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Abstract
Omnipresent network/graph data generally have the characteristics of nonlinearity, sparseness, dynamicity and hetero-

geneity, which bring numerous challenges to network related analysis problem. Recently, influenced by the excellent

ability of deep learning to learn representation from data, representation learning for network data has gradually become a

new research hotspot. Network representation learning aims to learn a project from given network data in the original

topological space to low-dimensional vector space, while encoding a variety of structural and semantic information. The

vector representation obtained could effectively support extensive tasks such as node classification, node clustering, link

prediction and graph classification. In this survey, we comprehensively present an overview of a large number of network

representation learning algorithms from two clear points of view of homogeneous network and heterogeneous network. The

corresponding algorithms are deeply analyzed. Extensive applications are introduced in an all-round way, and related

experiments are conducted to validate the typical algorithms. Finally, we point out five future promising directions for next

research in terms of theory and application.
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1 Introduction

Big data have aroused extensive attention of industry and

academia [1–3]. It is worth noting that most of the current

studies are based on the assumption of independence

between data, which leads to the fact that mining large-

scale data is far from enough. In fact, there is a general

relation between these data. For example, large-scale

image and text can be constructed as the network for

realizing the multi-information fusion [4]. Polypharmacy

side effects of the drug–drug interactions may be affected

with protein–protein interactions, drug–protein target

interactions [5]. That is to say, there not only exist big data

with a single data type including image, text, speech and

video, but also exists the ubiquitous network data, such as

Google knowledge graph, protein–protein interaction net-

work, gene network, brain network, Internet, social net-

work, multimedia network, molecular compound network

and traffic network. In particular, the recent online social

network represented by Twitter, WeChat and Facebook has

entered the era of billions of nodes, making it more urgent

for researchers to study large-scale network data. However,

different from image and text data, network data often have

the characteristics of nonlinearity, sparseness, dynamicity

and heterogeneity, which bring many challenges to deep

and advanced data mining task.

Data representation has always been the top priority of

research in the field of data mining and machine learning.

The so-called data representation (or feature representa-

tion) means using a set of symbols or numbers, i.e., feature

vectors, to describe an object and to be able to reflect some

of its characteristics, structure and distribution. Good data

representation can often greatly reduce the volume of data,

while retaining the essential characteristics of the original

data and capturing the posterior distribution of potential

interpretable data and maintaining robustness against ran-

dom noise. The success of machine learning algorithms
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generally depends on data representation. This is because

different representations can entangle and hide more or less

the distinctive explanatory factors of variation behind the

data [6]. At the initial stage of development, data repre-

sentation is mainly dependent on feature engineering by

using domain knowledge or expert knowledge to create

features. However, it is also the biggest constraint on

machine learning applications. It is not only time-con-

suming and laborious, but also requires a lot of transcen-

dental experience and complicated manual design. This has

led to a study of representation learning.

Representation learning from data is an important

research hotspot in the field of machine learning and pat-

tern recognition [6]. Especially in recent years, represen-

tation learning has seen a surge of research in the well-

known journals and conferences in the field of artificial

intelligence and data mining, such as TPAMI, TNNLS,

TKDE, KDD, NIPS, ICML, AAAI, IJCAI and ICLR.

Representation learning can learn high-level abstract fea-

ture representation directly from original low-level per-

ception data, which is more conducive to subsequent data

analysis and processing [7]. That is, the original feature

engineering is transformed into the process of automatic

machine learning. In particular, deep learning is a typical

method of representation learning, which can automatically

extract the appropriate feature or obtain the multiple levels

of representation from the data. Deep learning has been

successfully applied in speech recognition and signal pro-

cessing [8–10], image recognition [11, 12], object recog-

nition [13–18] and other fields, especially in the field of

natural language processing (NLP) [19–22].

In the upsurge of representation learning, network rep-

resentations learning (a.k.a. network embedding) is in full

swing. It is precisely because the traditional method of

extracting structural information from network data usually

depends on topological statistical information such as

degree, aggregation coefficient or the limitations of well-

designed manual features. This brings about many draw-

backs as mentioned above. Therefore, inspired by the

successful application of representation learning in the

NLP fields (e.g., word2vec [19, 23]), network representa-

tions learning aims to automatically learn a variety of

features from the given network-structured data to low-

dimensional vector space, while encoded a variety of

structural and semantic information. When the vector data

representation is obtained, the problem of network data

mining can be solved directly by the off-the-shelf machine

learning method. As expected, network representations

learning has been proven to be useful in many tasks of data

mining and machine learning such as link prediction

[24–30], node classification [26–28, 30–41], network

reconstruction [25], recommendation [25, 29, 42],

visualization [26, 33, 34, 36, 38, 43] and community

detection [44, 45].

Network representation learning has become one of the

indispensable and hot topics in domain of data mining and

machine learning in recent years. We conduct academic

search in important academic library such as Springer Link,

IEEE xplore, DBLP and Elsevier Science Direct through a

given keyword about network embedding and network

representation learning and find that more than 400 related

articles have been published in the past 5 years. Figure 1

shows the number of published papers on this topic from

2010 to March 2020.

It can be seen that from 2014 to 2019, the number of

papers has increased year by year. Therefore, the research

trend on this topic is growing. We believe it is the right

time to have a paper to summarize this series of the rep-

resentative work published in important journals and top

conference papers in the field of data mining and machine

learning. It is worth noting that we mainly focus on net-

work embedding for network inference and analysis task

rather than graph embedding for dimensionality reduction

[46]. Therefore, the classical nonlinear dimensionality

reduction methods such as ISOMAP [47], locally linear

embedding (LLE) [48], Laplacian eigenmaps (LE) [49] and

the latest manifold learning algorithms for dimensionality

reduction such as the semi-supervised out-of-sample

interpolation (SOSI) [50], the robust local manifold rep-

resentation (RLMR) [51] and the projective unsupervised

flexible embedding models with optimal graph (PUFE-OG)

[52] will not be involved. The major difference between

network embedding and graph embedding has detailed

discussed by the recent work [53]. This article will not

repeat. To the best of our knowledge, this is the first work

to survey the network representation learning comprehen-

sively and systematically, although there have already been

a few survey works related to network representation

Fig. 1 Statistics of papers by publication date
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learning problem. For example, Moyano [54] summarizes

network representations learning from the point of view of

network science. This work is valuable and multipurpose.

However, as a new research direction of machine learning,

it is still necessary to review from two perspectives of

computer science and data science. Moreover, even though

some literature has done relative work in the view of

computer science, such as [53, 55–57], they all have the

following defects more or less. Firstly, all the frameworks

of the articles are not classified from different type of

network data. It is clear that homogeneous network rep-

resentations learning is greatly different from heteroge-

neous network representations learning. Secondly, there is

no clear classification for different object-oriented

embedding in homogeneous network embedding. Most of

the articles are merely a general introduction to network

embedding methods. Obviously, node embedding, sub-

graph embedding, whole network embedding and dynamic

network embedding should have separate categories.

Thirdly, most of the studies do not divide the embedding

algorithm of heterogeneous networks comprehensively.

1.1 Contributions

Synthetically speaking, this review consists of three main

contributions.

1. Our work presents an unambiguous taxonomy of

network embedding from the two perspective of

homogeneous network and heterogeneous network.

Apparently, heterogeneous network representation

learning is more challenging.

2. We propose a systematic taxonomy for homogeneous

network representation learning and heterogeneous

network representation learning. For homogeneous

network, the embedding methods for different targets

are summarized, respectively. Specifically, node

embedding, subgraph embedding, whole network

embedding and dynamic network embedding are listed.

For heterogeneous network, the embedding approaches

are clearly divided into two categories: knowledge

graph embedding and heterogeneous information net-

work embedding.

3. We summarize and list the publicly available datasets

used in network embedding, which can facilitate study

for other researchers. We comprehensively summarize

the related applications of network embedding and

empirically evaluate the surveyed methods on several

publicly available real-world network datasets. Finally,

we point out five future directions in the view of theory

and application, which provide valuable suggestions

for future researchers.

1.2 Framework and organization of the survey

First of all, we survey the number of representative papers

over the past ten years in different sub-directions of net-

work representation learning. The results are shown in

Fig. 2. We can find the current important points in the era

of network representation learning are homogeneous node

embedding and heterogeneous knowledge graph embed-

ding. To provide a comprehensive overview, we cover all

sub-directions. Our comprehensive framework of review-

ing the network embedding is shown in Fig. 3.

The structure of this paper is organized as follows. In

Sect. 2, we introduce the concepts and definitions related to

network embedding. Section 3 introduces the homogeneous

network embedding systematically. We analyze the algo-

rithm in detail from four aspects of node embedding, sub-

graph embedding, whole network embedding and dynamic

network embedding. Section 4 introduces heterogeneous

network embedding comprehensively in the view of

knowledge graph embedding and heterogeneous informa-

tion network (HIN) embedding. Section 5 reviews exten-

sively application of network representation learning.

Section 6 includes some experiments on several represen-

tative datasets for testing some typical methods. Finally, we

draw our conclusions and point out the five future research

directions and prospects in terms of theory and application.

2 Definitions

In this section, we introduce some concepts and definitions

related to network embedding.

2.1 Definitions of network data

Definition 1 (Network) Given a network G ¼ ðV ;EÞ, V
denotes the sets of vertex (node) and E denotes the sets of

Fig. 2 Comparison of sub-direction research
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edges between the vertex. According to the directivity of

edges, it is divided into undirected network and directed

network. If the weight of edges is considered, the network

can be also divided into weighted and unweighted network.

Definition 2 (Homogeneous network, heterogeneous net-

work) Given G ¼ ðV ;EÞ, ; : V ! A and W : E ! R are

type mapping functions for nodes and edges, respectively.

When Aj j[ 1 and/or Rj j[ 1, the network is called a

heterogeneous network. Otherwise, it is a homogeneous

network.

Definition 3 (Knowledge graph) A knowledge graph is

defined as a directed graph, whose nodes are entities and

edges are subject–property–object triple facts. Each edge of

the form (head entity, relation, tail entity) (denoted as

h; r; th i.) indicates a relationship of r from entity h to entity

t. Note that the entities and relations in a knowledge graph

are usually of different types. Therefore, knowledge graph

can be viewed as an instance of the heterogeneous network.

Definition 4 (Static network, dynamic network) The static

network is the opposite direction to dynamic network. A

dynamic homogeneous or heterogeneous network at time

step t is defined as Gt ¼ Vt;Etf g, where Vt ¼
vt1; v

t
2; . . .; v

t
N

� �
denotes a set of nodes and N is the number

of the nodes. Et is the set of edges between the nodes.

When the time t is a fixed value, the dynamic network

becomes a static network. Without special explanation, this

article generally refers to the static network.

2.2 Structure and other information in network

Definition 5 (First-order proximity) The first-order prox-

imity is the weight wuv between the edges of nodes u and v.

It is the local pairwise proximity between two vertices. If

there is no edge between nodes, then its first-order prox-

imity is 0 [33].

