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Abstract
In this paper, we aim at developing a new arbitrary-oriented end-to-end object detection method to further push the frontier

of object detection for remote sensing image. The proposed method comprehensively takes into account multiple strategies,

such as attention mechanism, feature fusion, rotation region proposal as well as super-resolution pre-processing simul-

taneously to boost the performance in terms of localization and classification under the faster RCNN-like framework.

Specifically, a channel attention network is integrated for selectively enhancing useful features and suppressing useless

ones. Next, a dense feature fusion network is designed based on multi-scale detection framework, which fuses multiple

layers of features to improve the sensitivity to small objects. In addition, considering the objects for detection are often

densely arranged and appear in various orientations, we design a rotation anchor strategy to reduce the redundant detection

regions. Extensive experiments on two remote sensing public datasets DOTA, NWPU VHR-10 and scene text dataset

ICDAR2015 demonstrate that the proposed method can be competitive with or even superior to the state-of-the-art ones,

like R2CNN and R2CNN??.

Keywords Object detection � Arbitrary oriented � Rotation proposals � Remote sensing image � Attention model �
Dense feature pyramid network � Super-resolution

1 Introduction

Automatically object detection for remote sensing image is

usually a significant prerequisite for the visual recognition

tasks, such as object coarse or fine-grained classification,

object attribute learning, object counting and analysis of

battle-field situation. Thus, object detection in remote

sensing image has attracted a large amount of attentions in

past decades. This phenomenon is further pushed to a new

height by the success of deep convolutional network

(DCNN) [1] in various computer vision tasks.

Strongly promoted by the advance in DCNN, a large

body of object detection methods have been springed up,

which mainly contain horizontal and rotation region-based

methods. The representative horizontal region-based object

detection method contain the RCNN [2], spatial pyramid

pooling network (SSP-Net) [3], fast RCNN [4], faster

RCNN [5], YOLO [6], SSD [7], R-FCN [8] and Mask

RCNN [9], etc. However, this kind of methods only per-

forms well in natural scene images but poor in the case of

remote sensing image. With respect to remote sensing

image scenario, the object detection methods will confront

with the challenges of light variation, blur, imaging
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perspective and dense arrangement, etc. To handle such

problems, a series of rotation region-based methods have

been proposed, such as R-DFPN [10], PDDP [11], R2-

CNN [12], R2-CNN?? [13], AOSTD [14]. In contrast to

the former, the later can generate more fitting bounding

box in aspect of arbitrary-oriented object detection, having

more accurately object localization and classification for

scene text detection and object detection in remote sensing

image. However, objects such as cars and ships in satellite

imagery have a small spatial extent (as low as 10 pixels)

and are often densely clustered. These methods did not

solve this problem, so the results of these methods are still

unsatisfactory. Recent studies have shown that the use of

SR as a pre-processing step can yield significant

improvements to the detection of small objects [15, 16]

because the super-resolution methods increase the resolu-

tion of images, which add more distinguishable features

that an object detection algorithm can use for

discrimination.

In this paper, we focus on the arbitrary-oriented object

detection in remote sensing image. Although many arbi-

trary-oriented object detection methods have been pro-

posed before, this task still poses a great challenge

resulting from the image sensing variance such as light,

blur, intensive arrangement and image sensing perspective.

As is well known, network engineering is increasingly

more important for computer vision task [17, 18]. Inspired

by these, we aim to develop new arbitrary object detection

architectures to further push the frontier of object detection

for sensing image. In the proposed architecture, we com-

prehensively take into account multiple strategies, such as

feature fusion, attention model, rotation region proposal,

rotation ROI pooling, super-resolution pre-processing

simultaneously to boost the performance in terms of

localization and classification under the faster RCNN-like

framework. Functionally, the proposed architecture com-

prises five module including dual path network (DPN) [17]

backbones module, SE [19] attention module, rotation

region proposal (RRPN) [14] module and RRPN-based fast

RCNN module [12, 14].

It is worthwhile highlighting the properties of the pro-

posed method as follows.

