
ORIGINAL ARTICLE

A hybrid genetic algorithm for scientific workflow scheduling in cloud
environment

Hatem Aziza1 • Saoussen Krichen1

Received: 23 March 2019 / Accepted: 20 March 2020 / Published online: 11 May 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Nowadays, we live an unprecedented evolution in cloud computing technology that coincides with the development of the

vast amount of complex interdependent data which make up the scientific workflows. All these circumstances develop-

ments have made the issue of workflow scheduling very important and of absolute priority to all overlapping parties as the

provider and customer. For that, work must be focused on finding the best strategy for allocating workflow tasks to

available computing resources. In this paper, we consider the scientific workflow scheduling in cloud computing. The main

role of our model is to optimize the time needed to run a set of interdependent tasks in cloud and in turn reduces the

computational cost while meeting deadline and budget. To this end, we offer a hybrid approach based on genetic algorithm

for modelling and optimizing a workflow-scheduling problem in cloud computing. The heterogeneous earliest finish time

(HEFT), an heuristic model, intervenes in the generation of the initial population. Based on results obtained from our

simulations using real-world scientific workflow datasets, we demonstrate that the proposed approach outperforms existing

HEFT and other strategies examined in this paper. In other words, experiments show high efficiency of our proposed

approach, which makes it potentially applicable for cloud workflow scheduling. For this, we develop a GA-based module

that was integrated to the WorkflowSim framework based on CloudSim.

Keywords Cloud computing � Genetic algorithm � Scientific workflow � Workflow scheduling � Deadline �
Budget

1 Introduction

Over last few years, cloud computing (CC) has become an

emerging research area. It is considered as the main model

of distributed computing. It offers elastically scalable and

highly available resources as a subscription-based service

like utility computing [1] for executing scientific work-

flows (SWfs). The SWf (such as Montage, CyberShake,

Epigenomics, LIGO and SIPHT) is a transposition of the

general term of workflow in the experimental context, that

is to say relating only to computational processes via

complex data flows and control dependencies while

automating their implementations in appropriate resources

[2].

Successful execution of SWf requires optimal use of

resources. For that, the work must be focused on finding

the best strategy for allocating workflow tasks to available

computing resources. This is called workflow scheduling

(WS). The WS aims at mapping and managing the exe-

cution of interdependent tasks by considering precedence

constraints on shared resources [3]. This problem is known

to be NP-Complete [3] due to its combinatorial aspect.

What prompted researchers to provide a near-optimal

solution.

Workflows must be well defined and managed to be

executed later. This is the role of an efficient workflow

management system (WMS).

As shown in Fig. 1, to schedule and map workflow tasks

to the available resources in cloud environment, system

needs a workflow scheduler (bridge).

& Hatem Aziza

hatem.aziza@isg.rnu.tn

Saoussen Krichen

saoussen.krichen@isg.rnu.tn

1 Institut Supérieur de Gestion, LARODEC, Université de

Tunis, Tunis, Tunisia

123

Neural Computing and Applications (2020) 32:15263–15278
https://doi.org/10.1007/s00521-020-04878-8(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-04878-8&domain=pdf
https://doi.org/10.1007/s00521-020-04878-8

In this work, we extend the solution proposed in our

previous work [4] by dealing with the SWf scheduling in

cloud environment. We focus on efficient use of resources

in order to run a SWf composed of interdependent tasks.

To this end, we develop a new hybrid GA for SWf

scheduling in CC. The main idea of the proposed solution

is matching a SWf tasks to proper resources in order to

minimize the computation cost and the execution time

while meeting deadline and budget.

The tasks scheduling in CC is among the most important

problems for the various stakeholders in this environment

especially when it comes to the scheduling of SWf at dif-

ferent levels of difficulty and complexity.

In the scientific field, we can find workflows sensitive to

large volumes of data, others sensitive to complex pro-

cessing and those sensitive to different criteria at the same

time.

This very important subject has prompted several

researchers to propose solutions aimed at optimizing the

processing of these SWfs and in particular seeking a

compromise between two contradictory quality of service

(QoS) parameters which are time and cost. In this context,

it should be noted that QoS determines the level of satis-

faction of a user of a given service. Generally, the quality

of service is measured by qualitative metrics such as

computational time, computational cost and reliability.

Generally, to process workflows very quickly, you have to

hire powerful resources that are costly. On the other hand,

cheaper resources can be slow to complete a job.

This contradiction pushed us to set up a promising

solution aiming to minimize the processing time while

minimizing the cost of this processing as much as possible

and respecting the deadline and budget constraints.

To achieve this dual objective, we have looked in the

literature for the most used approaches that can meet this

objective by giving good results. For this, we have chosen

to mix the power and simplicity of HEFT with the evolu-

tionary algorithm which is the GA.

This mixing produces a hybrid solution aimed at opti-

mizing the scheduling of SWf. The performance of GA can

be enhanced by the incorporation of the solution generated

by HEFT into the set of randomly generated solutions

making up the initial population. HEFT is chosen because

it offers very good scheduling of SWf. This approach tends

to speed up the scheduling process to reach the optimum

aiming to minimize computational time and cost.

This proposed approach is hybrid because a heuristic

model, which is the HEFT, intervenes in the generation of

the initial population. This mixture HEFT-GA is in order to

obtain a set of optimal solution.

Based on the empirical results obtained from our sim-

ulations, we demonstrate that the proposed algorithm per-

forms better than other state-of-the-art strategies to solve

WS problem in cloud environments.

The remainder of this paper is organized into the fol-

lowings sections.

We start by discussing several related works in Sect. 2.