Definition 6 (Second-order and high-order proximity) The

second-order proximity is the similarity of the first-order

proximity of node pairs such as nodes u and v [33]. For

Network embedding

Homogeneous network embedding Heterogeneous network embedding

Node embedding

Random walk-based 
methods

Matrix factorization-
based methods

Optimization-based
methods

Deep learning-based 
methods

Extra models

Subgraph embedding

Whole network embedding

Graph kernel-based 
methods

Deep learning-based 
methods

Dynamic homogeneous network embedding

Knowledge graph embedding

Translation-based
models

Semantic matching 
models

Information fusion-
based models

GNN&CNN-based
models

Heterogeneous information network 
embedding

Optimization-based
methods

Deep learning-based 
methods

Meta-path-based
methods

Extra models

Extra models

Fig. 3 The comprehensive

organization structure of

network embedding
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example, we can let su ¼ wu1;wu2;wu3; . . .;wu Vj j
� �

denote

the first-order proximity of u with all the other vertices.

The second-order proximity between u and v can be

computed by the cosine similarity between su and sv [39].

Similar to the second-order proximity definition, the high-

order (X-order) proximity is the similarity by calculating

the lower-order (X � 1 order) proximity.

Definition 7 (Meta-path of the network) Given a hetero-

geneous information network G ¼ ðV ;EÞ, a meta-path p is

a sequence of node types v1; v2; . . .; vn and/or edge types

e1; e2; . . .; en�1 : p ¼ v1 !
e1 � � � vi !

ei � � � !en�1
vn.

2.3 Problem definition of network embedding

Problem 1 (Homogeneous network embedding) Given the

input of a graph G, homogeneous network embedding is

designed to map node or subgraph or whole network into a

low-dimensional space Rd d � Vj jð Þ. The embedding vec-

tors are expected to preserve the various features of the

network as much as possible.

Problem 2 (Heterogeneous network embedding) For net-

work G, the problem of heterogeneous network embedding

aims to map the different type of entities or relations into a

low-dimensional space Rd d � Vj jð Þ. The embedding vec-

tors are expected to preserve the structure and semantics in

G as rich as possible.

Problem 3 (Dynamic network embedding) Given a series

of dynamic networks G1;G2; . . .;GT
� �

, dynamic homo-

geneous or heterogeneous network embedding aims to

learn a mapping function f t : vi ! Rd. The objective

function is to preserve the structure and semantics between

vi and vj, with the evolution of the network at the time.

3 Homogeneous network embedding

The overall architecture of homogeneous network embed-

ding could be presented as Fig. 4. The original raw net-

work data are fed to network embedding algorithm, and the

vectors obtained can be utilized to various graph analysis

tasks by using the off-the-shelf machine learning algo-

rithm. For homogeneous network embedding, we analyze

the algorithm in detail from four aspects of node embed-

ding, subgraph embedding, whole network embedding and

dynamic network embedding. Besides, we summarize

some representative homogeneous node embedding

method, which is shown as Table 1. The graph type,

evaluation task, advantages and disadvantages, time com-

plexity are included. Fore time complexity, considering

that some works lack of the technique details, therefore we

mainly summarize the time complexity of some represen-

tative network embedding methods, where N and Ej j are
the number of nodes and edges, respectively. I is the

number of iterations. d is the representation dimension. a is

the length of node attributes. R is the number of samples

per vertex. L is the expected sample length.d0 is the max-

imum number of hidden layer nodes in DNN. k is the

number of layer. C, H and F are the weight matrix of the

W0 2 RC�H and W1 2 RH�F . F and F0 are the number of

input and attention head features. M is the average number

of neighborhoods. Tables 2 and 3 show the open-source

datasets used for node embedding and whole network

embedding. The details are as follows.

3.1 Node embedding

3.1.1 Random walk-based methods

Motivation Random walk has been widely used in network

data analysis to capture the topological structure informa-

tion [77]. As the name suggests, random walk chooses a

certain vertex in the graph for the first step and then ran-

domly migrates through the edges. By Analogy, the

walking path obtained when performing random walks can

be taken as the sentence in the corpus, the vertices in the

network could be regarded as vocabulary in the text corpus.

Then, combining with mature natural language processing

technology (e.g., word2vec [19, 23]), nodes could be

mapped to low-dimensional vector space. Therefore, some

methods are proposed based on the similarity of the node

Node classification

Link prediction

Graph classification

Visualization

Node Clustering

Latent representation Network inference 
and analysis task

Homogeneous network
d V

Network
embedding

Feature vector

Fig. 4 Architecture of

homogeneous network

embedding
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sequence and the text sequence. The representative meth-

ods are as follows.

The pioneering work of this kind of method was

DeepWalk [32], which was inspired by word2vec algo-

rithm [19, 23] of modeling language. In word2vec, the

Table 2 Summary of datasets used for homogeneous node embedding

Data source Description Nodes Edges Sites of datasets

Social network Flickr 1,715,256 22,613,981 http://socialnetworks.mpi-sws.org/data-imc2007.html

Youtube 1,138,499 2,990,443

epinions 75,879 508,837 http://konect.uni-koblenz.de/networks/soc-Epinions1

Twitter 465,017 834,797 http://konect.uni-koblenz.de/networks/

munmuntwittersocial

Tencent Weibo 1,944,589 50,655,143 http://www.kddcup2012.org/c/kddcup2012-track1/data

DBLP Author citation 524,061 781,109 http://arnetminer.org/citation

Paper citation 20,580,238 4,191,677

SNAP datasets Facebook 4039 88,234 http://snap.stanford.edu/data

arXiv ASTRO-PH 18,722 198,110

Amazon network 262,111 1,799,584 http://snap.stanford.edu/data/amazon0302.html

BioGRID interaction database Protein–protein

interactions

19,706 390,633 https://thebiogrid.org/download.php

Social media BlogCatalog 10,312 333,983 http://socialcomputing.asu.edu/pages/datasets

5196 171,743 https://github.com/xhuang31/AANE_MATLAB

Political blog network 1222 16,715 http://www-personal.umich.edu/*mejn/netdata/

Co-occurrence network of

words

Wikipedia 4777 184,812 http://www.mattmahoney.net/dc/textdata

2405 17,981 http://www.cs.umd.edu/*sen/lbc-proj/LBC.html#

CiteSeerX data CiteSeer-M10 10,310 77,218 http://citeseerx.ist.psu.edu/

Paper citation network Cora 2277 5214 https://people.cs.umass.edu/*mccallum/data.html

23,166 91,500 http://konect.uni-koblenz.de/networks/subej_cora

2708 5429 http://www.cs.umd.edu/*sen/lbc-proj/LBC.html#

Arxiv 5242 28,980 http://snap.stanford.edu/data/ca-GrQc.html

HepTh 1038 1990 https://snap.stanford.edu/data/cit-HepTh.html

Table 3 Summary of datasets

used for homogeneous whole

network embedding

Data source Dataset Graph Class Avg. node References

Source: https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Bioinformatics datasets MUTAG 188 2 17.9 [70]

PTC 344 2 25.2 [71]

D&D 1178 2 284.3 [72]

PROTEINS 1113 2 39.1 [73]

ENZYMES 600 6 32.6

NCI1 4110 2 29.8 [74]

NCI109 4127 2 29.6

Social network datasets COLLAB 5000 3 74.49 [75]

IMDB-BINARY 1000 2 19.77 [76]

IMDB-MULTI 1500 3 13

REDDIT-BINARY 2000 2 429.61

REDDIT-MULTI-5K 5000 2 508.5

REDDIT-MULTI-12 K 11,929 11 391.4
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short sequences of words in text corpus could be embedded

in continuous vector space. Similar to word2vec, Deep-

Walk generated sequences of nodes from a stream of

truncated random walks on the graph. Each path sampled

from the graph corresponds to a sentence from the corpus,

where a node corresponded to a word. Then, the skip-gram

model [23] was applied on the paths to maximize the

probability of observing a node’s neighbor conditioned on

its embedding. The hierarchical softmax [78] technology

was to approximate the probability distribution. Node

representation can be obtained, just like getting the repre-

sentation of a word.

However, this model has different limitations. Firstly,

researchers found that different random walk strategies

may produce different node representations in DeepWalk.

Therefore, Node2vec [27] improved DeepWalk method by

employing biased strategy of breadth-first sampling (BFS)

and depth-first sampling (DFS). By adjusting search bias

parameters, the model can obtain a good node feature

vector. Secondly, DeepWalk cannot obtain discriminative

representation for specific node classification tasks. Thus,

DDRW [37] was aimed at learn the latent space repre-

sentations that well captured the topological structure and

meanwhile were discriminative for the network classifica-

tion task. The model extended DeepWalk by jointly opti-

mizing the classification objective and the objective of

embedding entities in a latent space. Thirdly, DeepWalk

did not model the node label information. Therefore,

TriDNR [38] learnt the network representation from three

parties, namely node structure, node content and node

label. Specifically, the inter-node relationship, node-word

correlation and label-word correspondence were modeled

by maximizing the probability of observing surrounding

nodes given a node in random walks, maximizing the co-

occurrence of word sequence given a node and maximizing

the probability of word sequence given a class label.

Finally, DeepWalk showed fail in structural equivalence

tasks. Hence, Struct2vec [30] assessed structural similarity

using a hierarchy to measure similarity at different scales

and constructed a multilayer graph to encode the structural

similarities and generate structural context for nodes via a

biased random walk. Then, the skip-gram model was also

adopted to learning latent representation of node, which

maximized the likelihood of its context in a sequence.

Discussions and insights Although the method based on

random walk has achieved certain effects, it cannot ignore

the limitations brought by randomness. Therefore, design-

ing a structure-oriented walking strategy will be very

important for performance improvement, such as capturing

the community structure (see [58]) and preserving the

scale-free feature of real-world networks (see [59, 79]).

Researcher also finds the limitation of adopting short

random walks to explore the local neighborhoods of nodes

and non-convex optimization which can become stuck in

local minima in the model of DeepWalk and Node2vec,

HARP [80] captured the global structure of the input net-

work, by recursively coalescing the input graph into

smaller but structurally similar graphs. By learning graph

representation on these smaller graphs, a good initialization

scheme for the input graph was derived. This multilevel

paradigm can improve the graph embedding methods (e.g.,

DeepWalk, Node2vec) for yielding better node embedding.

Besides, as we can see from Table 1, the time complexity

of the model Node2vec in above method is linear with

respect to the number of nodes N. Therefore, this model

can be scalable for large networks.

3.1.2 Optimization-based methods

Motivation Optimization-based algorithm aims to design a

proper objective function modeling various structural and

semantic information of the graph, then minimize or

maximize the objective function by optimization method to

obtain node vector representation using a variety of opti-

mization methods, such as Line [33] model using negative

sampling [19] ? asynchronous stochastic gradient algo-

rithm (ASGD) [81] and APP [29] model using negative

sampling ? stochastic gradient descent (SGD) [82].

