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Abstract
Stock price prediction is a rich research topic that has attracted interest from various areas of science. The recent success of

machine learning in speech and image recognition has prompted researchers to apply these methods to asset price

prediction. The majority of literature has been devoted to predicting either the actual asset price or the direction of price

movement. In this paper, we study a hitherto little explored question of predicting significant changes in stock price based

on previous changes using machine learning algorithms. We are particularly interested in the performance of neural

network classifiers in the given context. To this end, we construct and test three neural network models including

multilayer perceptron, convolutional net, and long short-term memory net. As benchmark models, we use random forest

and relative strength index methods. The models are tested using 10-year daily stock price data of four major US public

companies. Test results show that predicting significant changes in stock price can be accomplished with a high degree of

accuracy. In particular, we obtain substantially better results than similar studies that forecast the direction of price change.

Keywords Stock price forecasting � Neural networks � CNN � LSTM � RSI

1 Introduction

The ability to predict future stock prices has been the holy

grail of many inside the financial industry as well as aca-

demia. The implications of being able to correctly forecast

stock prices have fueled interest in the topic from the early

days of stock markets. However, the work of Fama [23]

and subsequently Fama and French [9] put a damper on

these efforts. Fama argued convincingly that stock prices

contain all publicly available information, implying that

stock price prediction is a fruitless endeavor. Despite these

discouraging reports, researchers and analysts have con-

tinued trying to develop stock price prediction models

using various approaches. In the quest to find novel solu-

tions researchers drew on behavioral science, physics,

genetics, and other fields for inspiration [1, 18, 25]. The

recent success of machine learning in speech and image

recognition has encouraged researchers to turn their

attention to artificial intelligence [13, 16]. The majority of

the attempts to predict asset prices have focused on the

actual price or price direction. Our goal is to employ

modern machine learning models to forecast significant

changes in asset price. Concretely, we use daily returns

over previous p days to predict if the next daily return

would be significant.

Economic data is large and complex so it is extremely

difficult to delineate its complicated inner relationships

with an econometric model. Machine learning models are

universal algorithms that are able to capture complex

nonlinear relationships within data which makes them

appealing for use in financial modeling. A great deal of

effort has been directed to applying machine learning to

stock price prediction though with varying degrees of

success. One of the most convincing examples of success

of quantitative analysis and machine learning in finance is

the amazing performance of the Medallion Fund over the

past 2 decades [12]. Nonetheless, machine learning algo-

rithms must be applied with caution as most remain black

box models.

Stock price prediction is often done in one of the two

ways: numerical price prediction or price direction pre-

diction. In numerical price prediction, a learning model

such as a regression is built to predict the actual price of a

stock. In direction prediction, a learning model such as a
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classifier is built to predict the direction—up or down—of

price movement. The former task remains a daunting

challenge with most of the modern quantitative methods

unable to beat a simple random walk model in out of

sample testing [9]. The latter task appears more feasible

[24] as it requires less precision—the direction of price

change contains less information than the actual price

change. Note that regression models can also be adapted to

predict the direction of price change by considering only

the sign of the predicted output. Although information

about the direction of price change does not tell the whole

story it is still immensely useful and profitable.

In this paper, we extend the idea of predicting the

direction of price change to predicting significant changes

in price. While small changes in the direction of price can

happen frequently, significant changes in price are more

rare and are driven by different fundamentals. Clearly some

of the significant movements in price are due to unexpected

news that would be impossible to forecast. On the other

hand, it seems plausible that we can learn to identify sit-

uations where a stock is oversold or overbought which

would lead to a reversal in price change. In our forecast

models, we employ sophisticated deep learning algorithms

such as convolutional neural networks (CNN) and long

term short memory (LSTM) networks. We contrast the

performance of CNNs and LSTMs with multilayer per-

ceptron (MLP) which is a plain feedforward neural net-

work. We use random forest (RF) to add a non-neural net

machine learning algorithm to our study. RF is a simple

and efficient classification algorithm that serves as a great

benchmark model.