While Sect. 3 formulates the scientific workflow schedul-

ing in CC that aims to minimize cost and time while

meeting deadline and budget. Section 4 proposes a hybrid

approach based on GA and HEFT. Experiments and results

are reported in Sect. 5.

2 Related work

Several research studies have been conducted in recent

years that analyses the SWf scheduling problem in the field

of CC. Therefore, in the literature, several approaches have

been applied in order to optimize one or several objectives.

Table 1 states a list of criteria, constraints, methods, SWf

applications and implementation environment chosen in

some research topics. This part is organized in four parts

that each one is related to a different optimization problem

type.

Fig. 1 Scientific workflow

execution architecture in cloud

environment

15264 Neural Computing and Applications (2020) 32:15263–15278

123

Table 1 State of the art related to scientific workflow scheduling

Performance

metrics

QoS constraints Environment Method Structural Types of SWfA References

Makespan – Amazon EC2 Compiler

optimization

DAG Montage [5]

Makespan – MATLAB ACO DAG Cybershake SIPHT [6]

Makespan – CLAVIRE GA DAG Complex Wf for

flood simulation

[7]

Makespan Deadline Cloudism LEFT GA DAG Montage

Cybershake

Epigenomic

SIPHT LIGO

[8]

Makespan Deadline – GA DAG Montage

Cybershake LIGO

[9]

Makespan Deadline budget CloudSim Deadline constraint

scheduling algo

DAG Montage

Cybershake

SIPHT LIGO

[10]

Cost Deadline IBM ILOG

CPLEX

Math Prog DAG Montage

Cybershake

Epigenomic

SIPHT LIGO

[11]

Cost Deadline Amazon EC2 A* approach DAG Montage LIGO

Epigenomic

[12]

Makespan cost – Amazon EC2 GA DAG Montage

Cybershake

Epigenomic

SIPHT LIGO

[13]

Makespan cost – – GA DAG Montage

Epigenomic

Cybershake

SIPHT LIGO

[14]

Makespan cost – Real platform Vector ordinal

optimization

method

DAG LIGO [15]

Makespan cost Deadline – GA DAG Montage LIGO

Cybershake

Epigenomic

[16]

Makespan cost Deadline Amazon EC2 List scheduling

method ACO

DAG Montage LIGO

Cybershake

Epigenomic

[17]

Makespan cost Deadline CloudSim PSO DAG Montage

Cybershake

SIPHT LIGO

[18]

Makespan cost Deadline MATLAB Deadline constraint

scheduling algo

DAG Montage

Cybershake LIGO

SIPHT

[19]

Makespan cost Deadline budget – GA DAG Balanced structure

unbalanced

structure

[20]

Makespan cost Deadline security CloudSim PSO GA DAG Cybershake LIGO

Epigenomic

[21]

Makespan cost Stored data Microsoft Azure Activity greedy

scheduling

DAG SciEvol [22]

Neural Computing and Applications (2020) 32:15263–15278 15265

123

2.1 Unconstrained SWf scheduling problems

In [5], optimization of scientific workflow execution in

clouds by exploiting multicore system with the paral-

lelization of bottleneck tasks is the objective of this paper.

In [23], the authors proposed a solution to optimize the

resource usage of a workflow schedule.

Sahni et al. [24] propose a workflow and platform aware

task clustering technique that aims to achieve maximum

possible parallelism among the tasks.

In [25], Zhang et al. apply an ordinal optimization

method iteratively in order to execute scientific workflow

on elastic cloud compute nodes with dynamic workload.

In [13], the authors proposed an optimization solution of

both makespan and cost.

Xiang et al. [6] presented a novel WS algorithm to

minimize makespan in heterogeneous environments.

In [14], the authors optimized the makespan and mon-

etary cost in cloud environment using GA.

In [7], Chirkin et al. proposed an optimization solution

of the workflow makespan.

A solution based on list scheduling heuristic approach in

order to optimize four objectives such as makespan, cost,

energy consumption and reliability is proposed by Fard

et al. [26].

In [27], the authors proposed a novel approach based on

GA that uses the reliability-driven reputation to optimize

makespan and reliability.

Zhang et al. [15] proposed a vectorized ordinal opti-

mization approach to optimize makespan and cost.

2.2 SWf scheduling problems with deadline
constraint

In [16], the authors minimized the execution cost of the

workflow while meeting the deadline in CC environment.

Vinay et al. [28] scaled resources vertically in order to

maximize resources utilization that are required to execute

scientific workflow to meet deadline.

The minimization of the execution cost of a workflow in

clouds under a deadline constraint was the main objective

of [17].

In [8], the authors proposed an heuristic algorithm for

scheduling workflows in deadline constrained clouds used

for initialization of proposed GA.

In [18], Rodriguez et al. presented a resource provi-

sioning and scheduling strategy for scientific workflow on

IaaS.

Li and Cai [11] divide the workflow deadline into task

deadlines in order to minimize resource renting costs.

Table 1 (continued)

Performance

metrics

QoS constraints Environment Method Structural Types of SWfA References

Makespan

resource usage

– Distributed

elastic Wf

execution

(DEWE)

Wf scheduling

optimization

DAG Montage

Cybershake

Epigenomic

SIPHT LIGO

[23]

Performance

gain resource

consolidation

– WorkflowSim Task clustering

technique

DAG Montage

Cybershake LIGO

SIPHT

[24]

Memory

demands

throughput

– IBM RC2 Ordinal optimization

algorithm

DAG LIGO [25]

Makespan cost

reliability

energy

– ASKALON List scheduling

heuristic

DAG WIEN2K MeteoAG [26]

Makespan

reliability

– GridSim GA DAG Random DAG [27]

Failure tasks

Makespan Cost

Deadline CloudSim Auto-scaling

methods

DAG Cybershake

Epigenomic

[28]

Completed Wf

makespan cost

Deadline budget Cloudsim Deadline and budget

constraints

scheduling algo

DAG Montage

Cybershake

Epigenomic

SIPHT LIGO

[29]

Makespan data

dependencies

Load balancing proximity-

aware Min CPU speed Min

RAM or Hard disk

CycloidGrid K-way Fiduccia-

Mattheyses HEFT

DAG Montage

Cybershake

Epigenomic

SIPHT

[30]

15266 Neural Computing and Applications (2020) 32:15263–15278

123

Developing a scheduling system in order to minimize

the expected monetary cost given the user specified prob-

abilistic deadline guarantees is the objective addressed in

[12].