The representative Line model designed two optimiza-

tion functions by first-order proximity [24] and second-

order proximity [33]. The author proposed to minimize the

Kullback–Leibler (KL) divergence of joint probability

distribution and empirical probability distribution. To

obtain the embedding of vertex, an edge-sampling strategy

was proposed to minimize either one of the objective

function of first-order proximity and second-order prox-

imity. APP model captured both asymmetric proximities

and high-order similarities between node pairs. To preserve

the asymmetric proximity, each vertex v needed to have

two different roles, the source role and the target role,

represented by vector sv
! and tv

!
, respectively. The global

objective function was designed by the inner product of su
and tv, which can represent the proximity of vertex pair

ðu; vÞ.

Discussions and insights From Table 1, we can find that

the Line model is linear with respect to the number of

edges E, which can easily scale up to networks with mil-

lions of vertices and billions of edges. At the same time, it

is not difficult to find that this type of method mainly

depends on the modeling ability of the objective function.

Therefore, the optimization-based method can further

improve the performance of the algorithm by designing

more accurate objective functions.
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3.1.3 Matrix factorization-based methods

Motivation A network or graph can usually be expressed in

some forms of matrix, such as adjacency matrix and

Laplacian matrix. Therefore, it is an intuitively way to

design node embedding method by matrix factorization.

Matrix factorization (MF), such as singular value decom-

position (SVD) [83] and eigenvalue decomposition, is an

important method in math, which has many successful

applications in many fields [84–89]. For node embedding

methods based on MF, representative algorithms are as

follows.

For modeling the different structural information and

obtaining the node embedding in framework of MF,

GraRep [34], HOPE [25] and M-NMF [39] have made

some attempts. Specifically, GraRep presented a node

embedding method by decomposing the global structural

information matrix, which integrated various k-step rela-

tional information. HOPE [25] proposed a high-order

proximity embedding which decomposed the high-order

proximity matrix rather than adjacency matrix using a

generalized SVD. M-NMF [39] proposed a modularized

nonnegative matrix factorization model, which preserved

both the microscope structure of first-order and second-

order proximities and mesoscopic structure of community

feature. Note that the real-world networks also contain rich

information in addition to the structure. Therefore, for

modeling such auxiliary information, TADW [35] intro-

duced text features of vertices into matrix factorization

framework. MMDW [36] incorporated the labeling infor-

mation into vertex representations in an unified learning

framework based on matrix factorization.

Discussions and insights The approach of GraRep [34] just

performs linear dimension reduction by employing SVD,

resulting in the loss of more nonlinear information. Typical

extension work is DNGR [43], which will be analyzed in

the next section. Considering the flexibility of matrix

decomposition, the frameworks of TADW [35], MMDW

[36] and M-NMF [39] are well scalable and can easily

integrate other information. HOPE [25] could also be

extended by designing new higher-order proximity

matrices.

3.1.4 Deep learning-based methods

Motivation In recent years, deep learning technology has

shown the strong ability to model the data in many fields

(see [6]). Therefore, the network data are no exception. For

example, autoencoder is first applied to network presenta-

tion learning which is influenced by the mature unsuper-

vised learning ability (see [26, 43]). The variant of

convolutional neural networks is also designed to network

data (see [60]). Besides, attention models have been suc-

cessfully adopted in many computer vision tasks, including

object detection [90]. Inspired by it, the attention mecha-

nism has also recently been applied to network data (see

[64]). In addition, the principle of adversarial learning has

been widely applied in many fields, such as image classi-

fication [91, 92], sequence generation [93], dialog gener-

ation [94] and information retrieval [95]. The typical

method is generative adversarial networks (GAN) [96] of

which the framework consists of two components, i.e., a

generator and a discriminator. GAN can be formulated as a

minimax adversarial game, where the generator aims to

map data samples from some prior distribution to data

space, while the discriminator tries to tell fake samples

from real data. Considering this ubiquitous game problem,

this thought for network representation learning has also

made significant research progress (see [63, 65]). The

specific branches are as follows.

3.1.4.1 Autoencoder-based methods There are two main

categories of these methods: classical autoencoder-based

and graph autoencoder-based algorithms. The representa-

tive methods of the first category are SDNE [26] and

DNGR [43]. SDNE [26] proposed a modified conventional

autoencoder-based model, which simultaneously optimizes

the first-order and second-order proximity to characterize

the local and global network structure. The first-order

proximity was preserved by idea of Laplacian Eigenmaps

[49]. The second-order proximity was preserved by the

extension of traditional deep autoencoder. Finally, the

intermediate layer of deep autoencoder was used as the

final node representation. DNGR [43] captured the struc-

tural information of the graph via determining the positive

pointwise mutual information (PPMI) matrix [97] and

learnt the stacked denoising autoencoders to obtain the

node embedding. Note that the DNGR model is task-ag-

nostic. This results in the fact that the performance of

specific task cannot be guaranteed. Therefore, DNNNC

[41] proposed an efficient classification-oriented node

embedding method for improving the performance of node

classification by extending DNGR in framework of deep

learning. The representative algorithms in second class are

GAE [98] and ARGA [66]. The former can be regarded as

the pioneering work of such methods. The model designed

a graph convolutional network (GCN) [60] encoder and a

simple inner product decoder to perform the unsupervised

learning on graph-structured data. However, the model has

at least three defects. The first defect is that the model

cannot obtain robust graph representation. In order to

remedy this defect, ARGA [66] proposed an adversarial

training scheme to regularize the latent codes, which is

obtained by GAE. The second defect is that GAE is not

designed for specific task of graph analysis. Therefore,
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DAEGC [99] proposed clustering-oriented node embed-

ding method via jointly optimizing to simultaneously

obtain both graph embedding and graph clustering result.

The third flaw is that the decoder module is too simple and

loses too much structural information. Thus, recent work

TGA [100] proposed a triad decoder via modeling the tri-

adic closure property that is fundamental in real-world

networks.

3.1.4.2 Graph convolutional network-based meth-
ods GCN [60] can be considered as the most represen-

tative work, which adopted an efficient variant of

convolutional neural networks on graph-structured data.

The main convolutional architecture was via a localized

first-order approximation of spectral graph convolutions.

However, the researchers found that the model had some

representative limitations. Firstly, GCN cannot model the

global information of the network. Thus, DGCN [61]

extended the GCN model with dual graph convolutional

networks, i.e., the graph adjacency matrix-based convolu-

tion ConvA and positive pointwise mutual information

(PPMI) matrix-based convolution ConvP. In this way, the

local-consistency-based knowledge and the global-consis-

tency-based knowledge in the data are embedded. Sec-

ondly, GCN will need excessive memory and

computational resources when the graph has a large

amount of nodes. To overcome this limitation, LGCL [62]

proposed a large-scale learnable GCN via the learnable

graph convolutional layer and an efficient subgraph train-

ing strategy. Thirdly, GCN is too shallow to capture more

information. Therefore, H-GCN [67] proposed a deep

hierarchical GCN by introducing coarsening layers and

symmetric refining layers to increase the receptive field.

Finally, GCN has poor extrapolating ability. To improve

this capability, HesGCN [69] proposed a more efficient

convolution layer rule by optimizing the one-order spectral

graph Hessian convolutions, which is a combination of the

Hessian matrix and the spectral graph convolutions.

3.1.4.3 Graph attention-based methods Recently, graph

attention networks (GATs) were proposed by Veličković

et al. [64], which was an attention-based architecture to

perform node classification. The main idea was to compute

the hidden representations of each node, by attending over

its neighbors, following a self-attention strategy.

Discussions and insights For autoencoder-based meth-

ods and GAN-based method, they are all unsupervised

learning model. The representations learned can accom-

plish a variety of tasks, such as node clustering and link

prediction. It is noteworthy that the learning ability of

simple application of autoencoder to network data is lim-

ited, because of the particularity of network data as stated

above. Therefore, the design of graph-oriented autoencoder

is an urgent research issue. Although the work mentioned

above has been covered, there is still a lot of potential

development space. E.g., most of the variational graph

autoencoder and its variants all use the KL divergence as

the similarity measure between the distributions, which is

not the true metrics. Therefore, the next generation of the

graph autoencoder will be inspired by the recent work of

Wasserstein autoencoders [101]. The GAN-based method

also has some limitations such as poor stability, which

maybe come from the characteristics of GAN itself. Like

GAN and its variants which have developed very pros-

perously in the field of image processing, there is still a

great potential for the development of GAN for graph data.

For graph convolutional network-based methods and graph

attention-based methods, they are specific for the task of

semi-supervised node classification. For GCN method, we

can find its time complexity is linear in the number of

graph edges E in Table 1. We also note that the time

complexity of GAT is on par with GCN. Hence, both of the

them are suitable for large-scale networks. Although GCN

and its variants are inspired by convolutional neural net-

work (CNN), are they necessary for graph data? Is there a

linear but very efficient method? Similar to attention

models in other field such as NLP, the graph attention-

based embedding methods also can be extended to related

tasks such as graph classification as a useful mechanism to

improve performance (see Sect. 3.3.2).

3.1.4.4 GAN-based methods The representative work of

this kind of method mainly includes adversarial network

embedding (ANE) [63], GraphGAN [65] and ProGAN

[68]. ANE mainly consisted of two components, i.e., a

structure preserving component and an adversarial learning

component. Specifically, an inductive DeepWalk was

proposed for structure preserving. The adversarial learning

component consisted of two parts, i.e., a generator Gð�Þ and
a discriminator Dð�Þ. It was acting as a regularizer for

learning stable and robust feature extractor, which was

achieved by imposing a prior distribution on the embed-

ding vectors through adversarial training. The parameter-

ized function Gð�Þ was shared by both the structure

preserving component and the adversarial learning com-

ponent. GraphGAN was an another innovative graph rep-

resentation learning framework with GAN idea. For a

given vertex, the generative model aims to fit its underlying

true connectivity distribution over all other vertices and

produces ‘‘fake’’ samples to fool the discriminative model.

In addition, with the generative capabilities of GAN net-

works, ProGAN proposed to generate proximity between

different nodes which can help to discover the complicated

underlying proximity to benefit network embedding.
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3.1.5 Extra models

Different from the above method, GraphWave [102] learnt

a multidimensional structural embedding for each node

based on the diffusion of a spectral graph wavelet centered

at the node. The method made it possible to learn nodes’

structural embeddings via spectral graph wavelets [103].

The key is to treat the wavelet coefficients as a probability

distribution and characterize the distribution via empirical

characteristic functions.

3.2 Subgraph embedding

Subgraph embedding aims to encode a set of nodes and

edges into a low-dimensional vector. The representative

work was Subgraph2vec [104], which encoded semantic

substructure dependencies in a continuous vector space.

Firstly, a rooted subgraph around every node in a given

graph was extracted by using WL relabeling strategy [105].

Then, the algorithm proceeded to learn its embedding with

the radial skip-gram model.