1. We integrate dense FPN into the DPN as backbone

network. Dense FPN enhances feature propagation and

encourages feature reuse and DPN presents a new

topology of connection paths and enables new features

exploration which are both important for learning good

representations. So this backbone can produce infor-

mative feature and discriminative multi-scale feature

maps which ensures the effectiveness of detecting

multi-scale objects;

2. SE attention model is leveraged to activate the

channels useful to object detection while suppressing

the channel closely related to the noise;

3. We adopt rotation anchors and rotation ROI pooling

strategies to produce minimum circumscribed rectan-

gle bounding box and overcome the difficulty of

detecting densely arranged objects and eventually get a

higher accuracy.

4. Extensive experiments on DOTA dataset are imple-

mented to justify the rationality of combinations of five

core modules of the proposed architecture and simul-

taneously show it is competitive with or even superior

to the state-of-the-art ones, like R2CNN and

R2CNN??.

2 Related works

Here, we review the representative object detection meth-

ods from comprehensive perspective which contain hori-

zontal and rotation region proposal-based methods.

2.1 Horizontal region proposal-based object
Detections

With the widespread use of DCNN in object detection,

more and more efficient region-based object detection

algorithms are proposed, such as region proposals with

CNNs (RCNN) [2], spatial pyramid pooling network (SSP-

Net) [3], fast-RCNN [5] and R-FCN [8]. RCNN adopts a

multistage detection network structure strategy which first

uses selective search [20] to generate a set of proposals

followed by classifying each proposal with combination of

ConvNet feature extractor and SVM classifier. SPPnet [3]

demonstrated that such region-based detectors could be

applied much more efficiently on feature maps extracted on

a single image scale. Fast RCNN encourage using features

computed from a single scale, because it maintains a good

trade-off between accuracy and speed. Faster-RCNN [5]

unifies RPNs with fast RCNN object detection networks,

which adopt a training scheme that alternates between fine-

tuning for the region proposal task and then fine-tuning for

object detection, while keeping the proposals fixed. This

scheme converges quickly and produces a unified network

with convolutional features that are shared between both

tasks. Region-based fully convolutional network (R-FCN)

[8] builds a fully convolution network, which greatly

reduces the number of parameters, improves the detection

speed and has a good detection effect. Apart from efficient

object detection like faster RCNN, Mask RCNN [9]

simultaneously produces a high-quality segmentation mask

for each instance.
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Instead of depending on regional proposals, You Only

Look Once (YOLO) [6] and Single Shot MultiBox Detec-

tor (SSD) [7] are regression-based object detection meth-

ods, which directly estimate objects region and truly enable

real-time detection. Moreover, feature pyramid network

(FPN) [17] adopts the multi-scale feature pyramid form

and makes full use of the feature map to achieve better

detection results.

2.2 Rotation region proposal-based object
Detection

These approaches mentioned above are also called as

horizontal region proposal-based object detection. How-

ever, for sensing image scenario, the object with a large

range of aspect ratio, once the angle of proposal is inclined,

the redundant region will be relatively large, vulnerably

resulting in missing detection due to bad favorableness for

the operation of non-maximum suppression. In order to

handle such problem, a series of arbitrary-oriented object

detection are proposed in the field of scene text detection

(e.g., R2CNN [12], AOSTD [14]), ship detection (e.g.,

PDDP [11], R-DFPPN [10]), as well as object detection in

remote sensing image like R2CNN?? [13]. For example,

in the field of scene text detection, R2CNN [12] proposes a

rotational region CNN based method, achieving outstand-

ing results on scene text detection. However, since R2CNN

still uses horizontal anchors at the first stage, the negative

effects of non-maximum suppression still exist. To mitigate

the shortcoming, a few rotation region proposal-based

methods are proposed such as AOSTD [14]), PDDP [11],

R-DFPPN [10]), R2CNN?? [13], which effectively

improve the quality of the proposal. What is more, recent

some studies have shown that the use of super resolution

can yield improvements for remote sensing object detec-

tion or segmentation [21–24].

By contrast, object detection in remote sensing image is

more difficult than text detection and ship detection. The

detail reasons are as follows. Firstly, scene text detection

and ship detection only focus on single-object detection,

which cannot be directly applied to multi-class object

detection scenario. Second, the arrangement of scene text is

usually more sparse than that of remote sensing image. In

the end, it is required to be taken into account the impact

resulting from factors such as scale, angle, density and

scene complexity. This paper considers these factors

comprehensively and proposes a general algorithm for

multi-categories arbitrary-oriented object detection in aer-

ial images.

