and financial markets [8, 9] using neural

networks (NNs) such as the multilayer perceptron (MLP).

However, learning from past data is sometimes ill-posed,

especially with nonlinear, stochastic data, where a model

may fit previous data well but not perform well when

generating predictions from new data—a classic symptom

of overfitting machine-learned models. Recurrent neural

networks (RNNs) are a type of NN used for dynamical

environments and have been used with success for time

series modeling and forecasting. Though these methods

were limited years ago, growing computational power and

the advancement of algorithms have led to successful

results in time series forecasting. Unfortunately, training

RNNs remains a challenging problem. Traditional tech-

niques, such as backpropagation, which are used to train

the NNs, fail to produce acceptable performance. Among

the most challenging issues that arise is the vanishing

gradient problem, where the derivative computed for some
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weights in the network becomes so small that no change is

made between epochs [10].

This paper primarily focuses on neural network methods

for modeling and predicting time series. We focus on

nonlinear, nonstationary, stochastic time series, as these are

most challenging to model, yet represent the most common

characteristics found in time series. We first introduce a

framework for characterizing time series, and then we will

delve into recent neural network methods for modeling and

forecasting time series.

1.1 Characterizing time series

There are a broad range of methods available for modeling

time series, with autoregressive integrated moving average

(ARIMA)-based models being among the most popular

[11]. While these methods do quite well for stationary,

linear systems with well-characterized trends, they are poor

performers for modeling time series which exhibit some

measure of stochastic behavior.

Time series data can be decomposed into different

components that distinguish between the trend in the data,

seasonality and/or periodicity, and genuine noise in the

data. It is the measure of randomness in a chaotic time

series that is challenging to characterize, and even more

challenging to induce a model that can be used to forecast

the future based on these data. One must distinguish

between volatility in a time series that is indeed ground

truth (e.g., a sudden jump in a stock price), and an unex-

pected measurement error (e.g., a temporal sensor failure),

which is nearly impossible to do in the absence of a priori

information. In the most challenging cases, the measure-

ments are capturing both noise and genuine volatility that

make understanding trends and periodicity rather difficult.

1.1.1 Stationarity/non-stationarity

Time series data are considered either stationary or non-

stationary. Stationary data are those that exhibit similar

behavior regardless of time, i.e., they have a mean, vari-

ance, and/or covariance that generally does not change in

relation to time. In contrast, a time series is defined as

nonstationary if these metrics change over time [12, 13].

Nonstationary behaviors can come from many sources, but

are usually revealed as additive or multiplicative trends,

cycles/periodicity, seasonality effects, or a combination of

these. Predictive methods often inherently distinguish the

stationary data from the nonstationary data, where trend

and periodicity contain valuable information needed to

characterize and forecast these data (Fig. 1).

1.1.2 Augmented Dickey–Fuller test

In the study of time series statistics, a unit root is, in

simplest terms, a time series that exhibits a random walk

pattern. The augmented Dickey–Fuller Test (ADFT) is a

unit root test: The null hypothesis of the test is that the time

series contains a unit root, whereas the alternative

hypothesis is that the time series is stationary [14]. In other

words, if a time series has a unit root in the ADFT, the time

series is mostly considered to be unpredictable. Thus, a test

for the hypothesis that a time series contains a unit root is

one that essentially allows us to assess the lack of sta-

tionarity of a given time series. A time series that contains

a unit root is difficult to model, thus challenging to predict

future observations. A standard test will yield a p value for

significance, where a p value of less than 0.05 implies that

the null hypothesis is rejected, and we conclude that the

data do not contain a unit root and are therefore stationary.

Higher p values, in contrast, will be observed when the data

yield non-stationarity (Fig. 2).

1.1.3 Autocorrelation and partial autocorrelation functions

A correlation coefficient is a measure of a relationship

between two variables, where a positive correlation implies

a co-occurring trend between the variables, and a negative

correlation implies an inverse relationship. In time series,

we can measure the correlation of the current observations

and the previous observations that occurred some number

of steps prior. The prior observations can be represented as

a variable, commonly known as lag variables. The corre-

lation between the current and lagged observations over a

time series at different lag times is often calculated, known

as a serial correlation, or, more commonly, the autocorre-

lation function (ACF). This correlation value lies between

- 1 and 1, depending on the degree of correlation, where a

0 implies no correlation. A partial autocorrelation function

(PACF) demonstrates a relationship between a point in a

time series data and points at previous time steps; however,

the relationship of intermediate points is eliminated. Intu-

itively, for a given lag value, the PACF is the correlation

that results after eliminating the influence of all correla-

tions in between [15]. Visualizing the ACF and PACF for a

given time series can aid in understanding numerous

characterizations of the data, including assessing potential

cyclic behavior and periodicity.

2 Related work

Multilayered RNNs have had great success for modeling

and predicting stationary time series; however, they often

suffer from the same challenges as standard approaches as
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the series incurs stochastic, unpredictable behavior. The

most common challenge is the vanishing gradient problem,

where the weights in the hidden layers do not change

enough to result in an observable weight change between

epochs. Or, the weight changes may lead to numerical

instability [16]. Recent advances in recurrent neural net-

work architectures have made great strides in improving

the characterization and prediction of time series, most of

which have either directly or indirectly done so by

improving or eliminating this problem. This section will

examine several significant neural network-based methods

for time series prediction. These are also the methods we

used in this study for comparative analysis.