Neural networks have been shown to perform extremely

well on a number of tasks such image and voice recogni-

tion. They have a capacity to construct autonomous fea-

tures which allows them to better generalize their

performance achieved during training. Some neural net-

work architectures such as LSTM are able to handle

sequential data. This property of LSTM is particularly

useful in the context of time series data such as the daily

stock price. Traditional machine learning algorithms

including decision tree, SVM, and MLP do not take into

account the ordered structure of sequential data. Therefore,

LSTM networks have a distinguished advantage in this

context.

Price change indicators have existed in finance long

before the advent of machine learning. Relative strength

index (RSI) is one such popular financial statistic that is

used to identify oversold or overbought stocks. RSI is

calculated based on the closing prices over a recent trading

period. According to Wilder, RSI index above 70 or below

30 indicates an overbought or oversold stock respectively

[33]. RSI has stood the test of time and remains in use in

both industry and academia [14, 28]. We use RSI in our

study to compare the performance of machine learning

models to the traditional finance methods.

We use the daily stock price data of four major US

companies over a 10-year period to build the forecast

models. We analyze the performance of the models in

predicting significant positive and negative daily returns.

The results indicate that machine learning models are more

successful at forecasting significant daily returns achieving

AUC of almost 0.85 in some cases (Fig. 4). In addition, all

the tested learning models substantially outperformed the

RSI model.

The main contributions of the present paper consist of

two parts. First, we investigate a previously little explored

question of forecasting significant changes in asset price.

Most of the current literature is devoted to the study of the

actual asset price or the direction of change of the asset

price. There is no major study focusing specifically on

significant changes in price. We believe that forecasting

significant changes in price is a more tractable problem

than forecasting the actual price or the direction of price

change. Indeed, the results of our numerical experiments

show that under certain conditions the AUC of predicting

significant changes in price can be as high as 0.85. For

comparison, a similar study on the direction of price

change achieves AUC of only 0.55 [4]. Second, we carry

out an extensive evaluation of modern neural network

architectures in price forecasting. Although neural net-

works have been used before in the context of asset price

prediction [3, 7, 10] our study has a broader scope of

analysis. We investigate a range of neural networks

including MLP, CNN, and LSTM. The neural networks are

benchmarked against other machine learning and financial

predictors such RF and RSI.

The paper is divided as follows. In Sect. 2, we briefly

review the existing literature on stock market prediction

using machine learning. In Sect. 3, we describe the algo-

rithms used in the study. In Sect. 4, we present our

experiments and results. We end the paper with concluding

remarks in Sect. 5.

2 Literature

Machine learning has recently experienced great success in

areas such as image and speech recognition [29, 34]. As a

result researchers became encouraged to apply the same

techniques to build financial forecasting models [16, 24].

The authors in [10] carried out a large scale study applying

LSTM on the constituents of S&P 500 index between 1992

and 2015. Results showed that LSTM-based approach

outperforms other machine learning approaches in pre-

dicting out-of-sample directional movements. In [7], the

authors applied LSTM to predict returns in Chinese stock

17656 Neural Computing and Applications (2020) 32:17655–17667

123



market. The results showed a 13% improvement in accu-

racy over random prediction method. The authors in [3]

proposed a novel approach to forecasting next day stock

prices by using a three stage procedure. In the first stage,

the time series data is denoised using wavelet transform

followed by feature extraction using auto-encoders and

applying LSTM in the final stage. The proposed model

produced better results than other similar models in accu-

racy and profitability performance. An ensemble of LSTMs

was used in [4] to predict the intraday change in direction

of stock prices for 22 large cap US stocks. The authors

engineered a set of basic and advanced input features for

the networks to enhance the performance of the models.

The weighted ensemble model performed consistently,

albeit marginally, better than benchmark lasso and ridge

logistic models.

Ensemble techniques that combine several machine

learning methods have been actively explored in the liter-

ature. In [6], a suite of learning methods was used to model

the probability of stock market crash event during various

time frames. The authors showed that deep neural networks

significantly increase the classification accuracy. The

authors in [22] tested random forests, support vector

machines, and deep neural networks to predict returns on

ETFs. Concretely, the authors used prior returns, trading

volume, and dummy variables to predict the direction of

price change of ETFs. The results showed that the methods

work best over 3–6 month horizons. In addition, trading

volume is found to be a strong predictor of future return

direction. The authors in [26] used a combination of

machine learning methods to predict stock market indexes

in India. In the first stage, the authors applied support

vector regression to predict values of technical parameters

on day t þ n based on input values from day t. The output

from Stage 1 was then used as input for Stage 2 models that

included support vector regression, artificial neural net-

works, and random forest. Experiments showed that the

two-stage models have better accuracy than single-stage

models in predicting stock index.