In [19], the authors proposed a WS strategy in order to

minimize the makespan and cost while meeting the

deadline.

Visheratin et al. [9] proposed a co-evolutional GA for

scheduling series of workflows in order to minimize the

makespan while meeting deadline.

2.3 Optimization problems with deadline
and budget constraints

Maximization of the number of completed workflow under

both budget and deadline constraints is the optimization

problem treated in [29].

In [10], Calheiros and Buyya replicated workflow tasks

using idle time to mitigate effects of performance variation

of resources.

In [20], the authors proposed an algorithm to solve the

WS problem in order to minimize the time and cost while

meeting deadline and budget.

Shishido et al. [21] used a mixed methodology based on

security-aware and cost-aware WS algorithm that applied

GA to optimize the combinatorial scheduling scheme.

2.4 Optimization problem with other constraints

The main objective of [30] was the partitioning workflow

application into sub-workflow in order to minimize data

dependencies and then execute each sub-workflow to

minimize their partial makespan.

Liu et al. [22] executed a SWf in a multisite cloud while

reducing makespan and cost.

As shown in Fig. 2, the majority of the work targeted

on:

• Performance metrics makespan and cost.

• QoS constraints deadline and to a lesser extent budget.

• SWf applications Cybershake, LIGO, Montage, Epige-

nomic and SIPHT.

After this study, we can deduce that makespan and cost

are the most important QoS parameters to study in task

scheduling problems in the cloud environment while

respecting QoS constraints like deadline and budget.

Workflows must be executed before the scheduled deadline

while not exceeding the allocated budget. For this, we

deduce that the makespan which represents the completion

time of the last task of the workflow must be lower than the

deadline for a total cost not exceeding the budget. These

constraints are defined in Eqs. (6) and (7).

3 Problem formulation

We address a SWf scheduling in CC in order to minimize

the computational cost and the execution time (makespan)

while meeting two constraints which are the deadline and

the budget.

The problem consists to well respond to the client

demands to run a workflow which is a set of interdependent

tasks.

3.1 Structural representation

The WS representation can only be done using an adequate

technique. For this, we choose an oriented graph which

does not have a circuit and whose arcs are oriented. This

type of graph is known as an acyclic oriented graph [di-

rected acyclic graph (DAG)] [10, 13, 16] which is the most

popular model as shown in Table 1. The nodes of the DAG

are the tasks, and the arcs represent the dependency rela-

tionships between the tasks. Figure 3 shows a general

workflow’s DAG scheme which contains 8 tasks. Other

SWf DAG schemes are shown in Fig. 10.

DAG is represented by a couple of vertex (V) and edge

(E). It is usually denoted by W ¼ fV ;Eg where

• V ¼ ft0. . .tng is a set of n tasks of a SWf;

Fig. 2 Comparison between (1) performance metrics, (2) QoS constraints and (3) SWf applications

Neural Computing and Applications (2020) 32:15263–15278 15267

123

• E ¼ fti ! tjjti; tj 2 V and ti is parent of tj i; j ¼
1; . . .; ng is a set of directed edges (control, data

dependencies) that connect the tasks (vertices).

• t1 is the start task denoted tstart.

• tn is the end task denoted tend.

The DAG structure refers to parent–child relationships. We

assume that the Childi task is a successor to the Parenti
task if there is an edge from Parenti to Childi in the DAG.

Upon task precedence constraint, only if the predecessor

Parenti finishes its execution and sends a message to its

successor Childi, the latter can start its execution.

In cloud environment, tasks must be mapped to a set of

resources used as a set of virtual machine (VM), in order to

be executed. This set denoted VM ¼ fvm0. . .vmmg. Each
VM has its proper capacity (CPU, memory, BW).

DAG is usually represented by a binary square matrix

M[n, n].

M½i; j� ¼ 1 when ti 2 Parentj
0 otherwise

�

Figure 4 shows the representation of a workflow sample

shown schematically in Fig. 3.

3.2 Problem statement

Each task mapped to a particular VM has a computational

cost calculated based on a time interval which designates

the unit of measurement for calculating costs, especially

since we assume in this paper that the resources are billed

per unit of time of use. This time interval is called

‘‘quantum.’’ Logically, the fastest VM must be more costly.

For this, we must find a trade-off between computation

time and cost. The notation used in our problem modeling

is described in Table 2.

The computational time CTk
i of ti executed in vmk is

defined in Eq. (1) as:

CTk
i ¼ Sizei

CompCk
i ¼ 1; . . .; n k ¼ 1; . . .;m ð1Þ

The communication between two tasks ti and tj needs a

transfer time from parent ti to child tj. Transfer time

denoted TrTij is calculated using the formula of Eq. (2):

TrTij ¼
Dataij
BW

i; j ¼ 1; . . .; n ð2Þ

It should be well noted that the TrTij is zero if ti and tj
belong to the same VM. Therefore, the internal data transfer

is free of cost, which is the case in most of cloud data

center.

