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Abstract
A novel method called GAN-Poser has been explored to predict human motion in less time given an input 3D human

skeleton sequence based on a generator–discriminator framework. Specifically, rather than using the conventional

Euclidean loss, a frame-wise geodesic loss is used for geometrically meaningful and more precise distance measurement.

In this paper, we have used a bidirectional GAN framework along with a recursive prediction strategy to avoid mode-

collapse and to further regularize the training. To be able to generate multiple probable human-pose sequences conditioned

on a given starting sequence, a random extrinsic factor H has also been introduced. The discriminator is trained in order to

regress the extrinsic factor H, which is used alongside with the intrinsic factor (encoded starting pose sequence) to generate

a particular pose sequence. In spite of being in a probabilistic framework, the modified discriminator architecture allows

predictions of an intermediate part of pose sequence to be used as conditioning for prediction of the latter part of the

sequence. This adversarial learning-based model takes into consideration of the stochasticity, and the bidirectional setup

provides a new direction to evaluate the prediction quality against a given test sequence. Our resulting novel method,

GAN-Poser, achieves superior performance over the state-of-the-art deep learning approaches when evaluated on the

standard NTU-RGB-D and Human3.6 M dataset.
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1 Introduction

An accurate and short (several seconds) predictions of what

is going to happen within the world given past events may

be an elementary and helpful human ability. Such ability is

important for daily activities, social interactions and ulti-

mately survival. As an example, driving needs predicting

alternative cars’ associated pedestrians’ motions so as to

avoid an accident; greeting needs predicting the situation of

the opposite person’s hand, and taking part in sports needs

predicting other players’ reactions. So as to form a model

that may act seamlessly with the world, it desires the same

ability to grasp the dynamics of the human world and to

predict probable futures supported learned history and

therefore the immediate gift. However, the long run is not

settled, thus predicting the long run cannot be settled,

except within the terribly short term. Due to the fact that

the predictions extend additional into the long run, uncer-

tainty becomes higher. Individuals walking might flip or

fall; individuals throwing a ball might drop it instead.

However, some predictions are additional plausible than

others and have a better chance. Recently, deep learning is

used in medical image processing, inspired by hopeful

results in computer vision and medical imaging. The usage

of learning-based techniques in image recording, however,
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has been imperfect. Some standard-space recording tasks

are agreeable to learning and may deliver momentous

enhancement over approaches such as iterative optimiza-

tion or grid exploration when the choice of plausible pose/

alignment is wide, challenging a large capture range [1].

Under these circumstances, a human witness can find the

estimated pose of 3D objects rapidly and carry them into

rough alignment without resolving an iterative optimiza-

tion via feature recognition. In our work, we tend to con-

centrate on making a model that may predict a plausible

future human (skeleton) pose from a given past. The

number of poses taken from the immediate past, and

therefore, the foreseen range of 3D poses within the future,

which might be unrestricted, is fed as parameters to the

model. Here, we tend to address this by adding a geodesic

loss so as to stabilize and improve the training. To quan-

titatively assess the standard of the nondeterministic pre-

dictions, we tend to simultaneously train a motion-quality-

assessment model that learns the chance that a given

skeleton sequence may be a real human motion.

We tend to take a look at our motion prediction model

on a massive dataset captured with a special modality.

However, GANs have weaknesses. They will be trouble-

some to coach and unstable in their learning, their loss

value does not essentially indicate the standard of the

generated sample, and therefore, the coaching will collapse

simply. Recent literature tries to enhance GAN coaching

and supply a theoretical warranty for its convergence. We

tend to train our model on all actions right away; thus, its

output is not conditioned on any specific act. Our model

takes as input a 3D sequence of previous poses and a

random vector z from the reduced sequence area that

samples attainable future poses. For every such z value, the

model generates a special output sequence of attainable

future poses. We tend to associate RNN for the generator as

RNNs are a category of neural networks designed to model

sequences, particularly variable-length sequences. Our

main contributions are: (1) the model tends to propose a

completely unique human motion model that may predict

attainable future from the past. (2) It also tends to propose a

motion-quality-assessment model to quantitatively assess

our results. (3) We have used bidirectional GANs with

geodesic loss and recursive prediction strategy to reduce

overfitting and take into consideration of the stochasticity

in the prediction of future pose sequence.

1.1 Organization of paper

Section 2 explains the related research in GANs and other

deep learning techniques as per works done by different

authors in human motion estimation. Section 3 describes

the proposed approach that was used during this research.

Section 4 includes the methodology of the model and its

parameters in the training. It also describes the dataset

used. Section 5 shows the evaluation tests and results that

were obtained with respect to other models of RNN and

similar techniques. The last section presents the conclusion

with accuracies and error rates in model and possible

directions of future work.

2 Related works

To accomplish the pose prediction, an improved Wasser-

stein generative adversarial network (WGAN-GP) [2] was

formulated with a custom loss perform that took into

account of the human motion and human anatomy. The

generator was a novel adaptation of sequence-to-sequence

model [3] of poses derived from a recurrent neural network

(RNN), and therefore the critic and discriminator are a

multilayer network (MLP). It intended to use the critic

network to coach the generator, and therefore, the soul

network to be told identifying between true sequences of

poses from a faux one. In essence, there was a mix of some

sides of the initial GAN [4] with WGAN-GP [5]. This was

successfully employed in computational linguistics [6],

caption generation from pictures [7], video classification

and action recognition [1, 3], action detection, video

description [8] and sequence prediction [9].