Combining traditional econometric models with modern

machine learning tools has become another popular

approach albeit with mixed results. The authors in [19]

combined various GARCH type models with LSTM to

forecast stock price volatility. Experimental results on

Korean stock exchange index data revealed that the hybrid

GEW-LSTM model outperformed standalone models such

as GARCH, ANN, and LSTM. In [30], the authors use

ARMA-GARCH together with artificial neural networks to

create an intelligent system for predicting stock market

shocks. The results suggest that the proposed model can

effectively predict market shocks based on intraday trading

data. On the other hand, the study by Guresen [13] on stock

index prediction shows that the basic multilayer perceptron

outperforms more involved neural networks. The authors

compared the performance of multilayer perceptron with

dynamic and hybrid neural networks using daily values of

NASDAQ composite index. The results indicate that the

more complex neural network architectures do not neces-

sarily lead to better performance.

3 Machine learning models

Neural networks are a class of machine learning algorithms

that are patterned after the neurons inside human brain.

There exist many variations of neural networks starting

with MLP and ending with more exotic architectures such

as LSTM. Neural networks achieved their recent success

due to three main factors: novel and improved architec-

tures, increase in computational power stemming from the

use of GPUs, and creation of large training datasets. The

early neural networks such as MLP, although powerful, did

not quite outperform other machine learning methods such

as support vector machines and random forests. One of the

first major breakthroughs took place with introduction of

CNNs which were used by Lecun [21] to achieve high

accuracy in classification of handwritten digits. Subsequent

deep learning models such as AlexNet [20] and Resnet [15]

that consist of tens and hundreds of hidden layers and

trained on millions of samples pushed image classification

accuracy to even greater levels. The success of neural

networks thrust their application in a wide array of fields

beyond image recognition. Neural networks are widely

used in engineering to model nonlinear functions. In par-

ticular, adaptive neural networks based on the radial basis

function have been used in development of nonlinear

control systems [27].

The main distinguishing characteristic of neural net-

works is their ability to ‘learn’ new features from data. In

case of image recognition, neural networks can learn to

identify edges, shapes, and outlines which are then com-

bined to label the image. In applying neural networks to

stock prices, we hope that they learn hidden features or

patterns in the data that would lead to correct price pre-

diction. In our study, we employ three of the most popular

types of neural networks: MLP, CNN, and LSTM. Each

network has its own flavor thus providing us with a broad

overview of this class of machine learning algorithms.

3.1 Multilayer perceptron

Multilayer perceptron (MLP) is a basic type of feedforward

neural network that consist of an input layer, hidden lay-

er(s), and an output layer (Fig. 1). Each layer consists of a

number of nodes which are interconnected via weights.

During the model training stage, the algorithm adjusts the
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weights of the network to increase classification accuracy.

The model training consists of several forward and back-

ward passes. In the forward pass, the data is passed through

the network from the input layer to the output layer. In the

backward pass, the algorithms calculate partial derivatives

of the cost function with respect to the weights and use

them to adjust the values of the weights. Despite its rela-

tively basic structure, MLP remains an effective model for

classification [8].

During the training phase, a single forward pass consists

of calculating node values of successive layers starting

with the input layer. The number of nodes in the input layer

corresponds to the number of input features. The input

features are fed into the nodes of the first hidden layer. The

weighted sum of the input values plus a bias term is then

transformed using a nonlinear function such as sigmoid,

tanh or ReLu. This process is continued until the output

layer node(s) is calculated. Thus, in a certain sense, a MLP

is nothing more than a composition of a series of affine

transformations and certain nonlinearities. The cost func-

tion in a classification task is defined based on mutual

information between the predicated and actual values of the

target variable.

In a backward pass of the training stage, the network

weights are adjusted according to the corresponding partial

derivatives of the cost function. This corresponds to a

single gradient descent step in minimizing the cost func-

tion. The partial derivatives are calculated in reverse order

starting from the output layer. The chain rule is used to

calculate partial derivatives for the weights of successive

layers based on previous layers. The use of chain rule

greatly simplifies derivative calculations which makes

MLP an appealing algorithm.