The makespan expresses the total time spent to complete

the user job. Makespan can be defined in Eq. (3) as:

Makespank ¼ MaxfCTk
i g i ¼ 1; . . .; n k ¼ 1; . . .;m

ð3Þ

The objectives functions of this proposed model can be

defined in Eqs. (4) and (5) as:

MinCost ¼
Xm
k¼1

FCTk � SCTk
Quantum

� UCCk ð4Þ

MinMakespan ¼ MaxfMakespankg k ¼ 1; . . .;m ð5Þ

subject to:

Fig. 3 Workflow DAG scheme sample

Childi
t1 t2 t3 t4 t5 t6 t7 t8

P
a
re
n
t i

t1 0 1 1 1 0 0 0 0
t2 0 0 0 0 1 1 0 0
t3 0 0 0 0 0 1 0 0
t4 0 0 0 0 0 1 0 0
t5 0 0 0 0 0 0 1 0
t6 0 0 0 0 0 0 1 0
t7 0 0 0 0 0 0 0 1
t8 0 0 0 0 0 0 0 0

Fig. 4 8� 8 Matrix of a workflow example

Table 2 Parameter summary

Parameter Meaning

CTi
k Computational time for ti in vmk

Sizei Size of ti

CompCk Computational capacity of vmk ðFLOPS�Þ
BW Average bandwidth

Dataij Data out from ti ! tj

SCTk Start computation time in vmk

FCTk Finish computation time in vmk

Quantum Discrete unit to calculate the cost of using VM

UCCk Unit computation cost of vmk

Makespank Total time spend to complete tasks in vmk

Deadline Time till which the tasks should be finished

Budget Total cost not to be exceeded

*FLoating-point OPeration per Second

15268 Neural Computing and Applications (2020) 32:15263–15278

123

Makespan�Deadline ð6Þ

Cost�Budget ð7Þ

4 Proposed approach

In this paper, we propose a hybrid GA-based approach

mixed with HEFT to generate an initial population. In our

proposed approach, we are looking for a solution in which

the best trade-off time/cost has been applied while meeting

deadline and budget constraints.

4.1 Implementation of approach

1. Encoding

In the literature, different types of encoding represen-

tation are proposed [4, 13, 27]. In this paper, we choose

to use a direct representation, which is the more

adapted to our information encoding. We propose to

encode a chromosome as a n-sized collection. Each

box i of the collection contains the VM identifier used

by ti. The encoding is represented as shown in Fig. 5.

In the proposed example, we identify two major

information. The indexes of the vector depict the tasks

that are scheduled and the number in each cell identi-

fies the VM instance to which the task is allocated.

2. Initialization

Algorithm 1 presents of the different steps taken to

generate an initial population to implement our solu-

tion based on GA.

3. Fitness function

To solve our problem using GA, we have two goals to

achieve. We want to minimize the computational time

and the computational cost of executing the workflow.

For this, we must clearly define a fitness function that

meets this dual objective. The reader must be able to

clearly understand how the fitness score is calculated.

This function should generate intuitive results. The best

solutions must have the best scores while the worst

solutions must have the worst scores. First, we need to

normalize all the fitness factors that make up our fitness

function to be able to define it as defined in Eq. (8).

Our function is composed of two factors defined as

follows:

f1ðsÞ ¼ MakespanðsÞ
Deadline

f2ðsÞ ¼ CostðsÞ
Budget

f1 as the inverse of the makespan with deadline to

ensure that the makespan does not exceed the deadline.

f2 as the inverse of the cost with budget to ensure that

the cost does not exceed the allocated budget. The

fitness function is defined as below:

f ðsÞ ¼ w� f1ðsÞ þ ð1� wÞ � f2ðsÞ
subject to w 2 ½0; 1�

ð8Þ

where

• s 2 Population

• w: the weight of time in the fitness function.

• 1� w: the weight of cost in the fitness function.

4. Selection operation

The tournament selection strategy [16, 19], the most

popular selection technique of GA, is used to select the

chromosome. In Algorithm 2, a presentation of the

different steps was taken to apply this strategy.

Figure 6 shows a tournament selection example

applied on a sample of chromosomes.

Fig. 5 Chromosome encoding

Algorithm 1 Generate an initial population
Input: Empty population and population size sizep
Output: Population of sizep chromosomes

1: Generate randomly sizep − 1 of candidate solutions
2: Integrate the HEFT solution into the population
3: Calculate the Fitness Value (FV) of each solution of the population
4: Sort the population according to the FVs calculated in Step 3

Neural Computing and Applications (2020) 32:15263–15278 15269

123

Algorithm 2 Tournament selection
Input: Population of chromosomes and the tournament size (nbr)
Output: Selected chromosomes

1: Randomly choose nbr chromosomes from the population.
2: if crossover then
3: The two chromosomes with the highest FV are selected
4: else if mutation then
5: The chromosome with the highest FV is selected
6: end if

5. Crossover

Using the tournament selection method, two chromo-

somes are selected for a two-point crossover [4, 13]

operation wherein alternating segments are swapped to

get new offsprings. In other words, these two chro-

mosomes chosen will give rise to two offsprings after a

crossing. For example, Fig. 7 shows a two-point

crossover example.

6. Mutation

We propose to use an integer representation. A random

task from the set of workflow tasks is assigned to a

randomly chosen VM [4] as shown in Fig. 8.

5 Simulation environment

5.1 Simulation setup

We have generated synthetic workflow data obtained from

the Pegasus workflow repository [31]. To study the effec-

tiveness of proposed SWf scheduling algorithm, we have

applied simulation parameters summarized in Table 3.