3 The proposed method

To handle the problem mentioned above, we propose an

arbitrary-oriented end-to-end training and testing object

detection method which takes scale variance, rotation

factor and feature engineering into account jointly. The

architecture of the proposed is illustrated in Fig. 1, which is

composed of five parts including DPN backbone module,

attention module, dense FPN module, rotation region pro-

posal networks (RRPN) module and rotation-based fast

RCNN module. In addition, to mitigate the noise impact,

we adopt super-resolution processing before object detec-

tion. The implement detail and its motivation of each

module will be described in the following.

3.1 DPN backbone module

It is well known that the ResNet [1], ResNeXt [25] and

DenseNet [26] make a significant success in various

computer vision tasks, such as image classification, seg-

mentation and object detection. In principle, the improve-

ments of ResNet [1], ResNeXt [25] and DenseNet [26] owe

to the subtle usage of residual path and densely connected

paths, enabling effective feature re-usage and re-exploita-

tion, respectively.

Inspired by these, Chen [17] proposes a novel dual path

architecture, called the dual path network (DPN). The DPN

inherits the advantages of residual and densely connected

paths simultaneously, possessing higher parameter effi-

ciency, lower computational cost and lower memory con-

sumption, and being regarded as the state-of-the-art one in

the family of DCNN. The DPN is built by stacking multiple

mirco-blocks as shown in Fig. 2, in which the structure of

each micro-block is designed with a bottleneck style which

begins by a 1� 1 convolutional layer followed by a 3� 3

convolutional layer, and finalizes with a 1� 1 convolu-

tional layer. The output of the last 1� 1 convolutional

layer is partitioned into two parts: The first part is added to

the residual path in element-wise way, and the second part

is concatenated with the densely connected path. To

enhance the learning capacity of each micro-block, DPN

adopts the grouped convolution layer in the second layer

like the ResNeXt [25].

Specifically, the implementation of DPN is:

xdense; xresidual ¼ Splitðf ðAddðfconv1�1ðx1Þ; fconv1�1ðx2ÞÞÞÞ;
ð1Þ

Odense ¼ Concatðxdense; x1Þ; ð2Þ

Oresidual ¼ Addðxresidual; x2Þ ð3Þ

while x1, x2 denotes the feature from individual path,

namely DenseNet path and ResNet path, respectively, Split
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means split operation, Odense, Oresidual denotes the output of

DenseNet path and ResNet path.

For object detection task, the selection of backbone

network is the basis for designing a new method success-

fully. Since the DPN has the above-mentioned merits, the

DPN is selected as the backbone network of the proposed

new model. The input of the DPN backbone module the

image after super-resolution processing and its output are

then fed into the attention model module. Specially, the

model complexity and computational complexity of DPN

are competitive lower, since DPN-92 (145 MB,

6.5GFLOPs) costs about 15% fewer parameters, consumes

about 19% FLOPs than ResNeXt-101 (32x4D) (170 MB),

while the DPN-98 (236 MB, 11.7GFLOPS) costs about

26% fewer parameters and consumes about 25% FLOPs

than ResNeXt-101 (64x4D) (320 MB). In addition, the

training of DPN-98 is 15% faster and uses 9% less memory

than the best performing ResNeXt. When meeting very

high-resolution images, the DPN model has lower model

complexity and higher training speed, which makes more

efficient.

3.2 Attention module

Here, the Squeeze and Excitation (SE) [19] network is

chosen as visual attention module to boost the performance

of the object detection, which is an embedding composite

block and can be integrated with the almost all DCNN

network, such as ResNeXt and DenseNet. As illustrated in

Fig. 3, the attention module comprises two parts: Squeeze

block and Excitation block. The Squeeze block is used to

transform C feature maps of size H �W into C feature

maps of size 1� 1 via Global Average Pooling operation.

Specifically, a statistic Z 2 RC is generated by shrinking U

Fig. 1 The architecture of the proposed method

Fig. 2 Architecture of DPN
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through its spatial dimensions H �W , such that the c-th

element of Z is calculated by

zc ¼ FsqðUcÞ ¼
1

H �W

XH

i¼1

XW

j¼1

ucði; jÞ ð4Þ

As to the Excitation block, it is a combination multiple

operations of 1� 1� C
r FC, 1� 1� C

r Relu, 1� 1� C FC

and 1� 1� C Sigmoid. Specifically, the output of Exci-

tation block is calculated by

s ¼ Fexðz;WÞ ¼ rðW2dðW1zÞÞ ð5Þ

where d refers to the Relu function, r refers to the Sigmoid

function, W1 2 R
c
r�c and W2 2 Rc�c

r. Finally, the output of

Excitation block comprises C feature maps of size 1� 1. It

is worth noting that the resulting feature maps are sparse

vector.