2.1 Long short-term memory network

The long short-term memory (LSTM) network is a type of

recurrent neural network that gained early attention for its

ability to classify sequential and time series data [17].

LSTM helps preserve the error that can be backpropagated

through time and layers. LSTM contains information out-

side the normal flow of the recurrent network in a gated

cell. The cell makes decisions about what to store, and

when to allow, reads, writes, and erasures, via gates that

open and close. Even though LSTM has multiple switch

gates, which are used to remove some of the vanishing

gradient problems, LSTM still has a sequential path from

older past cells to the current one, which becomes even

more complicated due to the additive and forget branches

attached to it. This complex sequential path can corrupt

Fig. 1 Plot on the left shows the raw data (nonstationary), and the plot on the right shows the same data after being converted into stationary data

Fig. 2 Plot on the left illustrates nonstationary data (p value is 0.9), and the plot on the right illustrates stationary data (p value is 0). These data

were normalized to fall on a zero–one scale
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long-term information very easily, and this can cause

vanishing gradient problems.

2.2 Gated recurrent unit network

The gated recurrent unit (GRU) neural network is a

recurrent neural network that was introduced to solve the

vanishing gradient problem [18]. The architecture of GRU

is somewhat similar to the architecture of LSTM, and in

some cases, they exhibit similar predictive performance

results. To solve the vanishing gradient problem, GRU uses

two gates, an update and reset gate, while LSTM uses three

gates: input, output, and forget gates. Without utilizing a

memory unit, GRU is a simpler architecture, which makes

GRU more computationally efficient than LSTM. How-

ever, there still exists a sequential path from older past cells

to the current one, which can cause vanishing gradient

problems.

2.3 Echo state network

RNNs are powerful models for time series forecasting,

incorporating both large dynamical memory and highly

adaptable computational power. Like most NNs, they are

trained by backpropagation (BP) of the error through the

network to adjust weights. The BP method for training

RNNs can require extensive computational resources to

convergence and often lead to weak local minima.

More recently, reservoir computing (RC) models have

taken a significantly different approach to model recurrent

neural networks [19]. In RC models, the recurrent con-

nections of the network are regarded as a fixed reservoir of

weights used to map inputs into a high-dimensional and

dynamical space. Among the most common of the RC

models is the echo state network (ESN) [20]. An ESN is a

type of network where memory is preserved through its

recurrent structure. It distinguishes itself from standard

multilayered neural networks by introducing a dynamical

reservoir representing a sparsely connected recurrent net-

work of neurons. This reservoir represents the only hidden

layer in the network (see Fig. 3). The input connections to

the reservoir are randomly assigned and not trainable. The

only weights that are trained are the weights that are

between the reservoir and the output. Weights are trained

using linear regression and do not rely on backpropagation.

Due to these characteristics, ESN is a highly efficient

neural network. The recurrent structure of an ESN within

the reservoir makes ESNs well suited for time series

modeling.

Following the notation and terminology introduced by

Gallicchio et al. [21], an ESN is a recurrent network model

that contains Nu input units and Nr reservoir units. In their

work, ESNs adopted leaky integrator reservoir units, which

are trained by linear regression. Win represents the weights

of the input units, and Ŵ is the sparse matrix of weights of

the recurrent reservoir. h represents the bias for recurrent

units. We let u(t) and x(t) represent the input and reservoir

state at time t, respectively. Finally, a contains a value

between 0 and 1, representing a smoothing constant, i.e.,

our ‘‘leaky’’ parameter, where a larger value of alpha reacts

faster to the input. These form the hyperparameters for an

ESN. Then, the state of the reservoir at time t is updated

according to the following recurrence function (Eq. 1):

x tð Þ ¼ 1� að Þx t � 1ð Þ þ a tanh Winu tð Þ þ Ŵx t � 1ð Þ
� �

ð1Þ

The reservoir hyperparameters are assigned randomly

and never trained; thus, the weight values in Win and h are

selected from a uniform distribution over the range

[- scalein, scalein], where scalein denotes the input scaling

parameters. The weight values in Ŵ are also randomly

assigned from a uniform distribution and rescaled. Thus,

the next reservoir state depends on a linear combination of

the current state and the activation of the weighted input

and weighted current state. The output of the ESN at time t,

denoted y(t), is computed as a linear combination of the

activated reservoir state [Eq. (1)] and the bias of the output.