Since the introduction of the Kinect sensor [10], many

works on recognizing human action and predicting human

poses from skeleton data have been done. For example,

prediction of human poses trained on previous poses using

deep RNNs [11, 12] as these large human motion datasets

[13, 14] are available. Adversarial learning was first

described by Goodfellow [15]. This was followed up by the

deep convolutional GAN [16] which popularized the

technique with realistic visualizations and stabilized

training efforts. While Pix2Pix forms the backbone for one

of the proposed methods for our study for conditional

generation of video frames, there were prior studies GANs

conditioned on various forms of supervision. Generative

adversarial networks have shown impressive performance

in image generation [17], video generation [18, 19] and

other domains [20–22]. The key idea in GANs is an

adversarial loss that forces the generator to fool the dis-

criminator. Instead of developing new GAN objective

functions as is normally the case, our goal here to inves-

tigate how to improve human motion prediction by lever-

aging the GAN framework. Recent human motion

prediction, which relies on deep RNNs [11, 12, 23] or deep

neural networks [24], is primarily deterministic. In [11], the

authors mix both deterministic and probabilistic human

motion predictions. Their deterministic aspect is based on a

modified RNN called recurrent decoder (RD) that adds

fully connected layers before and after an LSTM [25] layer
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and minimizes a Euclidean loss. Their probabilistic aspect

uses a Gaussian mixture model (GMM) with five mixture

components and minimizes the GMM negative log-likeli-

hood. In [12], Butepage developed a general framework

that converts a structure graph to an RNN, called a struc-

ture RNN (S-RNN). They test their framework on different

problem sets including human motion prediction and

showed that it outperforms the current state of the art.

However, they need to design the structure graph manually

and task specifically. The authors examine recent deep

RNN methods [7] for human motion prediction and show

that they achieve state-of-the-art results with a simpler

model by proposing three simple changes to RNN. On the

other hand, Martinez [24] used an encoder–decoder net-

work based on a feed-forward network and compare the

results of three different such architectures: symmetric,

time-scale and hierarchical.

3 GAN-Poser: the proposed approach

To predict human motion, a sequence of human poses is

given as input to the system to predict future poses that are

valid. Our goal is to observe the probability of the future

sequence based on input sequence P(z|x) where the

sequence of input poses is x = {x1, x2, …, xm} and the

sequence of predicted poses is z ¼ z1; z2; . . .; znf g given

that each zi and xj represent a single pose. Our proposed

model, GAN-Poser, uses a bidirectional GAN framework

in which the encoder and the generator are not connected

with a compressed code. We also use the recursive pre-

diction strategy along with the geodesic loss to reduce the

overfitting and take into consideration of the stochastic

nature of the model. The given prediction model is a

revised version of the sequence-to-sequence network. A

sequence-to-sequence network has 2 parts: an encoder and

a decoder where a giant network is created by two com-

pletely different networks. While this model besides taking

a sequence of human poses as input also takes a z vector

which is Gaussian distribution [26]. After drawing and

mapping z, it is added to the encoder states. It is all done in

the same space as the output states of the encoder. The

result is used as the initial state of the decoder. This means

that the last output of the encoder becomes the first input of

the decoder. GRU is used for our sequence-to-sequence

network.

For a given input pose x, each value of z provides a

different and valid future pose. It also depends on the

network parameters that the system needs to learn. Over

the years, the problem of human motion prediction is

viewed as a regression problem. Even the most recent deep

RNNs view it in the same light. But this approach has its

flaws. Because it only learns one outcome at a time, with an

increase in the length of the future sequence, the proba-

bility of this particular outcome decreases. Moreover,

image enhancement operators are trained in a weakly

supervised method via adversarial learning motivated by

aesthetic decision.

3.1 Architecture

Figure 1 depicts the architecture of our model, GAN-Poser.

Initially, a 3D input image dataset is fed into the model.

After that, the preprocessing step is performed wherein

we use a helper function for splitting the data and a filter

function which is used a refractor filter. Finally, a vector-

ized dataset is obtained. The next step in the architecture of

our proposed model, GAN-Poser, is the usage of a random

vector z which is fed to the generator network. The dis-

criminator uses the vectorized form of the dataset and gives

the function D(x) which helps in the identification of the

plausible and the non-plausible human action poses across

the whole network. The cost is determined and by using the

stochastic gradient functions of the discriminator and the

generator, the model is trained. We also use the recursive

prediction strategy to train the generator and the discrim-

inator. Finally, the model predicts future actions based on

the input by calculating the sampling as well as the geo-

desic loss.