As illustrated in Fig. 3, the resulting sparse feature maps

are exploited as convolution kernels to perform convolu-

tion operation over the original feature maps. That is to say,

the original feature maps is imposed sparse processing. By

the sparsification, informative feature maps are selectively

emphasized and less useful ones are suppressed in channel-

wise direction. Then, the feature maps closely related to

object detection are activated and the others are prohibited.

The weight of SE-NET is obtained with automatical

training way.

3.3 Dense FPN module

As we all know, low-level feature has relatively few

semantic information, but the object location is accurate. In

contrast, high-level feature semantic information is rich,

but the object location is relatively coarse. The feature

pyramid is an effective way to fuse different level infor-

mation. Dense feature pyramid network (DFPN) [10] has

got very good results in small object detection tasks. It

exploits the feature pyramid, which is connected via top-

down pathway, lateral connection and dense connections.

Aerial object detection in remote sensing image can be

considered a task to detect objects range from small size to

large one. Meanwhile, considering the complexity of

background in remote sensing images, there are a lot of

interferences in the image. Therefore, the feature infor-

mation obtained through the DFPN may enhance feature

propagation and encourages feature reuse similar to DPN

[17]. Dense Feature Pyramids Network is a significant

component for detecting objects at different scales. Intu-

itively, this property enables a model to detect objects

across a large range of scales by scanning the model over

both positions and pyramid levels.

Figure 4 shows the architecture of DFPN based on

ResNets [1]. In the bottom-up feedforward network, we

still choose multi-level feature maps as C2, C3, C4, C5,

corresponding to the last layer of each residual block which

have strong semantic features. Note that they have strides

of 4, 8, 16, 32 pixels. In the top-down network, we get

higher-resolution features by lateral connections and dense

connections as P2, P3, P4, P5. For example, in order to get

P2, we first reduce the number of C2 channels by using a

1� 1 convolutional layer, and then we use nearest neigh-

bor upsampling for all the preceding feature maps. We

merge them by concatenating rather than simply adding.

Finally, we eliminate the aliasing effects of upsampling

through a 3� 3 convolutional layer, while reducing the

number of channels. After the iteration above, we get the

final feature maps P2, P3, P4, P5. Since we do not add

much learnable parameters (only few 1� 1 convs), the

training memory cost will not be much higher and the

training speed will not be much lower than the original

FPN, which keeps the efficiency. In fact, our model

achieves 80–100 samples per second training speed, which

is competitive to the complex ResNeXt.

Fig. 3 Pipeline of the SE-NET

Attention module
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3.4 Rotated region proposal network (RRPN)
module

The traditional bounding box is a horizontal rectangular

box, so its representation is relatively simple, using four

variables ðxmin; ymin; xmax; ymaxÞ to represent a bounding

box. ðxmin; yminÞ and ðxmax; ymaxÞ represents the coordinates
of the upper left and lower right corners of the bounding

box, respectively. But this representation is obviously not

suitable for representing a rotation bounding box. In order

to represent the rotation bounding box better, we use five

variables ðx; y;w; h; hÞ to determine a rotation bounding

box. As shown in Fig. 5 where the (x, y) denotes the center

coordinate of the rotation bounding box, and the orientation

h is the angle at which the horizontal axis (x-axis) rotates

counterclockwise to the first edge of the encountered

rectangle. At the same time, we define this side as width

and the other as height.