3.2 Convolutional neural network

Convolution is a popular mathematical tool that is used in

computer science and engineering. The idea for convolu-

tional neural networks (CNN) was motivated by the use of

convolution in image processing. CNN architecture in

many ways resembles that of MLP. The main distin-

guishing characteristics of CNN are convolutional layers.

A convolutional layer is calculated by sliding a window

(filter) across an input array and taking the dot product with

the corresponding part of the array (Fig. 2). In this way,

CNN takes advantage of any existing structure within the

input data. CNNs often contain pooling layers that are used

to refine the signal that is passed through the network.

Thus, a CNN usually consists of several convolution and

pooling layers followed by traditional dense layers. There

exist several popular CNN architectures such AlexNet,

ResNet, and Inception whose success in image recognition

has made deep learning a state-of-the-art machine learning

method. Since time series data is inherently structured

CNN is a good candidate to exploit any underlying

patterns.

3.3 Long short-term memory

LSTM is a type of a recurrent neural network that has been

used successfully in natural language processing. Recurrent

neural networks (RNN) were designed to process sequen-

tial data—consisting of multiple time steps. In a typical

RNN, the output is calculated based on the current input

and the previous hidden state, where the hidden state is

calculated during the previous time step. Thus the network

‘remembers’ previous inputs as it calculates the current

output. A regular RNN suffers from the vanishing gradient

phenomenon whereby the gradient value rapidly decreases

as it propagates back in time. A small gradient means that

the weights of the initial layers will not be updated effec-

tively during the training session. LSTM solves the van-

ishing gradient problem by introducing an LSTM unit into

a regular RNN. An LSTM unit consists of three gates—

Fig. 1 Multilayer perceptron architecture

Fig. 2 Convolutional neural network architecture in the style of

AlexNet
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input gate, forget gate, and output gate—that control the

flow of information inside the unit (Fig. 3). LSTMs have

been shown to perform well on sequential data. Therefore,

they are inherently well suited for time-series analysis.

3.4 Random forest

Random forest is a classical machine learning tool that is

based on aggregating the output of a collection of decision

trees [5]. Thus, RF reduces overfitting that is characteristic

of individual decision trees. Each decision tree is con-

structed by recursively splitting data at different values of

input features. The choice of the split is determined based

on the corresponding information gain. The main advan-

tage of a decision tree is speed and interpretability. How-

ever, decision trees tend to overfit the data. To reduce

overfitting, a bootstrap aggregation technique is applied.

The data is repeatedly sampled, and the corresponding

decision tree is constructed. Then, the output of the boot-

strap model is determined by taking the mode of outputs of

individual trees. In RF, individual decision tree has an

additional property that at each split only a subset of all

features is considered. It is done to reduce the correlation

among the trees and thereby reduce the output variance.

3.5 Relative strength index

RSI is a popular financial indicator used to gauge the

degree to which an asset is being oversold or overbought in

the market [33]. It is calculated based the ratio of average

gains to average losses over a trailing 14-day period. An

RSI value of under 30 indicates that the stock is oversold.

Similarly, an RSI over 70 indicates that the stock is over-

bought. We use this simple logic as the predictive model

for significant changes. Concretely, we predict a significant

negative change when RSI reaches 70 or above. And we

predict a significant positive change when RSI reaches 30

or under.

4 Numerical experiments

In this section, we present the results of our experiments

that were carried out to test the performance of machine

learning algorithms in predicting significant changes in

stock price. The results indicate that machine learning

tools—and in particular neural networks—can be used

effectively to forecast significant price changes in stock

price.

4.1 Methodology

In our experiments, we test three major neural network

models: MLP, CNN, and LSTM. The models are built

using the TensorFlow library. In order to maintain com-

parability, we use the same general architecture in all three

models (Table 1). Each model consists of an input layer,

two hidden layers, and an output layer. We use ReLu

activation function in every layer except the output layer.