3.3 Whole network embedding

In this section, we focus on the whole graph embedding,

which represented a graph as one vector. When such vec-

tors are obtained, graph-level classification is often

involved. The actual network is usually rich in a variety of

structural information. In such situation, embedding a

whole graph needs to capture the property of a whole

graph. Therefore, it is a challenging task to design efficient

algorithm. In this review, we summarize the representative

state-of-the-art graph kernel methods and latest deep

learning methods for whole graph embedding to perform

graph classification task.

3.3.1 Graph kernel-based methods

Typical methods in this category are graph kernel [106]

and deep graph kernel (DGK) [76]. Graph kernel defined a

distance measure between subgraphs by the function. DGK

was proposed to leverage the dependency information

between substructures by learning their latent representa-

tions. DGK was one of the state-of-art methods in graph

kernel family, which has been proven to outperform three

popular graph kernel methods of Graphlet kernels [107],

Weisfeiler–Lehman kernel [108] and shortest-path graph

kernels [109].

Discussions and insights The main shortcomings of these

types of methods are handcrafted feature. Besides, their

similarity is directly calculated based on global graph

structures and it is computationally expensive to calculate

graph distance and prediction rules are hard to interpret,

because graph features are numerous and implicit. And, it

cannot capture the important substructures, which is useful

for graph classification.

3.3.2 Deep learning-based methods

As mentioned above, deep learning has achieved great

success in task of node embedding. For graph classification

tasks, the corresponding deep-based method is also show-

ing a booming trend. The typical method consists of two

branches: CNN-based methods and attention-based meth-

ods. The details are as follows.

3.3.2.1 CNN-based methods This kind of method can be

divided into two categories: conventional CNN-based

methods and spectral convolution based approaches. For

the first type of method, the representation work is PSCN

[110]. Niepert et al. [110] proposed the method of PSCN,

which can be taken as the first work for learning convo-

lutional neural networks for arbitrary graph classification.

The model designed a general approach to extracting

locally connected regions from graphs via analogizing

image-based convolutional networks that operate on

locally connected regions of the input. The final proposed

architecture consisted of node sequence selection, neigh-

borhood graph construction, graph normalization and

convolutional architecture. However, researchers found

that the PSCN model has at least three drawbacks, such as

the selection of neighborhood, losing the complex sub-

graph feature and special labeling approach. Thus, recent

work NgramCNN [111] proposed to tackle the above

shortcomings. It consisted of three core components: (1)

the n-gram normalization, which sorted the nodes in the

adjacency matrix of a graph and produced the n-gram

normalized adjacency matrix, (2) a special convolution

layer, called diagonal convolution, which extracted the

common subgraph patterns found within local regions of

the input graph and (3) a stacked deep convolution struc-

ture, which was built on top of diagonal convolution and

repeated by a series of convolution layers and a pooling

layer. The researchers also noted the high complexity of

the data preprocessing (such as using graph canonization

tool NAUTY [112]) in the PSCN model. To avoid this

question, the recent model DGCNN [113] proposed a pure

neural network architecture for graph classification in an

end-to-end fashion. The brief processing steps are as fol-

lows. An input graph of arbitrary structure was first passed

through multiple graph convolution layers where node

information was propagated between neighbors. Then, the

vertex features were sorted and pooled with a SortPooling

layer, and passed to traditional CNN structures to learn a

predictive model.

16658 Neural Computing and Applications (2020) 32:16647–16679

123



For spectral convolution based method, early attempts

can be traced back to the first spectral graph CNN model

[114] and later extended model [115]. However, because

the above models usually contain highly complex opera-

tions, they cannot be well applied to large-scale networks.

In order to make up for the above defects and efficiently

perform the task of graph classification, the model of GCN

combined with other effective mechanisms to obtain graph-

level embedding becomes very attractive and representa-

tive. Some recent works such as dense differentiable

pooling [116] and self-attention pooling [117] have been

introduced the pooling operation to GCN for obtaining

whole graph embedding from node embedding, which have

achieved good performance in graph classification task.

3.3.2.2 Attention-based methods Similar to attention-

based methods for node classification discussed above (see

Sect. 3.1.4), attention thoughts have recently been applied

to graph classification tasks. The representative work is

graph attention model (GAM) [118], a novel RNN model,

proposed to focus on small but informative parts of the

graph, which avoided noise in the rest of the graph. The

attention mechanism was mainly used to guide the walk

toward more informative parts of the graph.

Discussions and insights We could find that many

algorithms for graph classification are based on the con-

ventional CNN model, such as NgramCNN [111] and

DGCNN [113]. Their essence is still to use the traditional

CNN to conduct feature processing and transformation.

Although these models have proven effective, their ability

to capture complex structures is inherently insufficient. To

better identify complex structures in networks, recent

work—Capsule Graph Neural Network (CapsGNN) [72]

has proposed to graph classification task via leveraging the

power of Capsule Neural Network (CapsNet) [119] in field

of image processing. The model has achieved good clas-

sification results. Therefore, how to learn the most dis-

criminative information from the complex structure space

is the key to the problem.

3.4 Dynamic homogeneous network embedding

We can clearly observe that almost all the existing network

embedding methods focus on static networks while ignor-

ing network dynamics [25–27, 32–39, 43, 63, 65]. There-

fore, network embedding for dynamic network is an open

question, which is gradually gaining the attention of

researchers. Consider the challenges of the network over

time, designing efficient dynamic network embedding

algorithm is not a trivial problem. Representative methods

include DHPE [120], DynamicTriad [121] and Dynamic

GCN [122]. The first two methods are non-deep learning

methods. Specially, DHPE [120] proposed a dynamic

network embedding method, which aimed to preserve the

high-order proximity. The generalized SVD (GSVD) was

firstly adopted to preserve the high-order proximity. Then,

the researcher proposed a generalized eigen perturbation

approach to incrementally update the results of GSVD. In

this way, the dynamic problems are transformed into

eigenvalue updating problems. DynamicTriad [121]

designed a dynamic network embedding algorithm via

modeling triadic closure process, which enables our model

to capture network dynamics. The last method is deep

learning-based approach named Dynamic GCN, which

combines long short-term memory networks [123] and

GCN to learn long short-term dependencies together with

graph structure. The performance of the model has been

proved to be outstanding in vertex-based semi-supervised

classification and graph-based supervised classification

tasks.

Discussions and insights Intuitively, how to model

dynamic characteristics and update node embedding is the

key to the problem of dynamic network embedding. With

the development of deep learning, the dynamic network

embedding method based on neural network will make

greater progress.

4 Heterogeneous network embedding

Similar to homogeneous network, heterogeneous network

also exists widely in the real world as mentioned earlier.

Typical representatives of heterogeneous network are

heterogeneous knowledge graph (KG) [124] and hetero-

geneous information network (HIIN) [125–129]. Taking

online social network as an example, it could be composed

of different types of multimodal nodes (e.g., users, image,

text and videos) and complex relations (e.g., social or

cross-media similarity relations) [130]. So, compared to

homogeneous network embedding, heterogeneous network

embedding is more challenging issue because of the

heterogeneity and high complexity. The architecture of

heterogeneous social network representation learning is

shown as Fig. 5. Heterogeneous network embedding could

map different heterogeneous objects in heterogeneous

network into a unified latent space so that objects from

different spaces can be directly compared. Consequently,

heterogeneous network analysis tasks become feasible. For

heterogeneous network embedding, we review the algo-

rithm in detail from two aspects of knowledge graph

embedding and heterogeneous information network

embedding, in view of the rapid development and impor-

tance of knowledge graph embedding technology. Besides,

we summarize the knowledge graph embedding method
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comprehensively, which is shown as Table 4. The score

function, prerequisite and time complexity are included.

Here, d and k are the dimensionality of entity and relation

embedding space, respectively. rð�Þ and x denote the

nonlinear activation function and convolutional filters.

Tables 5 and 6 show the open-source datasets used in

knowledge graph embedding and heterogeneous informa-

tion network embedding. The specific contents are as

follows.

4.1 Knowledge graph embedding

4.1.1 Translation-based models

The core of translation-based model is based on translation

distance. In the early exploration, researchers used intuitive

distance model, such as SE [132]. However, the model

loses too much information and results in poor perfor-

mance. After that, it is more extensive to adopt the trans-

lation model introduced in this section.

Uniformed Vector-representation spaceHeterogeneous network

Node classification

Link prediction

Node Clustering

Triplet classification

Recommendation

Extensive application

Fig. 5 Architecture of heterogeneous social network embedding

Table 4 Summary of representative knowledge graph embedding methods

Method Year Score functions Prerequisite Otime

RESCAL [131] 2011 hTMrt h; t 2 Rd , Mr 2 Rd�d O d2ð Þ
SE [132] 2012 Mrhh�Mrttk kl1 h; t 2 Rd , r 2 Rk, Mrh;Mrt 2 Rd�d O d2ð Þ
NTN [133] 2013 uTr tanh hTW 1:k½ �

r t þ Vrhhþ Vrtt þ br
� �

h; t 2 Rd , ur ; br 2 Rk , W 1:k½ �
r 2 Rk�d�d;Vrh;Vrt 2 Rk�d O kd2ð Þ

TransE [124] 2013 hþ r � tk k22 h; r; t 2 Rd OðdÞ
TransH [134] 2014 h� wT

r hwr

� �
þ r � t � wT

r twr

� ��� ��2
2

h; r; t;wr 2 Rd OðdÞ

TransR [135] 2015 Mrhþ r �Mrtk k22 h; r; t 2 Rd , r 2 Rk , Mr 2 Rk�d OðkdÞ
DistMult [136] 2015 hTdiag(rÞt h; r; t 2 Rd OðdÞ
TransD [137] 2015 Mrhhþ r �Mrttk k22 h; t 2 Rd , r 2 Rk, Mrh;Mrt 2 Rk�d OðkdÞ
TransA [138] 2016 hþ r � tk k h; r; t 2 Rd OðdÞ
TranSparse [139] 2016 Mh

r hhr
� �

hþ r �Mt
r htr
� �

t
�� ��2

l1=2
h; t 2 Rd , r 2 Rk, Mh

r hhr
� �

;Mt
r htr
� �

2 Rk�d OðkdÞ

TKRL [140] 2016 Mrhhþ r �Mrttk k h; t 2 Rd , r 2 Rk, Mrh;Mrt 2 Rk�d OðkdÞ
HOLE [141] 2016 rT h � tð Þ h; r; t 2 Rd OðdÞ
DKRL [142] 2016 hd þ r � tdk k þ hd þ r � tsk k þ hs þ r � tdk k h; r; t 2 Rd OðdÞ
ManifoldE [143] 2016 hþ r � tk k22�D2

r

�� ��2 h; r; t 2 Rd OðdÞ

ComplEx [144] 2016 Re hTdiag rð Þ�tð Þ h; r; t 2 Cd OðdÞ
MTransE [145] 2017 hþ r � tk k h; r; t 2 Rd OðdÞ
Analogy [146] 2017 hTMrt h; t 2 Rd , Mr 2 Rd�d O d2ð Þ
TorusE [147] 2018 minðx;yÞ2ð½h�þ½r�Þ�½t� x� yk ki ½h�; ½r�; ½t� 2 Td OðdÞ
ConvE [148] 2018 r vec r Mh;Mr½ � � xð Þð ÞWð Þt Mh 2 Rdx�dh , Mr 2 Rdx�dh , t 2 Rd –
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The first translation-based model was TransE [124],

which was the most representative translational distance

model. It represented both entities and relations as vectors

in the same space, as shown in Fig. 6a. It has gathered

attention because of its effectiveness and simplicity.