5.2 Framework simulation environment

To evaluate our proposed solution, we chose to use Work-

flowSim Framework based on CloudSim [18, 29]. Figure 9

explains the different steps from the introduction of the

DAX1 file generated by Pegasus workflow repository to the

matching of workflow tasks to VM before being runned.

A workflow planner generates a list of tasks that are

introduced first in raw state as an XML2 file. The workflow

parser module intervenes to prepare this tasks list. Tasks

can be grouped in a set of jobs by the clustering engine if

necessary. After that, these tasks must be ordered by the

workflow engine taking into account the dependency con-

straints. At this level, the workflow scheduler intervenes to

match ordered tasks to available VMs before being runned

by processors.

6 Implementation and results

Following an in-depth study of the related work, we

identify several areas of applications related to the

scheduling problem. We examine five families of SWf

applications as Montage, Cybershake, Epigenomics, LIGO

and SIPHT, which are abstractions of dataflows that are

used in real applications. These SWf applications were

chosen because they represent a wide range of application

domains and a variety of resource requirements. On this

Fig. 6 Tournament selection for

the GA

1 Description of an abstract workflow in eXtended Markup Language

(XML) format that is used as the primary input into Pegasus.
2 General text-oriented document format.

15270 Neural Computing and Applications (2020) 32:15263–15278

123

Fig. 7 An example of the two-

point crossover

Fig. 8 The mutation operator

Table 3 Workflow scheduling

simulation parameters
Datacenter parameters VMs parameters Cost parameters

Number of VMs 20 RAM (MB) 512 Processing usage cost 3.0

Number of cloud users 1 MIPS 1000 Memory usage cost 0.05

BW 1000 Storage usage cost 0.1

Pes Number 1 BW usage cost 0.1

Neural Computing and Applications (2020) 32:15263–15278 15271

123

basis, Table 4 shows a comparison between these SWf

applications in terms of system intensiveness while their

DAGs are represented in Fig. 10.

We conducted a series of experiments using existing

heuristic algorithms such as:

• FCFS [19]

• MinMin [7]

• MaxMin [20, 27]

• RoundRobin [30]

• HEFT

We managed all jobs with the Pegasus WfMS, which

transforms high-level descriptions of workflows into

specific sequences of operations and identifies the com-

puting resources required for execution. Here are the

results:

• The results of a series of experimentations applied to

Montage workflow to calculate the makespan are

described in Table 5.

• The result of a series of experimentations applied to

Cybershake workflow, with, respectively, 100 and 1000

nodes, to calculate the makespan is described in

Table 6.

• The result of a series of experimentations applied to

Epigenomics workflow to calculate the makespan is

described in Table 7.

• The result of a series of experimentations applied to

LIGO workflow to calculate the makespan is shown in

Table 8.

Fig. 9 WorkflowSim framework components

Table 4 Comparison between the existing SWf applications

SWf application Domain System intensiveness

Montage Astronomy Data-intensive

CyberShake Earthquake science Data/memory-intensive

Epigenomics Bioinformatics CPU-intensive

LIGO Physics CPU-intensive

SIPHT Bioinformatics CPU-intensive

15272 Neural Computing and Applications (2020) 32:15263–15278

123

• The result of a series of experimentations applied to

SIPHT workflow to calculate the makespan is shown in

Table 9.

Figures 11 and 12 show the experimental results of the

makespan, while Figs. 13 and 14 show the experimental

results of the cost.

Fig. 10 Real-world scientific workflows DAGs

Table 5 Experimental results

for montage datasets of 100 and

1000 tasks

Scheduling algorithm Makespan Cost

Montage_100 Montage_1000 Montage_100 Montage_1000

FCFS 103.45 911.96 3451.96 36,260.73

MinMin 103.53 912.38 3453.14 36,258.04

MaxMin 103.19 912.2 3452.34 36,264.65

RoundRobin 103.44 912.56 3451.71 36,263.45

HEFT 103.4 912.36 3449.3 36,265.84

HEFTGA 103.12 912.02 3449.21 36,260.11

Best experimentation values for each scientific workflow are given in bold

Neural Computing and Applications (2020) 32:15263–15278 15273

123

The proposed approach HEFTGA that we applied is

based on the population of 20 chromosomes transformed in

100 generations which is a sufficient number to achieve a

good convergence rate.

This proposed algorithm is developed in Netbeans 8.1

using Java programming language.

All experiments were performed on a computer with 2.4

GHz Intel Core i5 CPU and 8Go 1333 MHz of RAM.