Dropout rate of 0.2 is applied to certain layers in CNN and

LSTM models. In addition to neural networks, we also use

a RF model to represent more traditional learning algo-

rithms. The RF model is imported from the scikit-learn

library with its default settings. To benchmark the perfor-

mance of machine learning algorithms, we use a RSI based

predictive model. It is a widely used financial indicator that

signals when an asset is potentially oversold (overbought).

RSI is calculated using Wilder’s moving average with

different size lookback windows.

The experiments are performed using data on four major

US publicly traded companies: Coca-Cola, Cisco Systems,

Nike, and Goldman Sacks. We use adjusted daily stock

prices from 2009 to 2019. The data is converted to daily

returns prior to the experiments. The daily return is cal-

culated based on the following formula:

rt ¼ ln
pt
pt�1

� �
;

where rt and pt indicate the return and price for day t

respectively. To ensure the integrity of the experiments, the

data is split temporally into training and testing parts using

a 75%/25% ratio. Input feature vectors consist of prior

returns over the previous p days and output is the current

return value, i.e.

xk ¼ ðrk�p; rk�pþ1; . . .; rk�1Þ; yk ¼ rk:

The experiments are performed using a range of values for

p: 7, 14, 30, and 60 days. A daily return value is defined as

significant if it exceeds a predefined threshold. The

threshold is calculated as a fraction of the standard devia-

tion of daily returns over the training period. Thus, when

the fraction is 1.2 any return value over the threshold ofFig. 3 LSTM architecture. (Source: http://colah.github.io/posts/2015-

08-Understanding-LSTMs/)
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1.2r is considered as positively significant, where r is the

standard deviation of daily returns in the training set. We

carry out experiments using a range of fraction values to

observe the effects of varying threshold levels on the per-

formance of classifiers.

Since significant daily returns constitute a small portion

of all returns our data has an imbalanced class distribution

which can affect the performance of classifiers. Class

imbalance can result in a biased classifier whereby the

majority class points are given preference over minority

samples. A common approach to addressing this issue is

through resampling the minority data to achieve a balanced

distribution. We leave addressing this problem to future

research.

As mentioned above class imbalance is an important

issue in the context of our study. In particular, the choice of

classifier performance metric requires consideration. Since

classifier’s goal is to increase accuracy it will often do so at

the expense of minority instances. Therefore, using accu-

racy or error rate would not reflect the true performance of

a classifier. Area under ROC curve (AUC) is often used to

remedy this issue. The ROC curve is obtained by plotting

the true positive rate of a classifier against the false positive

rate at different threshold levels. Thus, AUC represents the

probability that a classifier will rank a randomly chosen

positive instance higher than a randomly chosen negative

instance.

4.2 Results

The experiments on Cisco Systems data produce impres-

sive results for the LSTM model. Our findings are illus-

trated in Fig. 4, where the graphs in the first column show

performance in forecasting significant positive changes in

daily return. Similarly, the graphs in the second column

show performance in forecasting significant negative

changes. LSTM yields substantially higher AUC values

than other models in predicting positive changes in asset

price. It also yields the top results in forecasting negative

changes albeit by a smaller margin. We note that LSTM

performance improves when forecasting higher changes in

price. On the other hand, MLP and CNN models produce

different patterns of performance than LSTM. Both MLP

and CNN models have poorer performance when predict-

ing higher positive significant changes while a more even

performance when predicting negative changes.

The experiments on the Coca-Cola Co data yield mixed

results as shown in Fig. 5. LSTM produces overall best

results in predicting significant positive daily returns. In

particular, using a 60 day moving window results in the

optimal forecast model. In general, the performance of

LSTM improves with increase in significance threshold

except for a big dip from 1.4 to 1.5 in the positive case. In

addition, using a 7-day window for neural networks yields

the best results in forecasting negative changes. On the

other hand, RF produces overall best result in predicting

significant negative returns. However, it is hard to discern

any consistent trends in the RF model.

The experiments on Nike data produce more consistent

results as illustrated in Fig. 6. All four machine learning

models show improved performance with increase in the

significance threshold when predicting positive daily

returns. The performances on the negative return prediction

task are less consistent. LSTM has similar graphs in both

positive and negative prediction tasks albeit with different

AUC values. We also note that in positive return prediction

30 and 60-day window models produce overall better

results than shorter term window models. On the other

hand, 7 and 14-day models produce better results in neg-

ative return prediction.