Wout stands for the weight matrix between the reservoir and

the output units y(t), and hout stands for the weight vector

between the reservoir and the output units y(t):

y tð Þ ¼ Woutx tð Þ þ hout ð2Þ

Since the ESN model was proposed in 2001, there have

been numerous studies showing how variants of ESNs can

be used for time series forecasting. For example, Bernal

et al. [9] used an ESN to predict stock prices of the S&P

500 and showed that an ESN outperformed a Kalman filter

in terms of forecasting higher-frequency fluctuations in

stock price. Li et al. [22] proposed a robust recurrent neural

network in a Bayesian framework based on ESN. Adopting

the basic framework of ESN, the algorithm replaces the

commonly used Gaussian distribution with a Laplace dis-

tribution. The proposed algorithm resulted in good per-

formance in a chaotic time series data set. Sheng et al. [23]

introduced an improved version of ESN with noise addi-

tion. This addition describes the internal state uncertainty

and the output uncertainty more efficiently, and the

experimental results showed that the proposed method is

effective and robust for noisy and chaotic time series pre-

diction. Sun et al. [24] proposed a deep belief echo state

network (DBEN) for time series prediction. DBEN incor-

porated ESN with a deep belief network for feature

learning in an unsupervised way, which leads the model to

extract hierarchical data features effectively. The experi-

mental results showed that DBEN achieved a compelling

17772 Neural Computing and Applications (2020) 32:17769–17787

123



improvement in prediction performance, learning speed,

and short-term memory capacity compared to ESN. Lin

et al. [25] used an ESN to predict the next closing price in

the stock markets. The paper suggested that an ESN out-

performed other conventional neural networks on nearly all

stocks of S&P 500. In this paper, principal component

analysis is also applied to ESN to cut off the noise in data

pretreatment and choose suitable parameters.

2.4 Deep echo state network

Recently, deep echo state networks (DeepESNs) were

proposed as an approach that has been shown to improve

the predictive performance of standard ESNs in many

domains, including time series forecasting [21, 26]. Gen-

erally speaking, a DeepESN is essentially the application of

the deep learning framework applied to the ESN model,

where multiple layers of randomly initialized ESNs char-

acterize a DeepESN. The output is computed by means of a

linear combination of the recurrent units over all of the

recurrent layers. As in the standard ESN approach, the

reservoir component of a DeepESN is left untrained after

initialization subject to stability constraints. In the case of

DeepESN, such constraints are expressed by the conditions

for the ESN of deep RC networks. Though DeepESN

models are a recent development in the neural network

literature, the outcomes of these studies clearly highlight a

number of significant advantages compared to shallow,

single reservoir ESN, including improving the richness of

reservoir states and improved memory capacity, that are

inherently brought by a layered construction of RNN

architecture even prior to training of the recurrent con-

nections [27].

In a DeepESN, the first reservoir layer processes the

input and behaves just like the reservoir of the shallow

ESN; each successive layer is fed by the output of the

previous layer, as you can see in Fig. 4. The state transition

function of DeepESN is as follows.

x lð Þ tð Þ ¼ 1� a lð Þ
� �

x lð Þ t � 1ð Þ

þ a lð Þ tanh W
lð Þ

in i
lð Þ tð Þ þ h lð Þ þ Ŵ lð Þx lð Þ t � 1ð Þ

� �

ð3Þ

In Eq. (3), l refers to the layer number, W
lð Þ

in denotes the

input weight matrix for layer l, and h lð Þ denotes the bias

weight vector for layer l. Ŵ lð Þ is the recurrent weight matrix

of layer l. Finally, i lð Þ tð Þ is used to express the input for the

lth layer of the DeepESN at time step t, i.e.:

i lð Þ tð Þ ¼ u tð Þ if l ¼ 1

¼ x l�1ð Þ tð Þ if l[ 1
ð4Þ

The output of the DeepESN is computed with the following

equation:

y tð Þ ¼ Wout½x 1ð Þ tð Þx 2ð Þ tð Þ. . .x NLð Þ tð Þ�T þ hout ð5Þ

In this case, Wout denotes the weight matrix between

reservoir to output, y(t), which connects the reservoir units

in all layers to the units in the output.

After DeepESN was proposed in 2018, some recent

studies have investigated the application of DeepESN on

time series and classification data. Gallicchio et al. [21]

introduced a novel approach that was applied to the diag-

nosis of Parkinson’s disease (PD). In this study, PD was

identified by analyzing the whole time series collected

from study participants using a tablet device during the

sketching of spiral tests. Their results were remarkable,

demonstrating that DeepESN outperformed a shallow ESN

model. Many studies have extensively compared the per-

formance of ESN and DeepESN neural architectures

Fig. 3 Illustration of Echo State

Network
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[8, 22–24], all demonstrating that DeepESN can often

outperform standard ESNs.

This paper presents a novel application of the DeepESN

method on chaotic time series by incorporating critical

preprocessing steps using a classical additive decomposi-

tion method. We compare our approach against other

recurrent neural net methods using a variety of chaotic time

series data. We demonstrate how merging these two tech-

niques yield superior results over all other methods

demonstrated in this study in almost every experiment

evaluated. We believe that this is the first study to

demonstrate the utility of combining these two techniques

for chaotic time series prediction, yielding compelling

results.

3 Methods

We propose a novel method for time series prediction that

is based on the DeepESN architecture. Our method utilizes

an additive decomposition as a preprocessing step, which

decomposes any time series into three components—trend,

seasonality, and residual, which, combined with the origi-

nal series, are used as input into our DeepESN.