Table 6 Experimental results

for cybershake datasets of 100

and 1000 tasks

Scheduling algorithm Makespan Cost

Cybershake_100 Cybershake_1000 Cybershake_100 Cybershake_1000

FCFS 321.92 1284.87 20,126.31 100,196.92

MinMin 325.56 1309.81 20,114.81 100,193.49

MaxMin 305.19 1272.49 20,126.6 100,208.38

RoundRobin 321.92 1310.44 20,126.16 100,192.11

HEFT 415.92 1430.64 20,075.22 100,194.66

HEFTGA 323.19 1310.31 20,057.12 100,193.27

Best experimentation values for each scientific workflow are given in bold

Table 7 Experimental results

for Epigenomics datasets of 100

and 997 tasks

Scheduling algorithm Makespan Cost

Epigenomics_100 Epigenomics_997 Epigenomics_100 Epigenomics_997

FCFS 34,988.53 208,608.52 1,217,246.7 11,627,118.97

MinMin 43,044.26 213,651.11 1,217,246.32 11,620,692.01

MaxMin 36,972.03 210,441.58 1,217,246.04 11,651,559.76

RoundRobin 40,036.51 208,632.38 1,217,246.83 11,620,725.44

HEFT 32,849.6 217,396.71 1,217,241.77 11,758,522.58

HEFTGA 31,766.09 206,321.36 1,217,241.33 11,611,331.77

Best experimentation values for each scientific workflow are given in bold

Table 8 Experimental results

for LIGO datasets of 100 and

1000 tasks

Scheduling algorithm Makespan Cost

LIGO_100 LIGO_1000 LIGO_100 LIGO_1000

FCFS 1519.72 11,759.27 63,468.8 687,170.27

MinMin 1762.86 11,791.02 63,475.28 687,160.99

MaxMin 1523.58 11,663.18 63,476 687,145.08

RoundRobin 1519.9 11,815.65 63,476.72 687,151.86

HEFT 1901.72 12,902.44 63,460.63 687,149.56

HEFTGA 1616.01 11,223.01 63,442.01 687,107.47

Best experimentation values for each scientific workflow are given in bold

Table 9 Experimental results

for the SIPHT datasets of 100

and 1000 tasks

Scheduling algorithm Makespan Cost

SIPHT_100 SIPHT_1000 SIPHT_100 SIPHT_1000

FCFS 4478.22 9645.15 52,216.12 521,644.86

MinMin 4479.07 11,630.67 52,214.47 521,658.18

MaxMin 4475.62 9621.08 52,217.05 521,647.71

RoundRobin 4478.22 11,121.93 52,215.94 521,649.38

HEFT 4475.62 10,827.18 52,215.81 521,644.29

HEFTGA 4475.12 10,827.18 52,215.81 521,622.09

Best experimentation values for each scientific workflow are given in bold

15274 Neural Computing and Applications (2020) 32:15263–15278

123

Experimental results presented in Figs. 10, 11, 12 and

13 show that HEFTGA outperforms other state-of-the-art

WS strategies in most cases.

• Regarding Montage, we note that our solution gives

better results in different cases. For a workflow

consisting of 100 tasks (respectively, 1000), HEFTGA

completes their execution after 103.12 s (respectively,

912.02) for a cost of 3449.21 (respectively, 36,260.11),

whereas HEFT executes them with a cost higher in

more time.

• For Cybershake, the simulation results are less inter-

esting when compared with those realized with Mon-

tage, but still they are better than those of HEFT.

Workflow composed of 100 tasks is performed at a

lower cost than others heuristics.

• Unlike Cybershake, Epigenomics gives very good

results to complete the execution of different tasks like

Montage. The trade-off between time and cost is

realized successfully.

• About LIGO, the two workflows composed of 100 and

1000 tasks are completed with the cheapest costs by

comparing them with the other results obtained by

applying the other heuristics. A very good compromise

makespan cost is realized for the second workflow

consisting of 1000 tasks while the time is moderately

acceptable for 100 tasks.

• The results obtained with SIPHT are very interesting for

the makespan of the workflow composed of 100 tasks

and the completion cost of 1000 tasks while the

makespan of 1000 tasks and the cost of 100 tasks are

just acceptable.

Fig. 11 Simulation results plot of the makespan for 100 tasks and 20 VMs

Fig. 12 Simulation results plot of the makespan for 1000 tasks and 20 VMs

Neural Computing and Applications (2020) 32:15263–15278 15275

123

To conclude, we can deduce that HEFTGA is well suited to

Montage and Epigenomics applications since there is a

successful compromise between time and cost. On the

other hand, we can see that for Cybershake workflow profit

is not very big. In addition, it should be mentioned that

HEFTGA provides best results that HEFT in all cases for

all workflow applications. This is due to the integration of

the solution generated by HEFT into the initial population

of our HEFTGA approach, which gives rise to a hybrid

solution that guarantees the results of HEFT in the worst

case otherwise much more efficient results.

7 Conclusion

In this paper, a cloud hybrid evolutionary approach for

deadline and budget constrained real-world scientific

workflow scheduling is proposed. As a solution of this

problem, the proposed algorithm integrates the HEFT

solution into the initial population used by our approach to

achieve an optimal execution time and minimal execution

cost. We have presented the different objectives as multiple

QoS function including time and cost. Experiments on real-

world SWf as Montage, Cybershake, Epigenomics, LIGO

and SIPHT show that our approach HEFTGA has outper-

formed several state-of-the-art algorithm as FCFS,

Fig. 13 Simulation results plot of the cost for 100 tasks and 20 VMs

Fig. 14 Simulation results plot of the cost for 1000 tasks and 20 VMs

15276 Neural Computing and Applications (2020) 32:15263–15278

123

MinMin, MaxMin and RoundRobin that were previously

used to solve the WS problem.

In future work, we plan to deal with the problem of data

centers power consumption when planning workflows in

cloud environments. Another work ahead is to simulate

SWf in heterogeneous cloud environments globally dis-

tributed, hence the importance of taking into account the

time and cost of data transfer between different data

centers.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

References

1. Poola D, Ramamohanarao K, Buyya R (2014) Fault-tolerant

workflow scheduling using spot instances on clouds. Procedia

Comput Sci 29(12):523–533. https://doi.org/10.1016/j.procs.

2014.05.047

2. Wang J, Abdelbaky M, Diaz-Montes J, Purawat S, Parashar M,

Altintas I (2016) Kepler ? cometcloud: dynamic scientific

workflow execution on federated cloud resources. Procedia

Comput Sci 80(12):700–711. https://doi.org/10.1016/j.procs.

2016.05.363

3. Alkhanak EN, Lee SP, Rezaei R, Parizi RM (2016) Cost opti-

mization approaches for scientific workflow scheduling in cloud

and grid computing: a review, classifications, and open issues.