3.2 GANs training algorithm

The GANs training algorithm consists of two parts: (1)

when the discriminator is trained at that time the generator

is at rest. In this stage, the system is only forward propa-

gated and no back-propagation is ready. Real Data are used

to train the discriminator for n epochs, to make it correctly

predict them, and it is also trained on the false produced

data from generator and to make it predict it as false. (2) in

the next phase, The generator is trained and by the time

discriminator is at rest. The results of training the dis-

criminator on fake data by generator are used to train the

generator and to get better at each step and fool the dis-

criminator. The algorithm is repeated for a few epochs and

then automatically checked the false data if it seems

unpretentious. The training is stopped as soon as the data

are seen acceptable; otherwise, the epochs continue to go

on. The GANs are represented as a minimax algorithm,

where the discriminator is demanding to minimalize its

reward V (D, G) and the generator is requiring reducing the

discriminator’s return or in other words, getting the best out

of its loss. It can be mathematically defined by Eq. 1:

min

G
max

D
V D;Gð Þ ð1Þ

where V(D, G) is defined in Eq. 2 as:
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V D;Gð Þ ¼ Ex� pdata xð Þ logD xð Þ½ �
þ Ez� pz zð Þ½log 1 � D G zð Þð Þð � ð2Þ

here G, D stands for generator and discriminator, respec-

tively. Moreover, pdata xð Þ is the distribution of the real data,

and pz zð Þ is the distribution of the generator network. The

variables x and z are the samples from pdata xð Þ and pz zð Þ;
respectively. The functions D(x) and G(z) are the network

distributions for the discriminator and the generator,

respectively. Now, the algorithm for Minibatch stochastic

gradient descent for the training of the GANs has been

discussed as follows:

for numbers of iterations do:

for k steps do:

• sample minibatch of p noise samples z1; . . .::zp
� �

from

noise prior pg (z)

• sample minibatch of p examples x1; . . .; xp
� �

from data

distribution pdata (x)

• update discriminator by rising its stochastic gradient:

rHd
1
m

Pm

i¼1

logD x ið Þ� �
þ log 1 � D G z ið Þ� �� �� �� � (3)

end for

• sample minibatch of p noise samples z1; . . .; zp
� �

from

noise prior pg (z)

• update generator by rising its stochastic gradient:

rHd

1
m

Pm

i¼1

log 1 � D G z ið Þ� �� �� � (4)

end for

• update using any standard gradient based rule learning.

3.3 Bidirectional generative adversarial
networks

Generative adversarial network (GAN) is an unsupervised

learning technique which is motivated by the minimax

theorem. In this, both the participant networks namely the

generator and the discriminator networks compete and try

to outperform each other. The training itself vacillates

between both networks [27]. According to the original

paper [7], the function of the generator is to learn to gen-

erate images close to real images while and the discrimi-

nator distinguishes between the generated image and the

real image. In a steady-state, there is a likelihood of 50% of

the discriminator for predicting whether the generator

network generates an image or not.

In our proposed model, we have used the bidirectional

GAN [28–30] or BI-GAN along with the geodesic loss.

The bidirectional GAN is, in simple words, a higher ver-

sion of the autoencoder at its core. In an autoencoder, an

image is rendered to the encoder which produces the in-

between compressed code, ‘c’, which is then sent to the

decoder as an input to reconstruct the original image.

Whereas, in the bidirectional GAN, the encoder is supplied

with a 3D image x and the encoder generates a compressed

code that is denoted by ‘c’. Then, this compressed code is

supplied into the decoder which produces a reconstructed

image �x. The only difference between the autoencoder and

the bidirectional GAN is that in the Bi-GAN; the encoder

and the decoder are not connected by a single compressed

code c. The input image provided to the encoder in case of

bidirectional GAN is sampled from the probability distri-

bution function px xð Þ, and the compressed code c is sam-

pled from the probability distribution function pc cð Þ. This

probability distribution function uses the latent code dis-

tribution. But the main predicament arises that since the

encoder and the decoder are not connected, we cannot train

Fig. 1 Architecture of the GAN-Poser model for human pose prediction
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our bidirectional GAN model. Hence, we use a discrimi-

nator for this purpose. It takes in a pair of images and the

compressed code. Now, this can come from either decoder

or encoder; therefore, if the discriminator generates an

output value of 1, this means that the input is obtained from

the encoder and similarly, if the out generated by the dis-

criminator is 0, the then input is obtained by the decoder. In

the original GAN algorithm, Jensen–Shannon (JS) diver-

gence is used as its loss function which degrades its effi-

ciency and makes it difficult to train. The presence of its

ratio between two probabilities that might not overlap

initially can cause the JS to be zero or infinity. It can cause

vanishing gradients. It uses the same input poses to learn

multiple possible futures poses using different z values. JS

distance is replaced with the Earth Mover Distance (EMD),

which efficiently keeps a balance between training the

discriminator versus the generator.

The discriminator in WGAN discriminates between

neither synthetic inputs nor real neither input nor provides

a probability as output. The properties of an adversarial

training scheme such as it allows the generation of multiple

futures from a single past compelled us to use it. Apart

from this, without explicitly using the ground truth of the

real future, the generator can still be trained to give pre-

dictions based on data where the cost function is learnt

implicitly.

3.4 Objective function for bidirectional GAN

For the generator, we take an assumption that we have a

prior belief on where the latent space z lies, that is Pc Cð Þ.
We draw from the latent space generator G which gives the

synthetic output. This is shown by Eq. 5:

G c; hGð Þ : c ! xsynthetic ð5Þ

In above Eq. 5, the parameters of the generator network

G are given by hG which are the variable parameters. These

variable parameters will be optimized during the back

propagation of the neural network. When the input c is

given, the network produces the output xsynthetic as a syn-

thetic image. The encoder is just the inverse of the gen-

erator. If given a draw from the data space Px xð Þ, the output

of the encoder is a real image. This is shown by the fol-

lowing equation:

E x; hEð Þ : x ! c ð6Þ

In Eq. 6, when x is parameterized by hE and the encoder

E takes x as an input, it generates a real image. Here,

c denotes the real encoding.