The experiments on Goldman Sachs data show that in

positive return prediction all four machine learning models

improve their performance with increase in threshold sig-

nificance (Fig. 7). However, the performance generally

drops after the threshold of 1.4. This pattern is also

observed in other data. We believe that the deterioration in

performance can be partially explained by the target class

imbalance. Since the number of significant instances

decreases with increase in the threshold the target distri-

bution becomes skewed. At the threshold level of 1.5, only

about 3% of the instances are labeled as significant. As a

result, while the classifier accuracy may improve its AUC

deteriorates. It is also plausible that the models simply fail

to capture the patterns associated with very big price

changes.

Although model performance improves with increase in

threshold level, in many cases, there is also a significant

drop in performance when moving from threshold of

1.4–1.5. We attribute this observation partly to class

imbalance that occurs when the significance level is very

high. Since there are considerably fewer positive obser-

vations at very high significance thresholds the response

Table 1 Neural network

architectures
Network Hidden layer 1 Hidden layer 2

MLP Dense 64 Dense 32

CNN Conv1D 64, length 7, dropout rate = 0.2 Dense 32, dropout rate = 0.2

LSTM LSTM 64 with return sequence, dropout rate = 0.2 LSTM 32, dropout rate = 0.2
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Fig. 4 Cisco Systems, Inc.

Forecasting significant daily

positive and negative returns

using different number of prior

days: 7, 14, 30, and 60. AUC is

used to measure the

performance of each forecasting

model. The LSTM model using

a 14-day lookback period

achieves the highest results
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Fig. 5 The Coca-Cola

Company. Forecasting

significant daily positive and

negative returns using different

number of prior days: 7, 14, 30,

and 60. AUC is used to measure

the performance of each

forecasting model. The LSTM

model using a 60-day lookback

period achieves the highest

results
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Fig. 6 Nike, Inc. Forecasting

significant daily positive and

negative returns using different

number of prior days: 7, 14, 30,

and 60. AUC is used to measure

the performance of each

forecasting model. The LSTM

and CNN models using a 60-day

lookback period achieve the

highest results
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Fig. 7 The Goldman Sachs

Group. Forecasting significant

daily positive and negative

returns using different number

of prior days: 7, 14, 30, and 60.

AUC is used to measure the

performance of each forecasting

model. The results are mixed

with different models

performing well under different

conditions
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variable distribution becomes skewed which negatively

affects the performance of classifiers. Additionally, the

price changes at high significance level may be driven by

different fundamentals that are not captured by the models.

As shown above, the LSTM model is capable of pro-

ducing superior results in certain scenarios. However, it is a

computationally expensive algorithm that requires a long

time to train. On the other hand, MLP is relatively fast and

is capable of producing competitive results. Therefore, the

trade-off between the speed and accuracy must be con-

sidered before choosing the best forecast model. We note

that RF model also produces robust results. It is compu-

tationally very efficient and may serve as a potential

alternative to more laborious neural network models.

4.3 Trading simulation

In order to further validate our results we carry out a

trading simulation using trained LSTM networks. The

LSTM algorithm is chosen due to its performance on the

previous experiments. It has been shown above to be an

effective algorithm in forecasting significant changes in

price. We train an LSTM network using 1:2r and 1:5r
significance thresholds together with a 14-day lookback

period. The trained network is used to carry out trades on

the test data. We concentrate on trading based on positive

significant changes in stock price. Concretely, each time

the network forecasts a significant rise in price we execute

a buy trade and a corresponding sell trade the following

day. We calculate the returns on each trade and report our

results in the form of compound rate of return over the

entire trading period. The results of the trading simulation

are presented in Table 2. As shown in the table, the trained

network is capable of performing well and delivering high

rate of return in simulated trading scenario. The forecasting

model achieves the best results on the Cisco dataset. This

outcome is not surprising as the AUC values on the Cisco

dataset are similarly high valued. In general, we observe

that the rate of return is positive on all the tested datasets.

The rate is higher when using the 1:2r significance

threshold which can be explained by the larger number of

instances satisfying the lower threshold.

4.4 Discussion

The learning process of neural networks is not entirely well

understood. It is an active research area with constantly

changing theories attempting to explain this phenomenon.