3.1 Preprocessing with additive decomposition

Time series data can be decomposed into separate, distinct

components that capture trends and seasonal or cyclic

patterns that may be inherent in these data. These are

commonly denoted as seasonality, trend, and the remaining

residual component, which accounts for what remains after

seasonality and trend are extracted from the time series.

Seasonality is defined as the tendency of the time series to

exhibit behavior that is periodic, i.e., the pattern repeats at

a fixed frequency of length s, where s represents the season

length. For example, daily temperature readings have a

period length of 365, whereas hourly temperatures would

have a period length of 24. In contrast, trend can be a

constant change in the data over time. Consider daily

temperature readings. The data may show an additive lin-

ear upward trend (e.g., each year, temperature increases by

0.1 degrees), multiplicative trend (e.g., each year, tem-

perature increases by a factor of 1.1), or a damped trend (in

1998, temperature increases by 0.5 degree; in 2008, tem-

perature increases by 1.5 degree). The third pattern, the

residual component, captures general stochastic behavior

that results after trend and seasonality effects are removed.

A decomposition model of a time series can be either

additive or multiplicative. We adopted an additive

decomposition model, which assumes the components are

additive factors. It requires a hyperparameter s, which is

the length of the season, or cycle, assumed in the time

series. In the AD model, we assume that any time series y,

where yt denotes the value of y at time t, is represented as

yt ¼ trendt þ seasonalityt þ residualt, or, yt ¼ Lt þ Stþ
Rt. Then, for a given value of s and smoothing parameters

a; c, we can decompose our three components as follows:

Lt ¼ a � yt � St�sð Þ þ 1� að Þ � Lt�1 0\a\1 ð6Þ
St ¼ c � ðyt � LtÞ þ 1� cð Þ � St�s0\c\1 ð7Þ
Rt ¼ yt � Lt � St ð8Þ

where a; c: smoothing parameters (0.0–1.0), s: length of

seasonality, Lt: linear trend component at time t, St: sea-

sonal component at time t, Rt: residuals, where seasonality

and trend are removed from the raw data.

In our above model, Lt is the linear trend component at

time t. Lt is calculated based on smoothing parameters (a),
seasonal component at time t (St), and linear trend com-

ponent at t - 1 (Lt�1). In the same sense, seasonal com-

ponent at time t (St) can be calculated based on smoothing

parameters (c), linear trend component at time t (Lt), and

seasonal component at time t - s (seasonality). The range

of smoothing parameters is from 0 to 1, and they can be

chosen based on how much you want to consider either

Fig. 4 Illustration of a deep echo state network
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the linear trend or seasonal component in the equation. For

example, in Eq. (6), when a is 0.5, the equation will

equally consider linear trend and seasonal component to

calculate the future linear trend. Finally, residual (Rt) is

calculated by removing seasonal and linear trend compo-

nents from the raw data.

Our method uses additive decomposition as a prepro-

cessing step for any given time series. Instead of building

our predictive model from only the raw time series, our

method uses all three variables obtained from additive

decomposition—seasonality, trend, and residual—in con-

junction with the original time series. The decomposition

of the time series with additive decomposition requires the

selection of the period length as a hyperparameter. In many

cases, the selection of frequency is clear and justified by

understanding what the data represents. For instance, in our

example above, we know that if we’re working with hourly

temperatures, then s = 24. However, in many instances,

seasonality may not be clear. In these cases, we can run an

autocorrelation and partial autocorrelation and identify the

lag value that incurs the largest absolute value to suggest

the period value to use (Fig. 5).

3.2 AD-DeepESN

ESN models have shown great interest due to their sim-

plicity and computational efficiency of training. However,

a single-hidden-layer reservoir computing model may have

difficulty capturing the multiscale structure of many chal-

lenging time series from dynamical systems. DeepESN was

proposed in [26, 27] to address the limitations observed

with the ESN method. In DeepESN, by stacking projection

and encoding layers in the hierarchical structure, it fully

exploits the temporal kernel property of ESN to analyze the

multiscale dynamics of time series [28]. Gallicchio et al.

[27] have proposed a DeepESN model for time series

prediction, demonstrating great success on speech recog-

nition and music modeling and prediction tasks. We have

incorporated their work for our DeepESN model, using

their standard configuration (hyperparameters listed in

Table 1). The illustration of the AD-DeepESN model is in

Fig. 6. In Fig. 7, the algorithm for the AD-DeepESN

method is outlined. It illustrates how the additive decom-

position is used as a preprocessor for the data, and how the

four components that are output from the additive

decomposition are input into the DeepESN model.

The most important hyperparameters for our model are

the number of reservoir units and the number of recurrent

layers. Our selection for these two parameters was from

experimentation and standard grid-search selection tech-

niques. For other parameters, we used the hyperparameters

that are used in [27]. Further exploration of these param-

eters did not yield further improvements.