TransE was inspired by the skip-gram model [23], in which

the differences between word embedding often represented

their relation. TransE regarded the relation r as translation

from entity h to entity t for a golden triplet h; r; th i. Hence,
ðhþ rÞ was close to ðtÞ. The score function used for

training the vector embedding was defined as

frðh; tÞ ¼ hþ r � tk k22: ð1Þ

Note that TransE was only suitable for 1-to-1 relations.

There remain flaws for 1-to-N, N-to-1 and N-to-N relations.

To solve these problems of TransE, TransH [134] pro-

posed an improved model named translation on a hyper-

plane. On hyperplanes of different relations, a given entity

has different representations. As shown in Fig. 6b, TransH

further projected the embedding h and t to a relation-

specific hyperplane by a normal vector wr, where h0 ¼
h� wT

r hwr and t0 ¼ t � wT
r twr. Then, score function used

for training was defined as

frðh; tÞ ¼ h� wT
r hwr

� �
þ r � t � wT

r twr

� ��� ��2
2
: ð2Þ

Note that both TransE and TransH assumed that entities

and relations were in the same vector space. But relations

Table 5 Summary of datasets used for knowledge graph embedding

Datasets Entities Relations Reference/source

FB15K 14,951 1345 [124]/https://everest.hds.utc.fr/doku.php?id=en:transe

WN18 40,493 18

WN11 38,696 11 [133]/http://cs.stanford.edu/*danqi/data/nips13-dataset.tar.bz2

FB13 75,043 13

YAGO37 123,189 37 [149]/https://www.mpi-inf.mpg.de/departments/databases-and-

information-systems/research/yago-naga/yago/downloads/

DBpedia – – [150]

Freebase – – [151]

Google knowledge graph – – http://googleblog.blogspot.com/2012/05/introducing-knowledge-

graph-things-not.html

Table 6 Summary of datasets used for heterogeneous information network embedding

Datasets Node type Reference/source

DBLP Author Paper Reference Term Venue Year [152]/https://aminer.org/citation

1,003,836 1,756,680 693,406 402,687 7528 62

IMDB User Movie Actor Director Genre [153]/https://grouplens.org/datasets/movielens/100k/

943 1360 42,275 918 23

Blogcatalog User Group http://socialcomputing.asu.edu/datasets/BlogCatalog3

10,312 39

Yelp User Business City Category https://www.yelp.com/dataset_challenge

630,639 86,810 10 807

U.S.

Patents

Patent Inventor Assignee Class [154]/http://www.dev.patentsview.org/workshop/participants.

html295,145 293,848 31,805 14

MovieLens User Movie Tag [155]/https://movielens.org/

2113 5908 9079

Drug User Drug Reaction [156]/http://www.fda.gov/Drugs/

12 1076 6398

GPS User Location Activity [157]

146 70 5
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and entities were different types of objects, they should not

be in the same vector space.

TransR [135] was proposed based on the above idea. It

extended the single vector space used in TransE and

TransH to many vector spaces. TransR set a mapping

matrix Mr for each relation r to map entity embedding into

relation vector space, as shown in Fig. 6c, where h0 ¼ Mrh

and t0 ¼ Mrt. The score function was defined as

frðh; tÞ ¼ Mrhþ r �Mrtk k22: ð3Þ

However, TransR also has several flaws: (1) For a typ-

ical relation r, all entities share the same mapping matrix

Mr. In fact, the entities linked by a relation always contain

various types and attributes. (2) The projection operation is

an interactive process between an entity and a relation; it is

unreasonable that the mapping matrices are determined

only by relations. (3) Matrix–vector multiplication brings

large amount of calculation, and when relation number is

large, it also has much more parameters than TransE and

TransH.

Thus, to improve the TransR, a more fine-grained model

TransD [137] was proposed. Two vectors for each entity

and relation were defined. The first vector represented the

meaning of an entity or a relation, the other one represented

the way that how to project an entity embedding into a

relation vector space and it will be used to construct

mapping matrices. Therefore, every entity-relation pair had

a unique mapping matrix. In addition, TransD had no

matrix-by-vector operations which can be replaced by

vectors operations. The corresponding scoring function

was defined as

frðh; tÞ ¼ Mrhhþ r �Mrttk k22; ð4Þ

where hp, rp and tp were projection vectors and I
m�n was an

identity matrix.

Although the above methods have strong ability to

model knowledge graphs, it remains challenging for the

reason that the objects (entities and relations) in a knowl-

edge graph are heterogeneous and unbalanced. TranSparse

[139] was proposed to overcome these two issues. MðhÞ
denoted a matrix M with sparse degree h. The score

function was defined as

frðh; tÞ ¼ Mh
r hhr
� �

hþ r �Mt
r htr
� �

t
�� ��2

l1=2
: ð5Þ

Besides, aiming at the limitations of optimization

functions for specific graphs, TransA [138] adaptively

found the optimal loss function according to the structure

of knowledge graphs, and no closed set of candidates was

needed in advance. It not only made the translation-based

embedding more tractable in practice, but promoted the

performance of embedding related applications. Its scoring

function was defined as

frðh; tÞ ¼ hþ r � tk k: ð6Þ

Considering most of the knowledge graph embedding

methods focused on completing monolingual knowledge

graphs, MTransE [145], a translation-based model for

multilingual knowledge graph embedding, was proposed.

By encoding entities and relations of each language in a

separated embedding space, MTransE provided transitions

for each embedding vector to its cross-lingual counterparts

in other spaces, while preserving the functionalities of

monolingual embedding. The score function was the same

with the TransA model.

Recently, the researchers noticed the regularization

problem in TransE. TorusE [147] aimed to change the

embedding space to solve the regularization problem while

employing the same principle used in TransE. The required

conditions for an embedding space were first considered.

Then, a lie group was introduced as candidate embedding

spaces. After that, the model embedded entities and rela-

tions without any regularization on a torus. Its scoring

function was defined as

min
ðx;yÞ2ð½h�þ½r�Þ�½t�

x� yk ki: ð7Þ

Discussions and insights Most of the above improved

methods are based on TransE. Considering that the model

r: Be the capital of

h: Beijing t: China

Entity and Relation Space

a  TransE

r: Be the capital of

h: Beijing t: China

Entity and Relation Space

b  TransH

Hyperplane

r

h

t
h: Beijing

t: China

Entity Space

c  TransR

r: Be the capital of

Relation Space of r

rM

rM

h
r

Fig. 6 Simple illustrations of TransE, TransH and TransR
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is inspired by the translation model, intuitively, designing

algorithms that incorporate the latest research in machine

translation will further improve the performance of the

task.

4.1.2 Semantic matching models

RESCAL [131] associated each entity with a vector to

capture its latent semantics. Each relation was represented

by an n-by-n matrix, and the score of triple h; r; th i was

calculated by a bilinear map that corresponded to the

matrix of the relation r and whose arguments are h and t.

The score was defined by a bilinear function

frðh; tÞ ¼ hTMrt; ð8Þ

where h; t 2 Rd are vector representations of the enti-

ties.Mr 2 Rd�d is a matrix associated with the relation.

Considering the limitation of the scoring function of

RESCAL, some extensions based on this work have been

proposed successively. NTN [133] presented a standard

linear neural network structure and a bilinear tensor

structure. This can be considered as a generalization of

RESCAL. DistMult [136] simplified RESCAL by restrict-

ing the matrices representing relations to diagonal matri-

ces. However, it had the problem that the scores of (h, r, t)

and (t, r, h) were the same. To solve this problem, Com-

plEx [144] extended DistMult by using complex numbers

instead of real numbers and taking the conjugate of the

embedding of the tail entity before calculating the bilinear

map. HOLE [141] proposed a holographic embedding

method to learn compositional vector space representations

of entire knowledge graphs via combining the expressive

power of the tensor product used in RESCAL and sim-

plicity of TransE. Analogy [146] extended RESCAL to

model the analogical properties, which was particularly

desirable for knowledge base completion. For example, if

system A (a subset of entities and relations) was analogous

to system B (another subset of entities and relations), then

the unobserved triples in B could be inferred by mirroring

their counterparts in A. It adopted the same score function

as model RESCAL and adds constraints to matrix Mr m to

model Analogy.

Discussions and insights Bilinear models have more

redundancy than translation-based models and so easily

become overfitting.

4.1.3 Information fusion-based models

For incorporating extra information to improve the per-

formance of knowledge graph embedding, DKRL [142]

proposed description-based representations for entities

constructed from entity descriptions with continuous bag-

of-words (CBOW) or Convolutional neural network (CNN)

was capable of modeling entities in zero-shot scenario.

Besides, rich information located in hierarchical entity

types was also significant for knowledge graph. TKRL

[140] was the first method which explicitly encoded type

information into multiple representations in with the help

of hierarchical structures.

Discussions and insights Multiple information like textual

information and type information, considered as supple-

ments for the structured information embedded in triples, is

significant for representation learning in knowledge graph,

as already reflected in the model DKRL [142] and TKRL

[140]. Intuitively, models that incorporate more informa-

tion will be closer to real problems and will greatly drive

relevant practical applications.

4.1.4 GNN and CNN-based models

Graph neural networks (GNNs), including GCN and GAT,

have been proved to have strong ability to model graph

data. Naturally, knowledge graph is also their application

scenario. Representative methods mainly include R-GCNs

[158] and the recent work [159] based on the thought of

GAT. Specifically, R-GCNs are an extension of applying

GCN to knowledge graph. The model applies a convolution

operation to the neighborhood of each entity and assigns

them equal weights. Nathani et al. [159] proposed a graph

attention-based feature embedding that captures both entity

and relation features in a multi-hop neighborhood of a

given entity. In addition to GNN, researchers also tried to

solve the problem of knowledge graph embedding with the

ability of multilayer convolutional neural networks to learn

deep expressive features. Typical work is ConvE [148].

The model uses 2D convolution over embeddings and

multiple layers of nonlinear features to model knowledge

graphs.

Discussions and insights With the rapid development of

deep learning, especially graph neural networks and con-

volutional neural networks in recent years, the application

of these advanced methods in the field of knowledge

graphs has become increasingly popular.

4.1.5 Extra models

In addition to the above methods, ManifoldE [143] applied

the manifold-based principle Mðh; r; tÞ ¼ D2
r for a specific

triple h; t; th i. When a head entity and a relation were

given, the tail entities laid in a high-dimensional manifold.

Intuitively, the score function was designed by measuring

the distance of the triple away from the manifold

frðh; tÞ ¼ hþ r � tk k22�D2
r

�� ��2; ð9Þ
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where Dr was a relation-specific manifold parameter.