Next is the discriminator which aims to classify if the

sample is real or synthetic. This means that it specifies if a

sample is from the real distribution Px xð Þ or the synthetic

data distribution PG x=cð Þ. Moreover, it also aims to clas-

sify if a encoding is real PE c=xð Þ or synthetic Pc Cð Þ.
The objective function of the bidirectional GAN is given

as follows:

V G;D;Eð Þ ¼ Ex� pz logD x;E xð Þð Þ½ �
þ Ez� pz log 1 � D G zð Þ; zð Þð Þ½ � ð7Þ

In Eq. 7, D and E refer to the decoder and the encoder,

respectively, and G is the generator network. E(x) maps the

examples from the data space, denoted by x, to the latent

space, denoted by z. The main aim for using the objective

function to train is to solve the min–max problem which is

given by Eq. 8:

min

G;E
max

D
V G;D;Eð Þ ð8Þ

As it can be clearly seen in Eq. 8, we are using the

generator and the encoder block for minimizing as they are

trying to fool the discriminator. Moreover, we are maxi-

mizing the discriminator block which is denoted by D. In

our model, GAN-Poser, the following optimized loss

function is used for updating the parameters of the dis-

criminator D which is shown by Eq. 9:

LD ¼ Ex� px logD x;E xð ÞÞð Þ½ � þ Ez� pz log 1 � D G zð Þ; zð Þð Þ½ �
ð9Þ

Furthermore, for the updation of the parameters of the

generator and the encoder, the following loss function has

been optimized which is shown by Eq. 10:

LEG ¼ Ez� pz logD G zð Þ; zð Þ½ � þ Ex� px log 1 � D x;E xð Þð Þð Þ½ �:
ð10Þ

3.5 Recursive prediction strategy

To further regularize the training, we introduce a recursive

prediction strategy [31, 32]. In spite of being in a proba-

bilistic framework, the enhanced discriminator architecture

concedes predictions of an intermediate part of pose

sequence to be used as conditioning for prediction of the

latter part of the sequence. To accomplish this task, we

have used the recursive error prediction algorithm. For

calculation, first, the prediction error-index is calculated by

the following formula:

Jtjh ¼
1

2

Xt

k¼1

~zTkjhK
�1
kjh ~zkjh þ log detKkjh

h i
ð11Þ

In Eq. 11, h is the extrinsic factor, (~zkjh) is the prediction

error estimate for the next step and Kkjh is the weight

matrix. In a special case, the prediction error estimate for

the next step is used from the Kalman filter as zkjk�1;h ¼
E z0; z1; . . .; zk�1; hf g: In a case where Kkjh is independent
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of the extrinsic factor h, the simplified function comes out

to be as follows:

�Jtjh ¼
1

2

Xt

k¼1

~zTkjhK
�1
k ~zkjh

h i
ð12Þ

This function which is shown in Eq. 12 is used to keep

in check the errors when the recursive algorithm is applied

where the immediate predicted part is used for the pre-

diction of the rest of the sequence. In our research, we have

trained the discriminator to regress the above-mentioned

extrinsic factor h, which is eventually used to generate a

particular pose sequence.

3.6 Sampling-based loss

The sampling-based loss consistently achieves motion

prediction error viable with or better than the state of the

art. Moreover, the model has been trained to reduce the

error over a 1-second time domain as the network retains

the capability to produce probable motion in the long term.

Since the proposed sampling-based loss does not require

any hyper-parameter tuning, we can infer that it is a fast

training technique to previous work for long-term motion

generation using GANs. Importance sampling has been

used in deep learning mainly in the form of manually tuned

sampling schemes. Bengio [33] manually designed a

sampling scheme inspired by the perceived way that human

children learn; in practice, they provide the network with

examples of increasing difficulty in an arbitrary manner.

Diametrically opposite, it is common for deep embedding

learning to sample hard examples because of the plethora

of easy non-informative ones [34]. For the explanation of

the sampling based loss, the input is taken as ai and the

output is taken as bi. The main aim is to minimize the loss

function used in the following Eq. 13:

�H ¼ arg
min

H
1

n

Xn

i¼1

fðwðai;HÞ; biÞ ð13Þ

In Eq. 13, f refers to the loss function which has to be

minimized and w refers to the deep learning model which

has been parameterized by the vector H. Here, n refers to

the number of examples used in the training set and �H is

the optimal parameter vector. For finding the parameter

vector for the iteration t ? 1, we use the stochastic gradient

descent procedure. The iteration t will depend upon the

sampling distribution pt1; . . .; p
t
n

� �
and the rescaling coef-

ficients wt
1; . . .;w

t
n

� �
. The parameter vector for the itera-

tion t ? 1 is calculated by the formula used in Eq. 14:

Htþ1 ¼ Ht � gwItrHt
f w aIt ;Htð Þ; bItð Þ ð14Þ

here It is the data point which is sampled at each step of the

iteration.