3.2.1 Choosing additive decomposition frequency
hyperparameter

It is imperative that the user carefully chooses the optimal

frequency for the additive decomposition preprocessing

step. When the data do not reveal an inherent, optimal

Fig. 5 Decomposition of S&P

500 stock data using additive

decomposition
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frequency value, then this hyperparameter may need to be

tuned. In our tests, we evaluated different techniques to

automate the selection of the frequency from the ACF and

PACF functions. Selecting the largest absolute value of the

PACF that was larger than the largest future lag variable

being predicted always yielded the best frequency. If the

wrong frequency is chosen, the performance of the algo-

rithm can deteriorate, sometimes significantly. For exam-

ple, see Fig. 8, where we chose an arbitrarily large

frequency for additive decomposition, compared to the

Table 1 Selection of hyperparameters used in DeepESN model

Parameters Value

Input and inter-layer scaling 0.1

Readout regularization 1e-16

Spectral radius 0.9

Leaking rate 0.01

Number of reservoir units (Nr) 400

Number of recurrent layers 6

Fig. 6 Illustration of the AD-DeepESN predictive model. Win
i represents the weights of the ith input units, and Ŵi is the sparse matrix of weights

of the ith recurrent reservoir. We let xi(t) represent the ith reservoir state at time t

AD-DeepESN:Fig. 7 Algorithm for the AD-

DeepESN method is presented.

Variable y is the lag data,

dependent on parameter lag.
Variable ŷ is the predicted lag

variable
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optimal frequency of 24. This type of behavior is observed

over all of our experiments, suggesting the importance of

selecting an optimal frequency value. Our technique of

using the frequency of the maximum magnitude observed

from the partial autocorrelation worked well. Our limited

tests showed that we could never obtain a better frequency

value than this technique. Generally, we observed that

higher frequency values tend to perform better for periodic

and stationary data, and lower frequency works better for

chaotic and random nonstationary data.

3.3 Hardware

All tests were conducted on a Cisco UCS B200 M5 server

configured with 40 9 2 CPU cores, 512 GB memory, and

an nVidia Tesla P6 GPU with 2048 CUDA cores and

16 GB memory.

3.4 Comparative methods

To demonstrate the efficacy of our method, we compare

two well-known methods in deep learning, LSTM, and

GRU, as well as two reservoir-based methods, ESN and the

standard DeepESN method, against AD-DeepESN. To help

control learning biases with the comparative methods, we

used a grid search to obtain optimal hyperparameters and

network architecture for all methods. The set of hyperpa-

rameters that were evaluated are listed in Tables 2 and 3.

3.4.1 Data sets

We evaluate our method on 6 different time series data

sets, each of which exhibits different levels of chaotic and

stationary behavior. All data are normalized such that all

data are between 0 and 1.

3.4.2 S&P 500 data set

The S&P 500 is a well-known American stock market

index based on the market capitalization of 500 large

companies that are traded on the NYSE or NASDAQ stock

exchanges. The data are scraped from Yahoo finance [29].

5000 days of S&P data are obtained (from August 14,

1999, to July 01, 2019); 80% of the data (4000 days) are

used for training, and 20% of the data (1000 days) are used

for testing (Fig. 9).

S&P 500 data shows short, but strong, well-defined

trends, as evidenced by a Dickey–Fuller p value of

0.99423, clearly indicating the data are nonstationary. The

trends are non-uniform, with most exhibiting a unique

slope and duration of the trend over time. Trends mostly

Fig. 8 Performance difference when choosing wrong frequency (freq = 24 vs freq = 200)

Table 2 List of grid search parameters for LSTM and GRU

LSTM GRU

Number of epochs 20, 30, 50, 70 20, 30, 50, 70

Number of layers 2, 4, 5 2, 4, 5

Number of units 32, 64, 128, 256 32, 64, 128, 256
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follow the general market behavior (i.e., bull vs. bear

market). Financial market data are notorious for chaotic,

unpredictable daily behaviors. In these data, the minimum

value of the S&P 500 data is 676.53, and the maximum

value of the S&P 500 data is 2954.18. These values are

scaled to 0 and 1, respectively.

3.4.3 Parking Birmingham data set

The Parking Birmingham dataset is obtained from the UCI

machine learning repository [30]. The data are collected

from car parks in Birmingham that are operated by the

National Consumer Panel (NCP) from Birmingham City

Council. The data record the occupancy level of all car

parks managed by the council, between the hours of 8:00

and 16:30, recorded every 30 min. The data were collected

from October 04, 2016, to December 19, 2016. Data were

trimmed to include the 5000 most recent observations in

the data. Of these, 80% of the data (4000 points) were used

for training, and 20% (1000 points) withheld for testing

(Fig. 10).

Dickey–Fuller statistics for Birmingham Parking dataset

yields a p value of 0, implying that data do not exhibit any

notable trend, and is mainly stationary. The minimum

value of the Birmingham Parking data is 224, and the

maximum value of the Birmingham Parking data is 1911.