J Syst Softw 113:1–26. https://doi.org/10.1016/j.jss.2015.11.023

4. Aziza H, Krichen S (2018) Bi-objective decision support system

for task-scheduling based on genetic algorithm in cloud com-

puting. Computing 100(2):65–91. https://doi.org/10.1007/

s00607-017-0566-5

5. Jiang Q, Lee YC, Arenaz M, Leslie LM, Zomaya AY (2014)

Optimizing scientific workflows in the cloud: a montage example.

In: 2014 IEEE/ACM 7th international conference on utility and

cloud computing, December 2014, pp 517–522. https://doi.org/

10.1109/UCC.2014.77

6. Xiang B, Zhang B, Zhang L (2017) Greedy-ant: ant colony sys-

tem-inspired workflow scheduling for heterogeneous computing.

IEEE Access 5:11404–11412. https://doi.org/10.1109/ACCESS.

2017.2715279

7. Chirkin AM, Belloum ASZ, Kovalchuk SV, Makkes MX, Melnik

MA, Visheratin AA, Nasonov DA (2017) Execution time esti-

mation for workflow scheduling. Future Gener Comput Syst

75:376–387. https://doi.org/10.1016/j.future.2017.01.011

8. Visheratin AA, Melnik M, Nasonov D (2016) Workflow

scheduling algorithms for hard-deadline constrained cloud envi-

ronments. Procedia Comput Sci 80:2098–2106. https://doi.org/10.

1016/j.procs.2016.05.529 International conference on computa-

tional science 2016, ICCS 2016, 6–8 June 2016, San Diego,

California, USA

9. Visheratin A, Melnik M, Butakov N, Nasonov D (2015) Hard-

deadline constrained workflows scheduling using metaheuristic

algorithms. Procedia Comput Sci 66:506–514. https://doi.org/10.

1016/j.procs.2015.11.057 4th international young scientist con-

ference on computational science

10. Calheiros RN, Buyya R (2014) Meeting deadlines of scientific

workflows in public clouds with tasks replication. IEEE Trans

Parallel Distrib Syst 25(7):1787–1796. https://doi.org/10.1109/

TPDS.2013.238

11. Li X, Cai Z (2015) Elastic resource provisioning for cloud

workflow applications. IEEE Trans Autom Sci Eng 14(1–16):12.

https://doi.org/10.1109/TASE.2015.2500574

12. Zhou AC, He B, Liu C (2016) Monetary cost optimizations for

hosting workflow-as-a-service in IaaS clouds. IEEE Trans Cloud

Comput 4(1):34–48. https://doi.org/10.1109/TCC.2015.2404807

13. Zhu Z, Zhang G, Li M, Liu X (2016) Evolutionary multi-objec-

tive workflow scheduling in cloud. IEEE Trans Parallel Distrib

Syst 27(5):1344–1357. https://doi.org/10.1109/TPDS.2015.

2446459

14. Casas I, Taheri J, Ranjan R, Wang L, Zomaya AY (2018) GA-

ETI: an enhanced genetic algorithm for the scheduling of scien-

tific workflows in cloud environments. J Comput Sci 26:318–331.

https://doi.org/10.1016/j.jocs.2016.08.007

15. Zhang F, Cao J, Li K, Khan SU, Hwang K (2014) Multi-objective

scheduling of many tasks in cloud platforms. Future Gener

Comput Syst 37:309–320. https://doi.org/10.1016/j.future.2013.

09.006 Special section: innovative methods and algorithms for

advanced data-intensive computing. Special section: semantics,

intelligent processing and services for big data. Special section:

advances in data-intensive modelling and simulation. Special

section: hybrid intelligence for growing internet and its

applications

16. Meena J, Kumar M, Vardhan M (2016) Cost effective genetic

algorithm for workflow scheduling in cloud under deadline con-

straint. IEEE Access 4:5065–5082. https://doi.org/10.1109/

ACCESS.2016.2593903

17. Wu Q, Ishikawa F, Zhu Q, Xia Y, Wen J (2017) Deadline-con-

strained cost optimization approaches for workflow scheduling in

clouds. IEEE Trans Parallel Distrib Syst 28(12):3401–3412.

https://doi.org/10.1109/TPDS.2017.2735400

18. Rodriguez MA, Buyya R (2014) Deadline based resource pro-

visioning and scheduling algorithm for scientific workflows on

clouds. IEEE Trans Cloud Comput 2(2):222–235. https://doi.org/

10.1109/TCC.2014.2314655

19. Haidri RA, Katti CP, Saxen PC (2017) Cost effective deadline

aware scheduling strategy for workflow applications on virtual

machines in cloud computing. J King Saud Univ Comput Inf Sci.

https://doi.org/10.1016/j.jksuci.2017.10.009

20. Gharooni-fard G, Moein-darbari F, Deldari H, Morvaridi A

(2010) Scheduling of scientific workflows using a chaos-genetic

algorithm. Procedia Comput Sci 1(1):1445–1454. https://doi.org/

10.1016/j.procs.2010.04.160. ICCS 2010

21. Shishido HY, Estrella JC, Toledo CFM, Arantes MS (2018)

Genetic-based algorithms applied to a workflow scheduling

algorithm with security and deadline constraints in clouds.

Comput Electr Eng 69:378–394. https://doi.org/10.1016/j.comp

eleceng.2017.12.004

22. Ghafarian T, Javadi B, Buyya R (2016) Multi-objective

scheduling of scientific workflows in multisite clouds. Future

Gener Comput Syst 63:76–95. https://doi.org/10.1016/j.future.