3.7 Geodesic loss

The proposed deep learning model with geodesic loss

minimization can attain precise outcomes with a wide

capture array in real-time. The loss function for the training

purpose is defined as:

Ltotal ¼ Lrotation þ lLtranslation ð15Þ

where l is a hyper-parameter to balance between the

rotation loss Lrotation in the range from 0 to p, and the

translation loss Ltranslation. It is the mean-squared error

(MSE) between the actual and predicted translation vec-

tors. For the training stage, we have used the geodesic loss

compared to MSE loss. The MSE loss is defined as:

LMSE ¼ v� uk k2 ð16Þ

In Eq. 16, u and v are the output of the rotation head and

the actual rotation, respectively. MSE helps to reduce the

search space for pose calculation but has less accuracy for

rotation between distances. The distance between two 3D

rotations is geometrically interpreted as the geodesic dis-

tance between two points on the unit sphere. It is the radian

angle between two viewpoints or the shortest distance

which has an exponential form. Let Ri and Rj be two

rotation matrices to measure a distance between two points,

that is, the 3D angle between these rotations. The amount

of rotation needs to be applied on rotation matrix Ri to

reach rotation matrix Rj and is calculated in Eq. 17 as:

d Ri;Rj

� �
¼ log RT

i Rj

� ��� ��F ð17Þ

here F is the Frobenius norm and log RT
i Rj

� ��� �� is the

matrix logarithm of a rotation matrix. The distance

between Ri and Rj can be represented as rotation matrix as

given in Eq. 18:

tr Rð Þ ¼ 1 þ 2 cos hð Þ ð18Þ

where h is equal to cos�1 tr RT
i Rjð Þ�1

2

	 

.

Therefore, the geodesic loss which is defined as the

distance between two rotation matrices can be written as

given in Eq. 19.

Lgeodesic ¼ d RiRj

� �
¼ cos�1 tr RT

i Rj

� �
� 1

2

	 

ð19Þ

This is a natural Riemannian metric [35] to calculate the

geodesic loss.
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4 Methodology

4.1 Preprocessing

A helper function was created which split the training data

and generated a CSV file containing the list for the training

data. The path of each of the input file which contained the

video clips was obtained, and the list of all the folders and

sub-folders was created. Moreover, each file name was

taken without any extension and only the first names of

each file were considered. Then, the data were randomly

split into training, testing and validating datasets and the

target CSV file was generated using file generator function.

A filter data function was also used which was used as a

refactor filter. After that, we normalized the x, y, z values of

each joint in the range - 1 and ? 1. We obtained the range

of the raw data by finding the minimum and maximum

values on each dimension and then computing the mini-

mum and maximum values over all the dimensions. Then,

we first used it for the training data. In the next set, to avoid

ambiguities between the camera and 3D pose rotation, all

the scaling components from the 3D poses are excluded.

This is done by aligning every 3D pose to a template pose.

We do this by assessing the ideal scale for the corre-

sponding shoulder and hip joints, and the resulting trans-

formation is applied to all joints. The residual scale

variations are compensated by the camera scale compo-

nent. In contrast to the example given in [16], we do not

need to know the mean and standard deviation of the

training set. This allows for an easy transfer of our method

to a different domain of 3D poses.

4.2 Evaluation metrics

Evaluation of the performance comparison is done using

the mean angle error measurement as seen in [27, 36],

which used Euclidean distance between the predicted

motions and ground truth motion in angle space. Rotation

and translation of the whole body are excluded since this

information does not depend on the actions. We have used

the predictions frame by frame for the visualization of the

model. Moreover, as most of the papers which have been

discussed in the literature survey discuss the comparison of

the mean per joint positioning error (MPJPE), we have also

obtained better results with our algorithm, that is, GAN-

Poser, regarding the mean per joint positioning error. In

this, the subjects utilized for the training purpose are 1, 5,

6, 7, 8 and for the testing purpose, custom real-time images

of a person are used. The choice of the subjects used for

training is taken so that our results could be comparable to

the other state-of-the-art methods. MPJPE has two pars; in

the first part, MPJPE is directly computed, and in the other,

MPJPE is computed by applying the rigid alignment

between the poses.

4.3 Dataset

For the comparison of the results, we have taken the two

datasets that are the NTURGB-D and the Human3.6 M

dataset. For the NTURGB-D dataset, we have taken the

four actions namely walking, discussion, greeting and

taking photo, for the comparison with other state-of-the-art

methods, whereas for the Human3.6 M dataset, we have

compared our result regarding the four actions namely

walking, eating, smoking and discussion. The datasets have

been explained as follows:

4.3.1 NTURGB-D dataset

To authenticate the model potential, we run multiple

experiments on the largest human motion datasets: a

Microsoft Kinect dataset NTURGB-D [27]. The poses in

the NTURGB-D dataset are inferred from Kinect skeleton

data and have objections in the direct application due to

occlusions, or different posture behavior. However, even

with noisy skeletons, our model generalizes well on this

dataset. The NTURGB-D action recognition dataset con-

sists of 56,880 actions, and each action comes with the

corresponding RGB video, depth map sequence, 3D

skeletal data and infrared video. We use only the 3D

skeleton data. They contain the 3D locations of 25 major

body joints at each frame, as defined by the Microsoft

Kinect API. NTURGB-D has 60 action classes and 40

different subjects, and each action was recorded by three

Kinects from different viewpoints. It is more difficult for

training on the human pose angle, which has fewer degrees

of freedom. We train directly on the joint positions and use

the same pipeline for NTU-RGB-D to have a more generic

model.