Table 3 List of grid search

parameters for ESN, DeepESN,

and AD-DeepESN

ESN DeepESN AD-DeepESN

Size of reservoir 500, 1000, 3000 300, 500, 800 300, 500, 800

Number of layers N/A 2, 4, 6, 8 2, 4, 6, 8

Leaking rates 0.1, 0.001, 0.0001 0.1, 0.001, 0.0001 0.1, 0.001, 0.0001

Fig. 9 Hourly S&P 500 data

Fig. 10 Birmingham Parking

data
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3.4.4 Chaos data

A simulated chaotic dataset from the Annulus experiment

was obtained from Emory University, Department of

Physics [31]. The dataset appears to exhibit a measure of

periodicity, whereas a fully chaotic dataset would contain

more chaotic and stochastic behavior, particularly with

respect to periodicity. The length of the data is 16,383;

80% of the data (13,106 points) are used for training, and

20% of the data (3277 points) are used for testing (Fig. 11).

Dickey–Fuller statistics for Chaos data is 0, which

means the data do not show any specific trend. The mini-

mum value of the chaos data is 2.38653, and the maximum

value of the chaos data is 4.98073.

3.4.5 Philadelphia temperature data

Philadelphia temperature data were obtained from the

Pennsylvania state climatologist website [32]. The hourly

temperature data were measured from a monitoring station

in Philadelphia from January 07, 2018, to January 01, 2019

(8000 data points). 80% of the data (6400 points) are used

for training, and 20% of the data (1600 points) are used for

testing (Fig. 12).

The data exhibited a Dickey–Fuller p value of 0.00067.

At first glance, this might seem surprising, as there is an

unsurprising clear trend up through the summer, and then a

trend downward through the remainder of the year. How-

ever, the test works throughout the entire dataset, and as a

whole, the data are indeed stationary. The minimum tem-

perature was 16 (F), and the maximum temperature was

96.4 (F).

3.4.6 Periodic data

To confirm the validity of the method on a standard, highly

regular periodic data, we obtained a periodic dataset from

Emory University, Department of Physics [31]. The data

represent the periodic data with a period of 9.5 (s). The

length of the data is 16,383; 80% of the data (13,106

points) are used for training, and 20% of the data (3277

points) are used for testing (Fig. 13).

Periodic data show concrete periodicity with a constant

mean over time, which is completely stationary, as noted

with the Dickey–Fuller p value of 0. The minimum value

of the periodic data is 2.74, and the maximum value of the

periodic data is 3.38.

3.4.7 Bike sharing data set

A bike sharing dataset is obtained from the UCI machine

learning repository [33]. The dataset contains the hourly

count of rental bikes between 2011 and 2012 in the

capital bike sharing system with the corresponding

weather and seasonal information included. We used 5000

observations to match up with the length of the other data

sets; 80% of the data (4000 points) are used for training,

and 20% of the data (1000 points) are used for testing

(Fig. 14).

Dickey–Fuller statistics for hourly biking sharing data is

0.00186, which means the data do not show any specific

trend. The minimum value of the bike sharing data is 1, and

the maximum value of the bike sharing data is 977.

3.5 Comparative assessment

3.5.1 Model induction

The LSTM and GRU methods adhere to a standard feed-

forward/backpropagation training algorithm. These meth-

ods were trained through as many epochs required until the

error was stable, or until overfitting was noted. In contrast,

reservoir computing (ESN) does not have any epochs to

update the weights. A grid search was performed on every

Fig. 11 Chaos data (first 1000

points)
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method, as described above. Once optimal parameters were

established for every method, each method was evaluated

by inducing a predictive model 10 times.

3.5.2 Performance assessment

Predictive performance was assessed on each run, and

confidence intervals are indicated. To assess predictive

performance, the mean squared error (MSE) measure was

Fig. 12 Hourly temperature

data from Philadelphia, plotted

between 2018-Jan-07 through

2019-Jan-01

Fig. 13 Periodic data (first 1000

points)

Fig. 14 Hourly bike sharing

data (first 1000 points)
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recorded for every observation of the training data and test

data, separately. In addition, we also record the running

time (RT) for every method.

MSE is calculated as the average of the sum of the

forecast error squared (Eq. 9). Squaring the forecast error

values forces them to be positive, and it also has the effect

of putting more weight on large errors:

MSE ¼ 1

n

Xn

i¼1

yi � y0i
� �2 ð9Þ

where n : length of the data, yi : ith observed value,

y0i : ith predicted value.

For each algorithm, future lag variables between 1 and 5

were forecast, and each is used to evaluate the performance

of the models. As noted above, every forecasting model

was induced 10 times for each lag variable. The MSE is

computed for every prediction, and a 95% confidence

interval is computed for all lag variables using a 2-sided

t test.

3.5.3 Post processing

To aid in the interpretation of our results, we applied the

autocorrelation, partial correlation, and ADFT methods to

determine the characteristics of the time series.

4 Results

In this section, we present the performance results of AD-

DeepESN against 4 time series forecasting methods on 6

different datasets. Performance results are measured by

establishing the MSE over 20% of the data withheld for test

purposes. We carefully critique two of the most challeng-

ing datasets used. (The remaining results are in the sup-

plementary material.) Table 4 shows a complete summary

of the predictive performance of all algorithms evaluated.

We computed 95% confidence intervals of the MSE for

every test conducted, assessed using a standard t test.