On the one hand, it has been shown that neural networks

have an expansive ability to memorize data which allows

them to achieve high training accuracy even on unstruc-

tured data [35]. On the other hand, it has also been shown

that neural networks do learn some of the underlying

structure in data [2]. In addition, recent developments in

information theory have shown that neural networks learn

in two phases [31]. In the first phase, the layers increase the

information on the labels as well as the input while pre-

serving the data processing inequality order (lower layers

have higher information). In the second phase, compression

takes place that is note due to any explicit regularization or

a related technique. This phase is a lot slower as compared

to the first phase and the layers lose irrelevant information

during this phase until convergence. In general, the current

consensus is that neural networks improve their learning

with increase in the depth of the architecture and size of the

training data.

Although neural networks, and in particular LSTM, are

shown to achieve strong results the accuracy of their

forecasts can be further improved in a number of ways:

1. Hyperparameter tuning: neural networks include var-

ious hyperpameters such as the number of layers and

nodes, learning rate, regularization, training batch size,

and others. The choice of hyperparameter values can

affect the performance of the network. Thus, by testing

a range of possible hyperparameter values we can find

a combination of values that yields the best results.

However, hyperparameter tuning requires a large

amount of time and computational resources.

2. Use of deeper neural networks: it is generally accepted

in the current literature that deep neural networks tend

to produce more accurate models. Modern architec-

tures such as ResNet consist of more than a thousand

layers. However, deep architectures require large

computational resources to train.

3. Addition of financial indicators: there exists a range of

technical indicators that are used in finance for stock

prediction. We can use these technical indicators as

additional features in our model. The inputs of our

current model consist of only previous closing prices.

Addition of financial indicators can enrich the model

and improve its performance.

Table 2 Compound rate of return over the trading period

Company 1:2r (%) 1:5r (%)

Cisco Systems 16.2 24.6

Coca-Cola 13.9 3.6

Nike 0.8 3.1

Goldman Sacks 12.2 5.8
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5 Conclusion

In this paper, we investigate the performance of neural

network models in forecasting significant daily returns

using previous daily returns. We employed three popular

neural net architectures: MLP, CNN, and LSTM. We also

used RF and RSI models as benchmarks. The models were

tested using 10-year daily price data of four major US

public companies. The companies were chosen to represent

a diverse field of industries to avoid correlated results. The

data was split temporally for independent training and

testing.

The results show that neural network models are capable

of forecasting significant changes in asset price with high

degree of accuracy as in the case of the LSTM model on

the Cisco Systems data. The models’ performance gener-

ally improves, up to a certain point, with increase in sig-

nificance threshold. In other words, the models are

generally better at predicting more significant changes than

less significant ones. We postulate that less significant

changes are more random in nature and therefore are harder

to model. Our findings are in line with previous studies that

investigated forecasting the direction of price change

which is equivalent to setting the threshold level to 0. The

studies on predicting the direction of price change obtained

AUC results of no more than 0.55 [4, 11]. The models

generally improve their performance with increase in sig-

nificance level. However, there is often a drop in perfor-

mance at the maximum significance level. This is most

likely due to extreme imbalance in class distribution that

takes place when there are only a few instances of the

minority class. There exist a number of algorithms to

balance the data that can be used in the given context

[17, 32].

The differences in the performance of the algorithms

employed in our experiments are due to the differences in

their design. In general, the LSTM algorithm yields the

best results because it is well suited to analyze sequential

data such as daily stock returns. CNN is the second best

performing algorithm because it is capable of capturing

spatial structure in the data. Although RF and ANN pro-

duce respectable results they are not well designed for time

series data.

The majority of the existing literature in price prediction

is focused on the actual price prediction or direction of

price change. Our work addresses a previously little

explored question of predicting significant changes in asset

price. In summary, the main contributions of the paper are

three-fold:

1. Investigate a hitherto little explored question of

forecasting significant changes in asset price.

2. Carry out an extensive evaluation of modern neural

network architectures against other machine learning

and financial predictors.

3. Achieve high prediction scores of up to AUC 0.85.

The results show that the use of neural networks in fore-

casting significant changes in asset price can lead to effi-

cient outcomes.
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