4.3.2 Human3.6 M dataset

It is the biggest benchmark dataset that contains images

that are aligned in accordance with 2D and 3D corre-

spondence. The Human3.6 M dataset [13] contains 3.6

million human action poses which have been collected

from 4 digital cameras. The data have been organized into

15 motions, and the dataset consists of fewer clips as

compared to the NTURGB-D dataset [27]. The motions

contain the walking action along with various asymmetries

such as walking with a hand in the pocket, walking with a

bag on the shoulder and different sitting, laying and wait-

ing poses. To use the same pipeline for both the dataset, we

have split the clips in the Human3.6 M dataset into shorter

segments and have used every other frame for the training.
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4.4 Training

The training of the model has been performed on a GTX

1060 which contains 1200 CUDA cores and a 6 GB DDR5

memory. In the training loop, we have iterated over the

network for n number of times on the critic network and

once on the decoder as well as the discriminator network.

Here, we have used various iteration values of n and have

also tried to dynamically update the iteration based on the

sampling and the geodesic losses. Since none of the

methods have shown any improvement, we have taken the

value of n as 10. The mean time for each of the epoch is

230 s. For training the Human3.6 M dataset, we have used

the subjects 1, 5, 6, 7, 8 for training and the real-time 3D

images of a person have been used for the testing. We have

also trained our model on the NTURGB-D dataset similar

to the Human3.6 M dataset. For bringing the stability in the

discriminator training procedure, we have reduced the

learning rate by half as compared to the generator network.

We have used the ADAM optimizer for training all the

networks and have set the learning rate to 5e-1 for the

generator network. Hence, the learning rate for the dis-

criminator network used is 2.5e-0.5.

5 Results and evaluation

For the Human3.6 M dataset [13], we used the subjects 1,

5, 6, 7, 8 for training our model and custom images to test

the model and demonstrate the predicted pose as well as the

performance of the model. Figure 2 clearly depicts the

performance of our model on the sample images. Two real-

life images of the person walking in a room is given as the

input to our model, GAN-Poser. The model predicts the

output for the given images which is given as a 3D joint

pose. Similarly, Fig. 3 clearly depicts the performance of

our model on the sample images. Two real-life images of

the person eating in a room are given as the input to our

model, GAN-Poser. The model predicts the output for the

given images which is given as a 3D joint pose.

5.1 Zero velocity baseline

One of the most striking results for the good performance

comparison of the baselines is the zero-velocity one [37].

They evidently perform better than state-of-the-art out-

comes, highlighting the stringency of the discontinuities

between training and prediction in previous work. By

visualizing the performance of the baselines, it can be

determined that deterministic losses are not appropriate to

calculate motion forecasting with a long time frame. For

the comparison of the result, we will use the NTURGB-D

[27] dataset. Here, we have considered the four actions

namely walking, discussion, greeting and taking photo for

the comparison of the results with our model. The results

have been compared to each category wise in the following

tables along with the summary of results using methods

such as ERD, LSTM-3LR and SRNN, as well as a zero-

velocity baseline.

Fig. 2 Prediction of walking action pose Fig. 3 Prediction of eating action pose
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5.1.1 Walking

5.1.2 Discussion

5.1.3 Greeting

5.1.4 Taking photo

It is evident from Tables 1, 2, 3 and 4 that our model,

GAN-Poser, is comparable to the state-of-the-art methods.

Moreover, it can be seen from Table 1 that in the walking

category, our model performs the best for 80 ms. We can

also see from Table 2 that GAN-Poser surpasses all the

state-of-the-art methods in short-term as well as the long-

term human prediction that is, in the case of 80 ms, 400 ms

and 1000 ms. Tables 3 and 4 also show that GAN-Poser

gives the comparable results to the state-of-the-art methods

on the NTURGB-D dataset.

5.2 Comparison with HP-GAN

HP-GAN [38] is a sequence-to-sequence model. Here, a

similar approach is proposed as compared to our model.

HP-GAN uses a combination of WGAN-GP and a custom

loss function to predict the human motion pose. It includes

learning from the previously predicted poses which can

indicate that it is also using the recursive prediction strat-

egy. Moreover, it also predicts the future sequence poses

while carrying in the same sequence of input but using a

different value of vector z. But the HP-GAN model fails to

incorporate the long-term pose prediction which is extre-

mely essential for forecasting motion poses from the actual

human dynamics perspective. Our model, GAN-Poser,

addresses this issue by taking into consideration the bidi-

rectional nature of the GAN so that it can efficiently predict

the long-term human poses. The HP-GAN uses a simple

probabilistic approach for the human motion prediction

which predicts multiple plausible future human poses from

the same input. In our model, we have trained the dis-

criminator to regress the extrinsic factor H, which is

eventually used to generate a particular pose sequence.