4.2 Heterogeneous information network
embedding

4.2.1 Optimization-based methods

The representative methods of this kind of methods are

LSHM [130], PTE [160] and Hebe [161, 162]. The first

method was latent space heterogeneous model, which is

one of the initial works. The model assumed that two nodes

connected in the network will tend to share similar repre-

sentations regardless of their types. The node latent rep-

resentation could be learnt by the function which combined

the classification and regularization losses. The labels of

different type node were then deduced from these repre-

sentations. The second method was PTE model that utilizes

both labeled and unlabeled data to learn the embedding of

text for heterogeneous text network. The labeled informa-

tion and different levels of word co-occurrence information

were first represented as a large-scale heterogeneous text

network. Then, the heterogeneous text network can be

composed of three bipartite networks: word–word, word-

document and word-label networks. To learn the embed-

ding of the heterogeneous text network, an intuitive

approach was to collectively embed the three bipartite

networks, which can be achieved by minimizing condi-

tional probabilities between the node pair in three net-

works. The third method was Hebe, which captured

multiple interactions in the heterogeneous information

networks as a whole. The hyperedge was defined as a set of

objects forming a consistent and complete semantic unit,

which was taken as event. Therefore, this method pre-

served more semantic information in the network. Two

methods were presented based on the concept of hyper-

edge: HEBE-PO, modeling the proximity among the par-

ticipating objects themselves on the same hyperedge, and

HEBE-PE modeling proximity between the hyperedge and

the participating objects.

Discussions and insights The above model has limited

modeling of heterogeneous networks, resulting in the loss

of a lot of information, such as node type information. Due

to the complexity of heterogeneous networks, designing

more accurate objective functions is the key to this type of

methods.

4.2.2 Deep learning-based methods

Analogous to homogeneous network embedding, deep

learning models are also applied to heterogeneous network

representation learning, which could capture the complex

interactions between heterogeneous components. These

methods are mainly divided into two branches: conven-

tional neural network-based methods and GNN-based

methods.

4.2.2.1 Conventional neural network-based meth-
ods Conventional neural networks include CNN,

autoencoder, etc., which have achieved great success in

image processing, computer vision and other fields. How-

ever, considering that heterogeneous networks are often

rich in multiple types of information and complex struc-

tures, it is usually not a trivial problem for traditional

neural networks to work well on such networks. In this type

of approach, HNE [4] and DHNE [156] are the two rep-

resentative methods.

The first method is HNE, which jointly modeled con-

tents and topological structures in heterogeneous networks

via deep architectures. Briefly, the model decomposed the

feature learning process into multiple nonlinear layers of

deep structure. Three modules of image–image, image–text

and text–text were included in the model. The model used

CNN network to learn the features of the image and

adopted the fully connected layer to extract the discrimi-

native text representation. These were connected to the

prediction layer. Finally, it transferred different objects in

heterogeneous networks to unified vector representations.

Although the above method has achieved good results, it

ignores the ubiquitous problem of indecomposable hyper-

edge [163, 164] in heterogeneous networks. Therefore,

DHNE proposed to embed hypernetworks with indecom-

posable hyperedges by deep model. The model theoreti-

cally proved that any linear similarity metric in embedding

space commonly used in existing methods cannot maintain

the indecomposibility property in hypernetworks. A new

deep model with autoencoder was designed to realize a

nonlinear tuplewise similarity function while preserving

both local and global proximities in the formed embedding

space.

4.2.2.2 Graph neural network-based methods Influenced

by the successful implementation of graph neural network

in processing homogeneous network, recently heteroge-

neous graph neural network has been developed gradually.

The representative methods are HetGNN [165] and HAN

[166].

HetGNN was a recent heterogeneous graph neural net-

work model that jointly considered heterogeneous struc-

tural (graph) information and heterogeneous contents

information of each node effectively. Firstly, the model

introduced a random walk with restart strategy to sample a

fixed size of strongly correlated heterogeneous neighbors

for each node and group them based upon node types.

Secondly, the model designed a neural network architec-

ture with two modules to aggregate feature information of
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those sampled neighboring nodes. Finally, the model

leveraged a graph context loss and a mini-batch gradient

descent procedure to train the model in an end-to-end

manner. Note that the above model does not consider the

importance information in the heterogeneous network.

Thus, HAN proposed a heterogeneous graph neural net-

work based on the hierarchical attention, including node-

level and semantic-level attentions. Specifically, the node-

level attention aimed to learn the importance between a

node and its meta-path based neighbors, while the

semantic-level attention could learn the importance of

different meta-paths.

Discussions and insights It can be seen that there are

fewer heterogeneous network embedding models based on

deep learning model comparing with homogeneous net-

work embedding of the same type of methods, because it is

a challenging task. At the same time, as mentioned above,

deep learning technology has been booming in the field of

homogeneous network embedding. Therefore, designing

heterogeneous network embedding algorithms based on

deep learning has greater development potential. In addi-

tion to deep learning, we also notice that broad learning

[167] has been introduced in the field of network embed-

ding, such as Zhang et al. [168]. Considering that broad

learning is an emerging method, thus, network embedding

based on broad learning technology will have great

potential for development.

4.2.3 Meta-path-based methods

Meta-path has been widely used in heterogeneous graph

analysis [169, 170]. Inspired by this, two representative

works: Metapath2vec and metapath2vec?? [171] and

HIN2Vec [154] are proposed. The former preserved both

structural and semantic correlations of heterogeneous

graphs. The model designed a random walk based on meta-

path. It was used to generate heterogeneous neighborhoods

with network semantics for various types of node. The

heterogeneous skip-gram model to perform node embed-

ding was constructed. The latter also explored meta-paths

in heterogeneous networks for representation learning.

Different from the former, HIN2Vec also learnt represen-

tations of meta-paths. Specifically, the model firstly adop-

ted random walk generation and negative sampling to

prepare training data. Then, the model trains a logistic

binary classifier that predicts whether two input nodes has a

specific relationship in order to efficiently learn model

parameters, i.e., node vectors and meta-path vectors.

Discussions and insights Although meta-path based meth-

ods have achieved good performance, it is not enough to

sample rich semantic information contained in heteroge-

neous information networks only by meta-path. Therefore,

designing a better semantic information sampling strategy

is greatly important to improve the performance of

heterogeneous information network embedding algorithms.

The latest model such as MetaGraph2vec [172] and HERec

[173] has just explored how to learn better node embedding

vectors by fusing semantic information from different

meta-paths, and successfully applied it to node classifica-

tion and recommendation tasks.

4.2.4 Extra models

There are some extra models, which have made a relatively

new exploration, such as ASPEM [153] and Tree2Vector

[174]. Specifically, ASPEM encapsulated information

regarding each aspect individually, instead of preserving

information of the network in one semantic space. The

aspect selection method was proposed, which demonstrated

that a set of representative aspects can be selected from any

heterogeneous information networks using statistics of the

network without additional supervision. To design the

embedding algorithm for one aspect, the skip-gram model

[23] was extended. The final embedding for node u was

thereby given by the concatenation of the learned embed-

ding vectors from all aspects involving u. For tree-struc-

tured data, we can take it as a specific form of

heterogeneous network. For example, a tree structure for

representing the content of an author can be constructed by

author biography node, written books nodes and book

comments nodes [174, 175]. In such cases, researchers

have designed effective methods to transform tree-struc-

tured data into vectorial representations. The representative

work is Tree2Vector [174], which is mainly implemented

through the node allocation process via employing the

unsupervised clustering technique, and the locality-sensi-

tive reconstruction method to model the reconstruction

process. However, this is an unsupervised learning model,

which cannot be applied to supervised learning directly.

Therefore, designing an end-to-end supervised learning

model for semantic tree-structured data is another

promising issue.

Summary In order to show the development process of so

many representation algorithms more clearly, we illustrated

the development timeline that network representation

learning experienced in Fig. 7.

5 Application

Because of the universality of the embedding vectors,

network embedding technology can be applied to many

fields and tasks by using the off-the-shelf machine learning

method. Especially, with the rapid development of GNN,
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the application of GNN in many fields is in the ascendant.

In this review, we introduce the classic and the latest

applications in a more comprehensive way, i.e., node

classification (Sect. 5.1), node clustering (Sect. 5.2), link

prediction (Sect. 5.3), visualization (Sect. 5.4), recom-

mendation (Sect. 5.5), graph classification (Sect. 5.6),

application in knowledge graph (Sect. 5.7) and extra

application scenarios (Sect. 5.8).

5.1 Node classification

Node classification is a very important issue in domain of

graph mining and has a great theoretical significance and

application value [176, 177]. Node classification aims to

predict unlabeled nodes by training the samples of labeled

nodes, which is the most widely used task of node

embedding. After obtaining the vector representation of

nodes, many off-the-shelf machine learning methods and

packages (such as SVM [35, 37–39], logistic regression

[27, 32–34, 62, 65, 178] and Liblinear package

[26, 63, 179]) could be leveraged to implement the task.

First, the feature vectors of the labeled nodes are used to

train classification model. Then, the vectors of the unla-

beled nodes are utilized as the input of the classification

model, and their label categories are deduced. At the same

time, there are few deep learning models using the softmax

layer for classification, such as GATs [64].

5.2 Node clustering

One of the most important tasks in graph mining and net-

work analysis is node clustering, whose target is to infer the

clusters in graph based on the network structure [58]. Many

practical applications can be transformed into node clus-

tering problems, such as community detection in social

networks [39]. After we learn the node features through the

network embedding algorithm, we can use the off-the-

shelf clustering algorithm such as K-means to achieve the

node clustering task. Many works such as [34, 66, 68] have

followed the above steps to verify the performance of the

algorithm. In addition, in recent years, deep graph clus-

tering method such as [99] has developed rapidly, aiming

to obtain clustering-oriented node embedding in frame-

work of deep learning.

5.3 Link prediction

Link prediction refers to the task of predicting either

missing interactions or links that may appear in the future

or in an evolving network. e.g., in social networks,

friendship links can be missing between two users who

actually know each other [180]. The basic assumption of

graph embedding is that a good network representation

should be able to capture and preserve rich structure and

semantic information of graph, which can predict unob-

served links in the graph. Therefore, the graph embedding

method can further infer the graph structure. Recent work

has successfully applied this approach to link prediction

tasks in homogenous and heterogeneous graph

[5, 25–29, 65, 120, 181–183]. For example, Node2vec [27]

predicts the missing edges between two users in Facebook

network, protein–protein interactions network and collab-

oration network. For detecting the new protein–protein

interactions, Cannistraci et al. [181] offered a solution for

topological link prediction by network embedding. Zitnik

et al. [5] modeled polypharmacy side effects in multimodal

Deepwalk,
TransH,

LSHM, ...
Line, GraRep, 

TADW,
TransR, DGK, 
PTE, HNE, ...

TransE, NTN

Node2vec, DDRW, 
TriDNR, HOPE, MMDW, 

SDNE, DNGR, 
Subgraph2vec, PSCN, 
TransA, TranSparse, 

TKRL, HOLE, DKRL, 
ManifoldE, ComplEx, ...