RPN is proposed to accelerate the process of horizontal

proposals generation. The multi-scale anchor boxes are

generated by sliding over the last convolutional layer. Each

anchor produces 2 classification scores and 5 coordinates

output. To fit the objects of different sizes, the RPN adopts

two parameters, scale and aspect ratio, which control size

and shape of anchors. The scale parameter determines the

size of the anchor, and the aspect ratio determines the ratio

of the width to the height. The parameters setting of scale

and aspect ratio is closely dependent on the scenario of task

and dataset. Here, the DOTA dataset is selected as

benchmark dataset. With respect to the DOTA dataset,

targets usually have unnatural shape with arbitrary orien-

tations, and the horizontal proposals generated by RPN are

not robust for DOTA. So we adopt RRPN to encode

rotation information and generate rotated proposals. The

orientation parameter h is to control the orientation of a

proposal, i.e., �p=6, 0, p=6, p=3, p=2, and 2p=3. Due to

small targets with a majority in DOTA dataset, we set

smaller anchor scales such as 16, 32, 64, 128 and 256.

Fig. 4 Pipeline of the dense

FPN

Fig. 5 General representation of rotation bounding box
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Then, we assign a single scale to each feature map, and the

size of the scale is f16; 32; 64; 128; 256g pixels on

fP2;P3;P4;P5;P6g, respectively. In addition, the aspect

ratios set {1:1, 1:2, 2:1, 1:4, 4:1, 1:9, 9:1} is assigned to

cover a wide range of objects. For each point on the feature

map, 42 rotation anchors (6 orientations, 7 aspect ratios and

1 scales) are generated, as well as 210 outputs (5� 42) for

the regression branch and 84 score outputs (2� 42) for the

classification branch.

After the rotation anchors are generated, a sampling

strategy for the rotation anchors is needed to train the

network. First, we define the intersection-over-union (IOU)

overlap as the overlap between the ground truth and rota-

tion anchor. Then, we define positive and negative samples

according to the following rules. Positive rotation anchors

feature the following: (1) the highest IOU or an IOU larger

than 0.7 with respect to the ground truth and (2) an inter-

section angle with respect to the ground truth less than P
12
.

Negative rotation anchors feature the following: (1) an IOU

lower than 0.3, or (2) an IOU large than 0.7 but with an

intersection angle with respect to the ground truth larger

than P
12
. Anchors that are neither positive nor negative do

not contribute to the training objective.

3.5 Rotation-based fast RCNN module

The module is the detection head that uses the rotation

proposals. It is quite similar to fast RCNN. The main dif-

ferences lie in twofold. One is the input proposals are

rotation region proposals rather than the horizontal ones,

which are yielded by RRPN Module. Another is that the

ROI pooling layer is replaced with rotation ROI pooling

like in the literature [10, 14]. And then, we adopt multi-task

loss to minimize the objective function defined as follows:

Lðpi; li; t�i ; tiÞ ¼
1

Ncls

X

i

Lclsðpi; liÞ þ k
1

Nreg

X

i

piLregðt�i ; tiÞ

ð6Þ

where li denotes the label of the detected object, pi is the

probability distribution of detected object classes evaluated

by the softmax function, ti denotes the predicted five

parameterized coordinate vectors, and t�i denotes the offset

of ground-truth and positive anchors. The hyper-parameter

k in Eq. 6 determines the balance between the two task

losses and the k is set to 1 in this paper. Besides, the

functions Lcls and Lreg are defined as:

Lclsðp; lÞ ¼ � log pl ð7Þ

Lregðt�i ; tiÞ ¼ smoothL1ðt�i � tiÞ ð8Þ

smoothL1 ¼
0:5x2 if xj j\1

xj j � 0:5 otherwise

�
ð9Þ

The parameterized coordinate regression mode is as

follows:

tx ¼
x� xa
wa

; ty ¼
y� ya
ha

tw ¼ log
w

wa
; th ¼ log

h

ha

th ¼ h� ha þ k
p
2

8
>>>>><

>>>>>:

ð10Þ

t�x ¼
x� � xa
wa

; t�y ¼
y� � ya

ha

t�w ¼ log
w�

wa
; th ¼ log

h�

ha

t�h ¼ h� � ha þ k
p
2

8
>>>>>><

>>>>>>:

ð11Þ

where x, y, w and h denote the center coordinates of

bounding box and its width and height. Variables x, xa and

x� are for the predicted bounding box, anchor bounding

box, and ground-truth bounding box, respectively (so do

for y, w, h). The parameter k 2 Z to keep h in the range

½�90; 0Þ. In order to keep the bounding box in the same

position, w and h need to be swapped when k is an odd

number.

As described in the previous section, we give rotation

anchors fixed orientations within the range ½�90; 0Þ, and
each of the 6 orientations can fit the ground truth that has

an intersection angle of less than P
12
. Thus, every rotation

anchor has its fitting range, which we call its fit domain.