Numbers in bold indicate the best results observed for

every given experiment. Additionally, Fig. 15 shows a plot

of the predictive performance of each method over all 5 lag

variables, with confidence intervals indicated. For these

plots, ESN is omitted for the most graphs due to poor

predictive performance.

Our results demonstrate the value of the AD-DeepESN

method. Specifically, AD-DeepESN performed well on all

6 data sets, for all time lags. For most cases, AD-DeepESN

recorded not only the best performance but also the

smallest standard deviation, suggesting it to be a stable al-

gorithm. We will discuss how individual hyperparameters

are selected, particularly with the selection of the

periodicity value for the additive decomposition prepro-

cessing step, as this is very important in order to obtain

strong predictive performance. To this end, we will eval-

uate the degree of stationarity, trend, and periodicity

observed in the data through the ACF and PACF.

Table 5 shows the computational time required for

building each model. As indicated, the training time varies

substantially. Without surprise, the standard backpropaga-

tion algorithm is notoriously slow. In contrast, the ESN

method is always the most computationally efficient

method. However, despite its excellent training time, it

often has the lowest predictive performance. The LSTM

and GRU models required nearly five times more CPU

time to train the model, compared to the training time of

DeepESN and AD-DeepESN.

4.1 Temperature forecasting

Figure 16 plots the entire Philadelphia hourly temperature

time series, with both ACF and PACF plots indicated.

Despite the upward trend toward the summer and down-

ward trend toward the winter, the Dickey–Fuller test

statistic is 0.00067, implying that the dataset is not

autoregressive, and is generally stationary over the entire

duration. As one would expect for hourly temperature data,

there is a strong autocorrelation that steadily decreases as

the time between two points increases. There is a rise every

24 h, as one would expect. Additionally, the PACF shows

that the function does not have a zero value at a fixed lag

but generally decreases as the lag variable increases, also

indicating a maximum absolute value at 24.

Selection of the frequency hyperparameter for the

additive decomposition can either use intuition when the

data are understood or the maximum magnitude of the

absolute value of the PACF. Either approach for these data

would suggest 24 is a proper frequency to use. Likewise, it

is the value we used for obtaining optimal results. Fig-

ure 17 reveals the performance over the training and the

test data. Figure 17 shows a snapshot of the observed and

the predicted value at lag 5, demonstrating how well the

prediction tracks the observed with a few notable excep-

tions during extreme events of rapid temperature change.

As indicated in Fig. 17, for training MSE and testing

MSE, AD-DeepESN method had the best performance,

whereas ESN (not shown in the plot) had the lowest. The

performance of the original DeepESN method was

remarkable on the training data but was relatively unstable,

and the performance was on par with other methods eval-

uated. However, once we incorporated the additive

decomposition to DeepESN, it is interesting to note that the

standard deviation decreased by * 5 times, and the MSE

decreased approximately 10 times. It is interesting that the

overall performance on test data was superior to the results
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on training data. This can be explained by the fact that the

data have fewer extreme fluctuations during the last 20% of

the year, compared to the first 80% used in the training

data. Despite this, the standard deviation of predictions was

substantially more significant for the test data, as expected.

As we increase the time step, mean MSE for test and

training increased, as did the standard deviation of every

algorithm, as one would expect. Out of all the algorithms,

GRU was the most stable algorithm. The result for the ESN

is not included in Fig. 17 due to the results being far worse

compared to the other results (Fig. 18).

The AD-DeepESN method, in general, will always use

all three time series output (trend, seasonal, and residual

data), in addition to the original data. However, that is not a

requirement. It is quite possible in some instances where

only a subset of the data might yield better performance.

Therefore, we evaluated the method on all combinations of

all four time series to use as input. For Philadelphia tem-

perature data, we did not include the residual data, as the

original data adequately capture these variations from trend

and periodicity data. The output of the additive decompo-

sition clearly illustrates a stable trend and seasonality/pe-

riodicity inherent in these data. In fact, the trend data are

clearly the most influential component of all three. We

incorporate trend and seasonality data from additive

decomposition, and it recorded the best performance out of

all.

4.2 S&P 500 data forecasting

The S&P 500 daily stock market data, from August 14,

1999, to July 01, 2019, representing over 14 years of

market data, clearly indicate a strong trend. In fact, during

this period, only two short-duration time periods represent

bear markets: 2000–2002 and 2007–2009. Despite the

strong bull market, there are some ups and downs in the

graph. The Dickey–Fuller test statistics is 0.99423,

implying that the dataset is autoregressive, and is generally

not stationary. The PACF shows that the function usually

has minimal values with a maximum magnitude at 127.

Fig. 15 Summary of the performance of all algorithms over 6 data sets, demonstrating the substantial improvement in predictive performance on

most datasets evaluated. Note that graphs that do not show ESN are due to poor performance

Table 5 Computational time(s) for five different algorithms (test

data)

LSTM GRU ESN DeepESN AD-DeepESN

S&P 500 68 60 0.06 13 15.5

Biking 67 215 0.05 14 15.5

Periodic 218 201 0.17 31 33

Temperature 109 112 0.08 18.2 22.5

Parking 68 198 0.05 13.5 17

Chaos 222 253 0.18 31.5 34
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The autocorrelation function (ACF) shows that the values

are decreasing, which is expected from autoregressive data.