Struct2vec, GCN, APP, 
NgramCNN, M-NMF, 

MTransE, Analogy, Hebe, 
Metapath2vec,
HIN2Vec, ...

DGCN, GATs, GraphGAN, 
DGCNN, GAM, DHPE, 
DynamicTriad, TorusE, 

ConvE, R-GCNs, DHNE, 
Tree2Vector,...

H-GCN, ProGAN, 
CapsGNN,HetGNN,

HAN, ...

HesGCN, TGA, 
Dynamic GCN, ...

SE

RESCAL

Fig. 7 The timeline of network representation learning
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heterogeneous networks with graph convolutional net-

works [60].

5.4 Visualization

Data visualization is a powerful technology for data

exploration [184]. Once we obtain low-dimensional vector

representation of nodes, we can use the commonly data

visualization techniques (such as t-distributed stochastic

neighbor embedding (t-SNE) [185] and LargeVis [186]) to

visualize graph data in 2D space. Good vector represen-

tation often refers to the common thing that the nodes of

the same category are close to each other in 2D space with

different color. Some recent work has applied to this task

[26, 33, 34, 36, 38, 43, 63], which can be used to visually

reflect the data representation.

5.5 Recommendation

Recommender systems have been playing an increasingly

important role in various online services [187]. The con-

ventional recommendation methods can be mainly divided

into content-based recommendation [188] and collabora-

tive filtering based recommendation [189]. Additionally, it

is worth noting that network embedding has been suc-

cessfully applied to the recommendation in a new light,

such as [25, 29, 65, 173]. For example, for incorporating

various kinds of auxiliary data in the view of HIN, Shi et al.

[173] modeled and utilized these heterogeneous and com-

plex information in recommender systems.

5.6 Graph classification

Graphs are powerful structures that can be used to model

almost any kind of data, such as social network [190]. An

instinctive application of whole graph embedding is graph

classification. Graph classification assigns a class label to a

whole graph. It has a wide range of applications in bioin-

formatics, chemistry, drug design and other fields, such as

[61, 110, 111, 118, 191–196].

5.7 Application in knowledge graph

The applications based on knowledge graph embedding

technology have been widely deployed in knowledge graph

[197]. The three main applications are link prediction,

triplet classification and knowledge graph completion. Link

prediction is to predict the missing h or t for a golden triplet

ðh; r; tÞ. There are some knowledge graphs embedding

research work involved this task, such as

[124, 134–139, 141, 143, 147]. Triplet classification aims

to judge whether a given triplet ðh; r; tÞ is correct or not,

which is a binary classification task. It has been

successfully applied in these works including

[133–135, 137–140, 143]. Knowledge graph completion

aims to complete a triple ðh; r; tÞ when one of h, r, t is

missing. The representative work is [140, 142].

5.8 Extra application scenarios

Network embedding technology is likewise widely used in

other tasks or fields because of the ubiquity of graphs. E.g.,

for the question of NP-hard combinatorial optimization

problems over graphs, Dai et al. [198] proposed a unique

combination of reinforcement learning [199] and network

embedding to address this challenge, which can automati-

cally learn the optimization algorithm. In the field of

multimodal data analysis, the heterogeneous networks can

be constructed from images and text. The obtained vector

via heterogeneous network embedding technology can be

applied to cross-modal retrieval (see [4]). In domain of

image processing and text analysis, Defferrard et al. [115]

reported the application for MNIST image classification

and text categorization. In the biochemistry field, there is

an emerging field of graph convolutional networks and

their applications in drug discovery and molecular infor-

matics (see [200]). In the field of intelligent transportation,

researchers have used GCN in traffic prediction and

achieved excellent performance (see [201]). In short, given

its powerful capabilities of processing omnipresent graph

data, network embedding technology will have broader

application prospects.

6 Experiments

For the sake of making a more comprehensive analysis of

the algorithm, we conduct some experiments on some

benchmark datasets. Owing to the large literature, we could

not compare to every method but to test some representa-

tive network embedding algorithms with the open-source

code and open platform such as PyTorch Geometric,1

OpenNe2 and OpenKe.3 We try our best to cover the newer

methods and show the trend of the problem. Our experi-

ment is tested on the Ubuntu 16.04 LTS 64bit, RAM =

125 GB and CPU = Intel� Xeon(R) CPU E5-2650 v3 @

2.30 GHz 9 40 Cores. For homogeneous network

embedding, we select the representative node embedding

algorithms for performing the task of node classification

and visualization which is the most direct and common

task, and the representative whole network embedding

algorithms for conducting the graph classification task. For

1 https://github.com/rusty1s/pytorch_geometric.
2 https://github.com/thunlp/OpenNE.
3 https://github.com/thunlp/OpenKE.
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the heterogeneous network embedding, we choose a widely

developed knowledge graph embedding technology for

testing the link prediction task and triple classification task,

and some meta-path based methods with continuity in

heterogeneous information network embedding for com-

paring the node classification performance. The specific

experiments are as follows.

6.1 Homogeneous node embedding

For homogeneous node embedding, we employ three

benchmark datasets from the open-source datasets in

Table 2 and OpenNe, whose statistics are summarized in

Table 7.

Blogcatalog: It is a network of social relationships of the

bloggers listed on the BlogCatalog website. The labels of

vertices represent blogger interests inferred through the

metadata provided by the bloggers. This graph has 5196

vertices, 171,743 edges and 6 different labels.

Wiki: It contains 2405 documents from 17 classes and

17,981 links between them.

Cora: This is a citation network. The links are citation

relationships between the documents. This graph contains

2708 machine learning papers from 7 classes and 5429

links between them. Each document is described by a

binary vector of 1433 dimensions indicating the presence

of the corresponding word.

6.1.1 Setting and metric

The latent dimension to learn for each node is 128 with

default. For the model used for supervised node classifi-

cation, the ratio of training data for node classification is

0.5. The training epoch of LINE is set to 25. The param-

eters p and q for DeepWalk and Node2vec are set to 1, 1

and 1, 0.25. The logistic regression classifier is adopted.

For the model used for semi-supervised node classification,

we train all models for a maximum of 200 epochs (training

iterations) using Adam [202]. We set the training rate for

ChebConv [115], GCN [60] to 0.01 and GAT [64] to 0.005.

For comparing the performance of different algorithms, the

Micro-F1, Macro-F1 and accuracy are adopted which are

widely used metrics for node classification [27, 32, 35].

6.1.2 Result analysis

Table 8 compares the performance of different algorithms

on node classification. For each dataset, the best perform-

ing method across all baselines is bold-faced. For super-

vised node classification on BlogCatalog datasets, GraRep

model shows excellent results. This may be because our

fixed parameters of this method are more suitable for this

datasets. For Wiki datasets, the method of Node2vec

achieves the best classification performance of Micro-F1

and Macro-F1 overall. This can be attributed to the

advantages of BFS and DFS strategies.

For semi-supervised node classification on Cora data-

sets, we perform the task by reporting average accuracies

of 10 runs for the fixed train/valid/test split from GCN

model setting [60]. As shown in Table 8, the GAT model

shows the best performance. This is due to the fact that the

model fully considers the importance of different neighbor

nodes through the attention mechanism.

In order to make the comparison of the results more

obvious, we use the following representative four methods

for the visualization task, i.e., Gf [203], Line [33], GraRep

[34] and Node2vec [27]. We visualize Wiki network using

t-SNE (the dimension of embedding is 128) (see Figs. 8, 9,

10, 11) to illustrate the properties preserved by embedding

methods. Each point corresponds to a node in the network.

Color denotes the node label.

As shown in the results, the node layout using Gf in

Fig. 8 is not very informative, since vertices of different

colors are almost mixed with each other. For Line and

Node2vec, results look much better, as most vertices of the

same color appear to form groups. However, vertices still

Table 7 Statistics of the datasets

Datasets Blogcatalog Wiki Cora

Nodes 5196 2405 2708

Edges 171,743 17,981 5429

Feature – – 1433

Labels 6 17 7

Table 8 Results of the node classification

Metric Method Blogcatalog Wiki Cora

Supervised node classification

Micro-F1 DeepWalk [32] 0.6586 0.6597 –

Line (lst ? 2nd) [33] 0.6967 0.6417 –

GraRep [34] 0.7290 0.6517 –

Node2vec [27] 0.6610 0.6737 –

Macro-F1 DeepWalk [32] 0.6520 0.5184 –

Line (lst ? 2nd) [33] 0.6921 0.5455 –

GraRep [34] 0.7248 0.5077 –

Node2vec [27] 0.6567 0.5486 –

Semi-supervised node classification

Accuracy ChebConv [115] – – 0.7935

GCN [60] – – 0.8112

GAT [64] – – 0.8219
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do not appear in clearly separable regions with clear

boundaries. For GraRep, the boundaries of each group

become much clearer, with vertices of different colors

appearing in clearly distinguishable regions.

6.2 Homogeneous whole network embedding

For homogeneous whole network embedding, we employ

the three benchmark datasets from the open-source datasets

in Table 3, whose statistics are summarized in Table 9.

MUTAG is a dataset of 188 mutagenic aromatic and

heteroaromatic nitro compounds with 7 discrete labels.

PROTEINS is a dataset obtained from where nodes are

secondary structure elements (SSEs) and there is an edge

between two nodes if they are neighbors in the amino-acid

sequence or in 3D space. It has 3 discrete labels, repre-

senting helix, sheet or turn. D&D is a dataset of 1178

protein structures. Each protein is represented by a graph,

in which the nodes are amino acids and two nodes are

connected by an edge if they are less than 6 Angstroms

apart.

6.2.1 Setting and metric

Following the same experimental settings such as DGCNN

[113], we conduct tenfold cross-validation (ninefolds for

training, onefold for testing) and report the average clas-

sification accuracy. For the graph kernel parameter setting,

the height parameters of WL [105] and PK [204] are

chosen from the set {0, 1, 2, 3, 4, 5}. The size of the

Fig. 8 Gf method

Fig. 9 Line method

Fig. 10 Node2vec method

Fig. 11 GraRep method
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graphlets for GK was set to 3. For the random walk (RW)

[106] kernel, we set the decay parameter as k, following the
suggestion in [105]. For parameter setting of the deep

learning-based method, we follow the same setting to

DGCNN [113]. By default, we reproduce the results

reported in their original work for comparison if the

experiment code is public and experimental conditions

permit. However, in cases where the results are not avail-

able, we use the best testing results under the same

experimental setting reported in original work.

6.2.2 Result analysis

As shown in Table 10, the deep learning-based approaches

for graph classification have shown considerable advan-

tages. Specifically, compared with all the other algorithms,

DGCNN achieves highly competitive results on PRO-

TEINS and D&D datasets with the compared graph kernels

and some state-of-the-art deep learning methods. This is

due to the advantages of end-to-end learning. CapsGNN

achieves top 2 on 2 out of 3 datasets and achieves com-

parable results on the other datasets. This may be because

the algorithm is suitable for capturing structures at the

graph level and not for retaining finer structures.