When an orientation of a ground truth box is in the fit

domain of an rotation anchor, this rotation anchor is most

likely to be a positive sample of the ground truth box. As a

result, the fit domains of the 6 orientations divide the angel

range ½�90; 0Þ into 6 equal parts. Thus, a ground truth in

any orientation can be fitted with a rotation anchor of the

appropriate fit domain.

4 Experimental results

Experiments are performed on the deep learning frame-

work MXNet on a server with GeForce GTX 1080 Ti and

11G memory. We perform experiments on both remote

sensing image dataset and scene text dataset to verify the

effectiveness and generality of our approach.

4.1 Dataset and setting

DOTA is a large scale dataset for arbitrary-oriented object

detection in optical remote sensing images provided by Xia

and Bai [27]. It contains 2806 images from different
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sensors, and each image is of the size in the range from

about 800� 800 to 4000� 4000 pixels. What is more, the

instances in images exhibit a wide variety of scales, ori-

entations and shapes. These images are annotated by

experts using 15 categories, containing Plane, baseball

diamond, bridge, ground-track-field, small vehicle, large

vehicle, ship, tennis-court, basketball court, storage tank,

soccer-ball-field, roundabout, harbor, swimming pool,

helicopter. DOTA dataset contains 188282 instances,

which is labeled by an arbitrary quadrilateral, such as x0,

y0, x1, y1, x2, y2, x3, y3. Due to significant progress in

horizontal bounding-box detection task (HBB), we just

evaluate our methods in oriented bounding-box detection

task (OBB). We use the scripts called DOTA_devkit to

split the images into 1024� 1024. In the end, we have

14,348 train images and 4871 test images. We trained 60

epochs totally on DOTA. The base learning rate is

5� 10�4, and the learning rate changed during 45 and 52

epochs from 5� 10�4 to 5� 10�6.

The public benchmark NWPU WHR-10 [28] contains

10-class geospatial object for detection. These ten classes

of objects are airplane, ship, storage tank, baseball dia-

mond, tennis court, basketball court, ground track field,

harbor, bridge and vehicle. This dataset contains totally

800 very-high-resolution (VHR) remote sensing images

that were cropped from Google Earth and Vaihingen

dataset and then manually annotated by experts. We train

the model with 5� 10�4 learning rate for the first 10

epochs and then 5� 10�5 for the last 10 epochs.

ICDAR2015 is used in challenge 4 of ICDAR 2015

Robust Reading Competition. It includes 1500 natural

images in total, 1000 of which are used for training and the

remaining are for testing. The text regions are annotated by

4 points of the quadrangle. We used the image’s original

resolution 1280 for training and testing. We trained 40

epochs totally on ICDAR2015 and changed the learning

rate in 15 epochs and 30 epochs, respectively.

We use the pretrained model DPN-92 to initialize the

backbone network. Besides, weight decay and momentum

are 1� 10�4 and 9� 10�1, respectively. We employ SGD

Optimizer with momentum over 4 GPUs with a total of 4

images per minibatch (1 images per GPU). The anchors

have areas of 162 to 2562 on pyramid levels P2 to P6,

respectively. Furthermore, we just use random flipping as

data augmentation.

4.2 Evaluation and ablation study

4.2.1 Baseline setting

In our experiments, faster-RCNN(ResNet)-based detection

pipeline is used as the baseline of the ablation experiments.

All experiments data and parameter settings are strictly

consistent for the fairness and accuracy of the experiments.

We use mean average precision(mAP) as a measure of

model accuracy performance. The results of DOTA dataset

reported here were obtained by submitting our detections to

the official DOTA evaluation server. Our method is called

AOOD, which uses DPN-92 as backbone and incorporates

attention module and dense connected FPN structure.

4.2.2 The effect of backbone

The original faster-RCNN uses VGG-16/ZF as the back-

bone. Since He proposed the residual neural network [1], it

has been widely used as the backbone network for visual

tasks such as image recognition, object detection and

semantic segmentation. Compared with traditional net-

work, ResNet has deeper network layers, lighter parame-

ters, faster convergence and stronger feature

representation. As we all know, more densely and com-

plicated network structure learns more details and more

discriminating features. Based on ResNet, we compared

some improved networks such as ResNeXt [25], DenseNet

[26] and DPN [17]. We all build the detection framework

in strict accordance with the faster-RCNN’s pattern, which

uses the last convolutional feature to generate proposals

and feed into regression and classification branches. It is

evident from Table 1 that the detection results have been

improved after using more feature engineering backbone,

and total mAP has increased by about 0.31–1.44. Espe-

cially, we can find out that the performance improves

greatly when using DPN as the backbone.