Table 1 Comparison of performance for mean angle error for both

short-term and long-term human prediction on the NTURGB-D

dataset for the walking action pose

Model 80 ms 160 ms 320 ms 400 ms 1000 ms

ERD [8] 0.77 0.90 1.12 1.25 1.44

LSTM-3LR [8] 0.73 0.81 1.05 1.18 4.36

Res-GRU [24] 0.27 0.47 0.68 0.76 1.06

Zero-velocity [37] 0.39 0.68 0.99 1.15 1.32

GAN-Poser 0.25 0.66 0.82 1.13 1.77

The best performance has been highlighted in the bold

Table 2 Comparison of performance for mean angle error for both

short-term and long-term human prediction on the NTURGB-D

dataset for the discussion action pose

Model 80 ms 160 ms 320 ms 400 ms 1000 ms

ERD [8] 0.76 0.96 1.17 1.24 2.04

LSTM-3LR [8] 0.71 0.84 1.02 1.11 1.99

Res-GRU [24] 0.31 0.69 1.03 1.12 1.87

Zero-velocity [37] 0.31 0.67 0.97 1.04 1.96

GAN-Poser 0.24 0.88 1.01 1.03 1.69

The best performance has been highlighted in the bold

Table 3 Comparison of performance for mean angle error for both

short-term and long-term human prediction on the NTURGB-D

dataset for the greeting action pose

Model 80 ms 160 ms 320 ms 400 ms 1000 ms

ERD [8] 0.85 1.09 1.45 1.64 1.98

LSTM-3LR [8] 0.80 0.99 1.37 1.54 1.85

Res-GRU [24] 0.52 0.86 1.30 1.47 1.96

Zero-velocity [37] 0.54 0.89 1.30 1.49 1.80

GAN-Poser 0.53 0.88 1.22 1.56 1.91

The best performance has been highlighted in the bold

Table 4 Comparison of performance for mean angle error for both

short-term and long-term human prediction on the NTURGB-D

dataset for the taking photo action pose

Model 80 ms 160 ms 320 ms 400 ms 1000 ms

ERD [8] 0.70 0.78 0.97 1.09 1.39

LSTM-3LR [8] 0.63 0.64 0.86 0.98 1.30

Res-GRU [24] 0.29 0.58 0.90 1.04 1.47

Zero-velocity [37] 0.25 0.51 0.79 0.92 1.27

GAN-Poser 0.21 0.30 0.86 1.14 1.54

The best performance has been highlighted in the bold
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5.3 Comparison with BiHMP-GAN

The BiHMP-GAN [39] uses a bidirectional framework for

prediction of the human motion to avoid the mode collapse.

This model also uses the random extrinsic factor H to

generate multiple sequences of the human poses from a

given starting pose sequence. In general, it is a critic model

as compared to the HP-GAN, which was a probabilistic

model. It also focuses on the long-term human motion

prediction just like our model and performs better as

compared to the HP-GAN. Our model, GAN-Poser,

incorporates the geodesic loss, which is used for bringing

the stability in the model. This has further provided us with

better results in terms of short-term as well as long-term

predictions as compared to the HP-GAN and BiHMP-

GAN.

The following tables demonstrate the results for the

different actions.

5.3.1 Walking

It is evident from Table 5 that our model, GAN-Poser,

produces the results which are comparable with the state-

of-the-art methods. For the short-term predictions, the

mean angle error of our model is 0.71, 0.74, 84 and 1.23 for

8 ms, 160 ms, 320 ms and 400 ms, respectively. The best

model for the short-term prediction is the BiHMP-GAN

model. For the long-term predictions, our model performed

better than the HP-GAN model by obtaining the mean

angle error of 1.87 for 1000 ms.

5.3.2 Eating

As seen from Table 6, GAN-Poser produces better results

than HP-GAN for the short-term predictions with the mean

angle error of 0.80, 0.94, 0.97 and 1.06 for 80 ms, 160 ms,

320 ms and 400 ms, respectively. Our model achieved

better results than the HP-GAN and the RRNN model for

the long-term predictions by obtaining the mean angle error

value of 1.25 for 1000 ms.

5.3.3 Smoking

As seen from Table 7, GAN-Poser produces better results

than HP-GAN, RRNN, Conv-Motion and BiHMP-GAN for

the short-term predictions with the mean angle error of

0.25, 0.29, 0.87 for 80 ms, 160 ms and 320 ms, respec-

tively. For 400 ms, our model performed better than HP-

GAN and RRNN with the error of 1.02. Our model sur-

passed all the state-of-the-art methods for the long-term

predictions by obtaining the mean angle error value of 1.06

for 1000 ms.