All of these observations clearly indicate a highly chaotic

dataset that will be challenging to forecast (Fig. 19).

Selection of the frequency hyperparameter for the

additive decomposition can either use intuition when the

data are understood or the maximum magnitude of the

PACF. Since S&P 500 data were very unpredictable and

chaotic, we chose the maximum magnitude of the PACF,

which is 127. Likewise, 127 is the frequency value that

resulted in the best results. For S&P 500 stock data, we

included all three additional time series, since the output of

the additive decomposition (see Fig. 5) clearly shows that

the data has a definite trend, periodicity, and significant

noise. Incorporating all three additional time series data

recorded the best performance as well.

Fig. 16 Autocorrelation and partial correlation plot for Philadelphia Temperature data

Fig. 17 Mean MSE for training and test for Philadelphia temperature data
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As indicated in Fig. 20, for training and testing MSE,

AD-DeepESN had the best performance, whereas LSTM

had the lowest performance. (LSTM is not shown in

Fig. 20.) The performance of the original DeepESN

method was remarkable on the training data, but was rel-

atively unstable, though the performance was on par with

other methods evaluated. However, once we incorporated

additive decomposition to DeepESN, it’s interesting to note

that the standard deviation decreased by * 5 times, and

the MSE decreased approximately 10 times. As expected,

the overall performance of the training data was superior to

the results on the test data. This can be explained by the

Fig. 18 Output of additive

decomposition for Philadelphia

temperature data (first 1000

points)

Fig. 19 Autocorrelation and partial correlation plot of S&P 500 data
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fact that the data have more extreme fluctuations during the

last 20% of the year, compared to the first 80% used in the

training data. In addition, the standard deviation of pre-

dictions was substantially larger for the test data. As we

increase the time step, mean MSE for test and training, and

the standard deviation of every algorithm increased, as one

would expect. Out of all the algorithms, GRU was the most

stable algorithm (except for lag 2).

5 Discussion

In this paper, the performance of two recurrent neural

networks and two reservoir time series forecasting algo-

rithms is compared and contrasted against our method,

AD-DeepESN. Generally, traditional algorithms (GRU and

LSTM) took longer to train (* 5 times) compared to the

reservoir algorithms (ESN and DeepESN) due to the

computational requirements of the backpropagation algo-

rithm. However, even though reservoir algorithms tend to

be trained faster and more efficiently, they record unsta-

ble results (high standard deviations). Even though there

have been several attempts to increase the performance of

reservoir algorithms, most of the papers approached this

issue in terms of mathematical frameworks, such as

replacing Gaussian distribution with a Laplace distribution

in ESN, and other preprocessing steps. In most instances,

the inclusion of the additive decomposition as a prepro-

cessing step yielded an ideal benefit of improving the sta-

bilization of the DeepESN method, while increasing the

performance.

To evaluate the performance of AD-DeepESN, we chose

6 different time series data sets from various sources. Each

dataset has different characteristics (some are moving

average series; some are periodic; some are autoregressive).

AD-DeepESN worked for the best for all 6 data sets. In

particular, we noticed that incorporating additive decom-

position as a preprocessing step resulted in models that

were significantly more stable (i.e., incurred a lower stan-

dard deviation over all run) by order of magnitude. Like-

wise, the AD-DeepESN method recorded significantly

lower mean MSE for most data sets than the standard

DeepESN method.

5.1 Choosing the subset of post-processed HWM
series for the HW-DeepESN method

In our experiments, we evaluated all combinations of

decomposed series outputs to use from the post-processed

additive decomposition data, including the original time

series, and the trend, seasonality, and residual data. Gen-

erally, all four series resulted in the best performance.

However, we did observe some general rules to follow

when determining which series to include. First, the orig-

inal time series data are always included in every run. If the

time series exhibits a cyclic movement, then including

seasonality substantially improved the results. If the orig-

inal time series is random and chaotic, then including

residuals substantially improved the predictive perfor-

mance. However, as stated, for most cases, including all

four time series (raw, trend, seasonality, and residuals)

resulted the best outcome.

6 Conclusion

In this paper, we proposed a new technique, AD-DeepESN,

for time series prediction. By incorporating an additive

decomposition of the time series being analyzed to Dee-

pESN, our new network processes three additional features

Fig. 20 Predictive performance measured by MSE is plotted for S&P 500, with performance on training data and test data indicated

17786 Neural Computing and Applications (2020) 32:17769–17787

123



of time series data (trend, seasonality, and residuals). These

additional attributes help AD-DeepESN handle time series

that exhibited erratic behavior, especially from nonsta-

tionary data sets. Our results in Table 4 show the superi-

ority of AD-DeepESN to other traditional recurrent neural

networks and reservoir computing approaches. Testing

with 6 different data sets with 5 different time lags, we

showed that AD-DeepESN had remarkable performance

when dealing with nonstationary data and for higher-order

lag variables.
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