4.2.3 The effect of attention

As discussed above, the attention model is beneficial to

weaken the interference of the noise and enhance the object

feature. Squeeze and Excitation Network (SENet) has

proved to be an effective learnable channel attention

mechanism. For different backbone networks, we all

embed the attention module at the end of each convolu-

tional stage. We think that it will maximize the attention

signal. As shown in Table 1, the attention model helps to

improve the total detection mAP obviously. Especially,

attention module improves the detection accuracy of multi-

scale and small objects. Compared to no-attention methods,

SENet increases mAP by 1.17–1.72.

4.2.4 The effect of dense FPN

Low-level feature contains less semantic information, but

the location information is accurate; conversely, high-level

features have rich semantic information but coarse location

information. It is widely recognized that multi-scale feature
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fusion and context information embedding are very helpful

for improving the performance of small targets detection.

Dense FPN is selected as the another feature engineering

strategy to boost the performance. As shown in Table 1,

dense FPN helps improve the small objects detection

performance greatly by about 0.47–11.65 in mAP.

4.2.5 The effect of rotated RPN

Some methods use original horizontal regions proposal

network, but regress to oriented bounding box, such as

R2CNN and faster-RCNN-for-DOTA. R2CNN regresses

the horizontal proposal to the coordinate representation of

5 values (x, y, w, h, h), but the latter regresses to 8 values

(x0, y0, x1, y1, x2, y2, x3, y3). The regression from horizontal

proposal to oriented detection box is inefficient and not

robust, which often causes a large coordinate offset. In

addition, the 8-value representation of the regression tar-

gets even leads to irregular and non-rectangle detection

box. Besides, (x, y, w, h, h) is a rotation-friendly repre-

sentation for the angle regression, and it is easy to calculate

the angle offset between two different rotated boxes. So we

compare the RRPN-based method with the traditional

horizontal RPN-based structure. It is obvious to see from

Fig. 6 that RRPN-based method generates more robust

bounding boxes, which have more standardized shape.

Also, the mAP is increased by about 1.56 as shown in

Fig. 7.

4.2.6 The effect of image super-resolution and image
pyramid

Super-resolution is a very important image quality

enhancement technology. Although the picture quality of

the DOTA dataset is not bad, the resolution of the image

after cropping needs to be improved. We use the RCAN’s

[29] pretrained model on DIV2K dataset [30] to fine-tune

the split DOTA. Considering that the depth of the convo-

lutional neural network is critical to the image SR effect,

simply splicing the residual modules together to build a

deeper network does not result in better improvements.

Therefore, we have improved on the basis of the pre-

training model and changed the RCAB structure to densely

connected, so that the low-level features can be better

propagated in the network, making full use of the low-

frequency information of the image, thus making the net-

work more focused on learn high-frequency information.

While fine-tuning, we use the ADAM optimizer and set

b1 ¼ 0:9, b2 ¼ 0:999, � ¼ 1� 10�8. The initial learning

rate is set to 1� 10�4. Furthermore, image pyramid

training and testing is an effective method to gain

improvement. In our experiments, we scale the original
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spitted image (1024� 1024) to [800� 800, 1024� 1024,

1280� 1280] and then send it to train and test. Note that

our final detection results are generated by R-NMS. As

shown in Table 1, super-resolution and image pyramid,

i.e., SR(P), can improve performance steadily and get

71.18 mAP finally.

4.3 Performance on benchmark

The proposed method is compared to the state-of-the-art

object detectors on three benchmarks: DOTA, NWPU

VHR-10 and ICDAR2015. Our model achieves competi-

tive performances in all three benchmarks.

4.3.1 DOTA

To verify the superiority of our method, we compare with

AOVD [31], R-DFPN [10], ICN [32], R2CNN?? [13] and

so on, which are all enable to detect multi-class arbitrary

orientation objects. Table 2 shows the performance of

these methods. Because of the feature fusion and attention,

R2CNN?? and our method get excellent detection per-

formance in small objects. Our approach focuses on

enhancing the informative information and robustness of

features by introducing densely connected FPN and atten-

tion module. The experiments show that our method

reaches 71.18 mAP, achieving the best performance.