Table 5 Comparison of performance for mean angle error for both

short-term and long-term human prediction on the Human3.6 M

dataset for the walking action pose

Model 80 ms 160 ms 320 ms 400 ms 1000 ms

Conv-motion 0.33 0.54 0.68 0.73 0.92

RRNN [41] 0.33 0.56 0.78 0.85 1.14

HP-GAN [38] 0.95 1.17 1.69 1.79 2.47

BiHMP-GAN [39] 0.33 0.52 0.64 0.69 0.88

GAN-Poser 0.71 0.74 0.84 1.23 1.87

The best performance has been highlighted in the bold

Table 6 Comparison of performance for mean angle error for both

short-term and long-term human prediction on the Human3.6 M

dataset for the eating action pose

Model 80 ms 160 ms 320 ms 400 ms 1000 ms

Conv-Motion 0.22 0.36 0.58 0.71 1.24

RRNN [41] 0.26 0.43 0.66 0.81 1.34

HP-GAN [38] 1.28 1.47 1.70 1.82 2.51

BiHMP-GAN [39] 0.21 0.33 0.55 0.71 1.20

GAN-Poser 0.80 0.94 0.97 1.06 1.25

The best performance has been highlighted in the bold

Table 7 Comparison of performance for mean angle error for both

short-term and long-term human prediction on the Human3.6 M

dataset for the smoking action pose

Model 80 ms 160 ms 320 ms 400 ms 1000 ms

Conv-Motion 0.26 0.49 0.96 0.92 1.62

RRNN [41] 0.35 0.64 1.03 1.15 1.83

HP-GAN [38] 1.71 1.89 2.33 2.42 3.2

BiHMP-GAN [39] 0.26 0.49 0.91 0.88 1.12

GAN-Poser 0.25 0.29 0.87 1.02 1.06

The best performance has been highlighted in the bold

Table 8 Comparison of performance for mean angle error for both

short-term and long-term human prediction on the Human3.6 M

dataset for the discussion action pose

Model 80 ms 160 ms 320 ms 400 ms 1000 ms

Conv-Motion 0.32 0.67 0.94 1.01 1.86

RRNN [41] 0.37 0.77 1.06 1.10 1.79

HP-GAN [38] 2.29 2.61 2.79 2.88 3.67

BiHMP-GAN [39] 0.32 0.65 0.92 9.98 1.78

GAN-Poser 0.33 0.70 1.11 1.96 2.83

The best performance has been highlighted in the bold
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5.3.4 Discussion

It is evident from Table 8 that our model, GAN-Poser,

produces the results which are comparable with the state-

of-the-art methods. For the short-term predictions, the

mean angle error of our model is 0.33, 0.70, 1.11 and 1.96

for 80 ms, 160 ms, 320 ms and 400 ms, respectively. For

the long-term predictions, our model performed better than

the HP-GAN model by obtaining the mean angle error of

2.83 for 1000 ms.

5.4 Comparison with RepNet

RepNet [40] or Reprojection Network focuses on

addressing the issue that the reprojection constraint is

sensitive to overfitting. But the RepNet model does not

uses the actual predicted 3D joint poses for future predic-

tions. Hence, to overcome this problem and improve the

model, we have used the recursive prediction strategy

which we have already discussed in Sect. 3.4. Moreover,

for the comparison of results with the RepNet and other

state-of-the-art methods, we have divided our training into

two parts. In the first part, we have trained the model using

a non-rigid alignment and obtained the results for the four

actions, which are walking, eating, sleeping and discussion.

The metrics used for the evaluation is the mean per joint

positioning error (MPJPE), and the results are shown in the

following table:

As it is evident from Table 9 that our model outperforms

most of the state-of-the-art methods and it presents the

results which are comparable to the results for RepNet. In

the second part, we have trained the model using the poses

having rigid alignment and the mean per joint positioning

error (MPJPE) is compared with RepNet and other state-of-

the-art methods (Table 10).

In the table, our model obtained the minimum error of

61.7 for the discussion action and maximum error of 88.0

for the smoking action. The table further shows that the

results obtained by our model, if not the best, are compa-

rable to the other state-of-the-art methods.

6 Conclusion and future work

The paper concludes a novel GAN model, GAN-Poser, to

improve predictions of motion sequences from a global

outlook. A discriminator is projected to model the

sequence-level dependability of the predicted sequences.

We have used the bidirectional GAN with geodesic loss

along with the recursive prediction strategy to reduce the

over fitting and took into consideration the stochasticity for

the prediction of future pose sequence. However, using the

proposed method and all the modifications in the model

that we have implemented, there still no silver bullet to

confirm if the training has converged. Even if that works,

the training can even diverge after it is already converged

in the training loop. Therefore, the future work lies in

looking for more stable converging methods. Another

research work is considering the semantic and gap of the

z vector. If we can evaluate the reverse mapping criteria for

sequences of z values, we can utilize it further for classi-

fication. In the future, the work can also be extended

looking for multiple subject detection and orientation in

space.
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Table 9 Comparison of GAN-Poser with RepNet and other state-of-

the-art methods for the mean per join positioning error (MPJPE) using

the Human3.6 M dataset which is trained using the non-rigid align-

ment of poses

Model Walking Eating Smoking Discussion

LinKDE [13] 177.1 132.3 162.1 183.6

Tekin [42] 126.3 88.8 118.4 147.2

Zhou [43] 114.2 87.1 107.4 109.3

Du [44] 137.4 104.9 120.0 112.7

Park [45] 131.9 90.0 105.8 116.2

Martinez [46] 50.9 62.9 69.1 60.8

RepNet [40] 72.6 82.7 88.0 85.2

GAN-Poser 87.5 90.3 89.9 86.1

The best performance has been highlighted in the bold

Table 10 Comparison of GAN-Poser with RepNet and other state-of-

the-art methods for the mean per join positioning error (MPJPE) using

the Human3.6 M dataset which is trained using the rigid alignment of

poses

Model Walking Eating Smoking Discussion

Akther [47] 198.6 161.8 177.8 177.6

Ramakrishna [48] 174.8 141.6 160.4 149.3

Zhou [23] 110.41 87.91 106.0 95.8

Bogo [49] 79.7 67.8 83.4 60.2

Martinez [46] 35.9 44.4 54.0 52.0

RepNet [40] 63.2 59.6 66.6 58.3

GAN-Poser 69.1 66.8 88.0 61.7

The best performance has been highlighted in the bold
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