2016.04.014 Modeling and management for big data analytics

and visualization

23. Lee YC, Han H, Zomaya AY, Yousif M (2015) Resource-effi-

cient workflow scheduling in clouds. Knowl Based Syst

80:153–162. https://doi.org/10.1016/j.knosys.2015.02.012 25th

anniversary of knowledge-based systems

24. Sahni J, Vidyarthi DP (2016) Workflow-and-platform aware task

clustering for scientific workflow execution in cloud environ-

ment. Future Gener Comput Syst 64:61–74. https://doi.org/10.

1016/j.future.2016.05.008

Neural Computing and Applications (2020) 32:15263–15278 15277

123

https://doi.org/10.1016/j.procs.2014.05.047
https://doi.org/10.1016/j.procs.2014.05.047
https://doi.org/10.1016/j.procs.2016.05.363
https://doi.org/10.1016/j.procs.2016.05.363
https://doi.org/10.1016/j.jss.2015.11.023
https://doi.org/10.1007/s00607-017-0566-5
https://doi.org/10.1007/s00607-017-0566-5
https://doi.org/10.1109/UCC.2014.77
https://doi.org/10.1109/UCC.2014.77
https://doi.org/10.1109/ACCESS.2017.2715279
https://doi.org/10.1109/ACCESS.2017.2715279
https://doi.org/10.1016/j.future.2017.01.011
https://doi.org/10.1016/j.procs.2016.05.529
https://doi.org/10.1016/j.procs.2016.05.529
https://doi.org/10.1016/j.procs.2015.11.057
https://doi.org/10.1016/j.procs.2015.11.057
https://doi.org/10.1109/TPDS.2013.238
https://doi.org/10.1109/TPDS.2013.238
https://doi.org/10.1109/TASE.2015.2500574
https://doi.org/10.1109/TCC.2015.2404807
https://doi.org/10.1109/TPDS.2015.2446459
https://doi.org/10.1109/TPDS.2015.2446459
https://doi.org/10.1016/j.jocs.2016.08.007
https://doi.org/10.1016/j.future.2013.09.006
https://doi.org/10.1016/j.future.2013.09.006
https://doi.org/10.1109/ACCESS.2016.2593903
https://doi.org/10.1109/ACCESS.2016.2593903
https://doi.org/10.1109/TPDS.2017.2735400
https://doi.org/10.1109/TCC.2014.2314655
https://doi.org/10.1109/TCC.2014.2314655
https://doi.org/10.1016/j.jksuci.2017.10.009
https://doi.org/10.1016/j.procs.2010.04.160
https://doi.org/10.1016/j.procs.2010.04.160
https://doi.org/10.1016/j.compeleceng.2017.12.004
https://doi.org/10.1016/j.compeleceng.2017.12.004
https://doi.org/10.1016/j.future.2016.04.014
https://doi.org/10.1016/j.future.2016.04.014
https://doi.org/10.1016/j.knosys.2015.02.012
https://doi.org/10.1016/j.future.2016.05.008
https://doi.org/10.1016/j.future.2016.05.008

25. Zhang F, Cao J, Hwang K, Li K, Khan SU (2015) Adaptive

workflow scheduling on cloud computing platforms with iterative

ordinal optimization. IEEE Trans Cloud Comput 3(2):156–168.

https://doi.org/10.1109/TCC.2014.2350490

26. Fard HM, Prodan R, Fahringer T (2014) Multi-objective list

scheduling of workflow applications in distributed computing

infrastructures. J Parallel Distrib Comput 74(3):2152–2165.

https://doi.org/10.1016/j.jpdc.2013.12.004

27. Wang X, Yeo CS, Buyya R, Jinshu S (2011) Optimizing the

makespan and reliability for workflow applications with reputa-

tion and a look-ahead genetic algorithm. Future Gener Comput

Syst 27(8):1124–1134. https://doi.org/10.1016/j.future.2011.03.

008

28. Vinay K, Dilip Kumar SM (2016) Auto-scaling for deadline

constrained scientific workflows in cloud environment. In: 2016

IEEE annual India conference (INDICON), December 2016,

pp 1–6. https://doi.org/10.1109/INDICON.2016.7838908

29. Malawski M, Juve G, Deelman E, Nabrzyski J (2015) Algorithms

for cost- and deadline-constrained provisioning for scientific

workflow ensembles in IaaS clouds. Future Gener Comput Syst

48:1–18. https://doi.org/10.1016/j.future.2015.01.004 Special

section: business and industry specific cloud

30. Ghafarian T, Javadi B, Buyya R (2015) Decentralised workflow

scheduling in volunteer computing systems. Int J Parallel Emerg

Distrib Syst 30(5):343–365. https://doi.org/10.1080/17445760.

2014.973876

31. Workflow management system (2018) https://pegasus.isi.edu/

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

15278 Neural Computing and Applications (2020) 32:15263–15278

123

https://doi.org/10.1109/TCC.2014.2350490
https://doi.org/10.1016/j.jpdc.2013.12.004
https://doi.org/10.1016/j.future.2011.03.008
https://doi.org/10.1016/j.future.2011.03.008
https://doi.org/10.1109/INDICON.2016.7838908
https://doi.org/10.1016/j.future.2015.01.004
https://doi.org/10.1080/17445760.2014.973876
https://doi.org/10.1080/17445760.2014.973876
https://pegasus.isi.edu/

	A hybrid genetic algorithm for scientific workflow scheduling in cloud environment
	Abstract
	Introduction
	Related work
	Unconstrained SWf scheduling problems
	SWf scheduling problems with deadline constraint
	Optimization problems with deadline and budget constraints
	Optimization problem with other constraints

	Problem formulation
	Structural representation
	Problem statement

	Proposed approach
	Implementation of approach

	Simulation environment
	Simulation setup
	Framework simulation environment

	Implementation and results
	Conclusion
	References