Fig. 6 Comparison between

RRPN and HRPN

Fig. 7 Ablative study on the

effect of Rotated RPN. HRPN

and RRPN denote original

horizontal region proposal

network and oriented region

proposal network, respectively.

Our method is called AOOD,

which uses the DPN as

backbone and adds attention

module and dense connected

FPN (DPN ? AM ? DFPN)
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Visualized presentation of object detection on the DOTA

dataset is shown in Fig. 8.

4.3.2 NWPU VHR-10

NWPU VHR-10 contains 10-class geospatial object for

detection. We compare it with seven methods and achieve

the best detection performance, at 89.10. Our model

achieves the best performance in more than half of the

categories. The specific results are shown in Table 3.

4.3.3 ICDAR2015

Scene text detection is also a main application scenario of

rotation detection. We used EAST [33], RRPN [14] and

R2CNN [12] for comparative experiments. Table 4 shows

the performance of these methods, our method achieves

82:64% in the ICDAR2015 dataset, better than most

mainstream algorithms. The precision–recall curves of

AOOD on the ICDAR2015 dataset is illustrated in Fig. 9.

It proves that the proposed method is useful for both

remote sensing images and scene texts.

4.4 computational cost analysis

The proposed method comprises multiple modules, such as

Dual Path Network (DPN) backbones module, dense FPN

module, rotation region proposal module and rotation fast

RCNN module under the faster RCNN like framework. So,

we compared our proposed model with another classic

architecture faster RCNN on FPN, which backbone is

ResNet-101 network, and also have FPN module, region

proposal module and fast RCNN module. The DPN-92

costs about 15% fewer parameters than ResNeXt-101

which is more complicated than ResNet-101. In terms of

computational complexity, DPN-92 consumes about 19%
less FLOPs than ResNeXt-101. Then, according to the

analysis in the SENet [19], adding the SE module to the

original network will only introduce less than 1% of

additional calculations, but will bring a significant increase

in network accuracy.

Compared to FPN, dense FPN has feature propagation

between each layer. But only the upsampling operation

with low computational complexity is added. So the dense

FPN module does not take more time. The difference

between rotation RPN network and RPN network is that an

angle parameter is introduced to the anchors whose time

cost is almost negligible. Moreover, the input of the rota-

tion fast RCNN module are proposals. Others are consis-

tent with the original fast RCNN module. Finally, SR is

only used as a pre-processing step. If you want to get the

detection results quickly, you do not have to do the pre-Ta
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Fig. 8 Visualized presentation of object detection in sensing image
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processing step. But if you want better results, you need to

use it. In conclusion, we focused on the problems of object

detection for remote sensing image and made many

improvements on the basis of faster RCNN on FPN net-

work, and these operations are not time-consuming.

5 Conclusion and future plan

In summary, this paper proposes a arbitrary-oriented object

detection method, which has the following property: (1) To

enhance the feature re-usage and new features exploration,

the DPN and dense FPN are simultaneously exploited to

act as backbone network and generate feature pyramid

feature map, which will produce informative feature and

discriminative multi-scale feature maps by introducing

residual path and densely connected paths; (2) SE attention

model is leveraged to activate the channels useful to object

detection while suppressing the channel closely related to

the noise; (3) rotation region proposal and rotation ROI

pooling strategies are integrated into the architecture to

produce minimum circumscribed rectangle bounding box,

efficiently reducing the redundant detection region. In spite

of this, some performance boosting strategies such as

dilated convolution, smaller orientation interval and con-

texture information are not considered, which will be

exploited in the future work.
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Table 4 Comparative experiment on ICDAR2015 dataset

Method Recall Precision F-measure Res.

CTPN [42] 51.56 74.22 60.85 –

SegLink [43] 76.80 73.10 75.00 –

EAST [33] 78.33 83.27 80.72 720P

RRPN [14] 82.17 73.23 77.44 –

R2CNN [12] 79.68 85.62 82.54 720P

AOOD (proposed) 82.64 85.35 83.56 720P

Fig. 9 Precision/recall curve
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