6.3 Heterogeneous knowledge graph
embedding

For heterogeneous knowledge graph embedding, we use

the two benchmark datasets from the open-source datasets

of Table 5. The datasets statistics are summarized in

Table 11. FB15K is a subset of Freebase, a curated

knowledge base of general facts, whereas WN18 is a subset

of Wordnet, a database featuring lexical relations between

words.

6.3.1 Setting and metric

The latent dimensions of the entities and relations, and

training times are set to 100 with default uniformity. For

the TransE [124] model, the optimizer is set to Adam

[202]. For the RESCAL [131], DistMult [136], ComplEx

[144] and Analogy [146] algorithm, the optimizer is set to

Adagrad [206]. Following the literature of knowledge

graph embedding [146, 147, 207], we adopt the accuracy

for evaluating the task of triple classification. For the task

of link prediction, we use the conventional metrics of

Hits@10 and mean reciprocal rank (MRR) which evaluate

the proportion of correct entities ranked in top 10 and

average the scores over all ranked lists for the entire test set

of instances. Similarly, the result is reported according to

the two setting of ‘‘raw’’ and ‘‘filt’’ (see [124]). A higher

MRR and a higher Hits@10 should be achieved by a good

embedding model.

6.3.2 Result analysis

Tables 12 and 13 compare the results of triple classification

and link prediction of baseline methods. Analogy [146]

shows the best or the 2nd best accuracy performance in two

tasks. It indicates that the original performance of the paper

[146] has been reproduced to a certain extent. It may be

benefited from considering the analogical properties.

Especially, on FB15K dataset in Table 12, Analogy model

outperforms all baseline methods. The performance of this

method is better than the baseline RESCAL algorithm

11.2%. On WN18 datasets, DistMult shows the perfor-

mance that is close to Analogy method in the task of triple

classification. In Table 13, Analogy model has the highest

value of MRR and Hit@10 on FB15K datasets. On WN18

datasets, the ComplEx algorithm has the comparable per-

formance with Analogy in the task of link prediction.

6.4 Heterogeneous information network
embedding

For heterogeneous network embedding except for knowl-

edge graph embedding, we also choose two commonly

datasets from the website (https://aminer.org/citation) in

Table 6. For DBLP datasets, we extract a subset of DBLP

bibliographic heterogeneous information network (DBLP-

Citation-network V3) which is composed of authors

(A) nodes, papers (P) nodes, venues (V) nodes and their

relationships. Based on papers venues, we extract papers

falling into two research areas: data mining, artificial

intelligence. Specifically speaking, we choose two venues,

SDM and COLT. Then, the relevant papers and authors

establish corresponding relationships according to the

venues. For ACM datasets, unlike the DBLP datasets, we

extract a subset of heterogeneous information network

(ACM-Citation-network V9) which also contains authors

(A) nodes, papers (P) nodes, venues (V) nodes and their

relationships. Another difference is that the venues we

choose are KDD and ICML. The datasets statistics are

summarized in Table 14.

Table 9 Statistics of the datasets

Datasets Graphs Classes Avg. nodes Avg. edges

MUTAG 188 2 17.93 19.79

PROTEINS 1113 2 39.06 72.81

D&D 1178 2 284.31 715.65
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6.4.1 Setting and metric

The dimension of node representations is uniformly set to

128. The other parameter setting of all the method is set as

original default in its open code. We set the meta-path of

Metapath2Vec [171] as APAPA. For HERec [173] model

which could be taken as a variant of Metapath2Vec, in this

review, the final embedding is obtained by the simple

linear fusion of the two meta-paths of APAPA and

APVPA. For the MetaGraph2vec [172] model, Metagraph

can be considered as a union of meta-paths (APAPA and

APVPA), whose setting is the same to the original paper.

After obtaining the node representation, we train the binary

support vector machine (SVM) classifier using the fitcsvm

tools in MATLAB 2018a. We repeat each method 10

times, and report the average performance in terms of both

Macro-F1 and Micro-F1.

6.4.2 Result analysis

Based on Table 15, we can observe that the Meta-

Graph2vec model achieves the best performance. The

results demonstrate that it is quite important to fuse the rich

semantics of meta-paths in heterogeneous network

analysis.

7 Conclusion and future directions

In this review, we survey the recent advance of network

representation learning comprehensively and systemati-

cally. Firstly, we classify network embedding in the

framework of homogeneous and heterogeneous network.

Then, the corresponding algorithm is deeply analyzed,

respectively. For homogeneous network embedding, the

embedding methods with different features are summa-

rized, respectively. Specifically, node embedding, subgraph

embedding, whole network embedding and dynamic net-

work embedding are included. For heterogeneous network

Table 10 Results of the graph classification

Metric Method MUTAG PROTEINS D&D

Some classical graph kernels methods for graph classification

Accuracy GK [107] 81.39 71.32 74.38

RW [106] 79.17 72.75 [ 3 days

WL [105] 83.22 74.54 78.34

PK [204] 74.11 73.41 77.79

Some state-of-the-art deep learning methods for graph classification

Accuracy DGK [76] 87.44 71.68 –

PSCN [110] 88.95 75.00 76.27

ECC [205] – – 72.54

DGCNN [113] 85.83 75.54 79.37

CapsGNN [72] 90.44 75.20 74.89

Table 11 The statistics of the datasets

Datasets Entities Relations Train Valid Test

FB15K 14,951 1345 483,142 50,000 59,071

WN18 40,493 18 141,442 5000 5000

Table 12 Results of the triple classification

Metric Method FB15K WN18

Accuracy RESCAL [131] 0.774 0.932

TransE [124] 0.820 0.891

DistMult [136] 0.885 0.969

ComplEx [144] 0.891 0.967

Analogy [146] 0.893 0.968

Table 13 Results of the link

prediction
Datasets FB15K WN18

Method MRR Hit@10 MRR Hit@10

Raw Filter Raw Filter Raw Filter Raw Filter

RESCAL [131] 0.137 0.229 0.276 0.401 0.338 0.399 0.518 0.570

TransE [124] 0.193 0.315 0.420 0.575 0.224 0.266 0.569 0.638

DistMult [136] 0.206 0.379 0.436 0.636 0.506 0.757 0.792 0.937

ComplEx [144] 0.219 0.469 0.467 0.723 0.574 0.931 0.798 0.939

Analogy [146] 0.224 0.475 0.470 0.725 0.574 0.927 0.797 0.939

Table 14 The statistics of the datasets

Datasets No. of A nodes No. of P nodes No. of V nodes

DBLP 1925 1511 2

ACM 1942 1175 2
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embedding, considering the vigorous development of

knowledge graph embedding technology, the embedding

method is classified into two categories from knowledge

graph embedding and heterogeneous information network

embedding. We also summarize various applications rela-

ted to network embedding and their respective evaluation

metrics. Finally, we empirically evaluate the surveyed

methods on some typical applications using several pub-

licly available real networks and compare their

performance.

Although representation learning for network data has

gained great achievements as described above, it still faces

great challenges in the following areas in the future work.

The future direction will be introduced from two aspects:

theory and application.

7.1 Algorithmic and theoretical aspect

1. Almost all network embedding algorithms currently

assume that network data are embedded into the

Euclidean space. However, some network characteris-

tics (such as power-law distributions, strong clustering

and hierarchical community structure,) could not

emerge naturally [208, 209] in this space. Recent work

shows that exploring network embedding method in

non-Euclidean space could solve the above issues, e.g.,

hyperbolic space [208, 209]. Therefore, designing the

network embedding algorithm in non-Euclidean space

is still a challenging and promising research direction.

2. At present, dynamics network embedding for homo-

geneous network is just beginning to be concerned by

the researchers (see Sect. 3.4). Intuitively, the network

Table 15 Results of the author

classification
Methods Metapath2Vec [171] HERec [173] MetaGraph2vec [172]

Author classification performance comparison on DBLP datasets

1%

Macro-F1 0.4662 0.8412 0.8674

Micro-F1 0.6457 0.8750 0.8983

3%

Macro-F1 0.6340 0.9351 0.9579

Micro-F1 0.7231 0.9403 0.9612

5%

Macro-F1 0.6761 0.9375 0.9593

Micro-F1 0.7454 0.9431 0.9624

7%

Macro-F1 0.7284 0.9398 0.9598

Micro-F1 0.7745 0.9454 0.9630

9%

Macro-F1 0.7422 0.9437 0.9623

Micro-F1 0.7777 0.9488 0.9653

Author classification performance comparison on ACM datasets

1%

Macro-F1 0.4748 0.4775 0.5031

Micro-F1 0.8984 0.8992 0.9019

3%

Macro-F1 0.4775 0.5460 0.5866

Micro-F1 0.8989 0.9082 0.9141

5%

Macro-F1 0.4786 0.7345 0.7808

Micro-F1 0.8992 0.9348 0.9438

7%

Macro-F1 0.4792 0.8033 0.8067

Micro-F1 0.8993 0.9465 0.9481

9%

Macro-F1 0.4812 0.8447 0.8781

Micro-F1 0.8994 0.9550 0.9623
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in the real world is mostly dynamic and heterogeneous

without doubt. Learning rich information from this

type of network is also a very big challenging problem.

Consequently, designing efficient embedding algo-

rithm for dynamic, temporal and heterogeneous net-

works will be the next important research topic.

3. The existing deep learning-based network representa-

tion learning methods still have some problems, such

as instability, complicated training and time-consum-

ing for big graph datasets. In particular, recent studies

have found that the robustness of such methods is poor

[210, 211], just like the adversarial samples problem in

the field of image recognition based on deep learning

[212]. Consequently, there is still great potential for

these challenges.

4. How to directly measure the quality of data represen-

tation is a long-standing problem that has been

troubling the field of representation learning. The

current measurement of the quality of data represen-

tation is measured by indirectly executing the relevant

tasks. Network representation learning as a new

subdomain of representation learning is naturally no

exception. Hence, proposing or designing a new

evaluation or metric method for representation learning

is an urgent issue. On the other hand, the current graph

embedding algorithm is less interpretable. This prob-

lem greatly limits its large-scale practical application.

Intuitively, the interpretability of models and the

metrics of data representation may promote each

other’s development.

5. Designing efficient graph neural networks to support

combinatorial generalization and relational reasoning

is a new and promising direction. The latest research

[213] from DeepMind, Google Brain and other insti-

tutions shows that graph neural networks can be used

to achieve relational reasoning, which may solve the

core problem that Turing award winner Judea Pearl

points out that current deep learning cannot complete

causal reasoning task [214].

7.2 Application oriented aspect

Considering the ubiquity of network data, many interdis-

ciplinary problems can be abstracted as graph mining and

analysis problems (see Sect. 5). Although there have been

some successful applications such as protein–protein

interactions network [181, 183], brain network [215, 216],

molecular graph generation [217], drug discovery and

synthetic biology [102], it still has a very broad prospect in

the application of network embedding algorithm.
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