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Abstract
Competition in the industrial environment is increasingly intense, so it is of utmost importance that organizations keep their

assets in operation as much as possible (in order to produce more). In this context, there is a need for predictive

maintenance, a technique that detects the health of assets in real time, allowing failures to be diagnosed before they can

interrupt the operation of the assets, avoiding high financial losses. This study uses a sixteen-motor experimental setup with

four different known operating conditions. The vibration signal of these motors, through signal analysis, both in time and

frequency domains, is performed to evaluate the types and severities of the defects. An artificial neural network (ANN) is

used to classify these defects. Considering the vibration analysis, mechanical faults can be identified quickly and con-

veniently. For the development of the ANN, it was necessary to perform a preprocessing of the vibration signal (response

in time) due to the data size, which overwhelms the network. Thus, statistical data were used to extract key information

from the vibration signal. Finally, the neural network created based on this study’s methodology presents extremely

reliable results, allowing a quick and robust diagnosis of the motor operating condition.
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1 Introduction

Induction motors present high performance and reliability,

playing a critical role in many industrial sectors. However,

despite their reliability, they are subject to failure [26].

Being able to classify or predict failures (or operating

condition) is a task of great importance and crucial for

engineers, especially in the field of maintenance. One of

the possible solutions is through the use of artificial neural

networks (ANN) based on data from certain engines. An

effective ANN is able to efficiently predict the assessed

response saving time and maintenance costs.

Thus, the general industry’s demand for predictive

maintenance products and services is increasing. Predictive

maintenance is one that indicates the actual operating

conditions of equipment based on elements that report wear

or degradation process. Therefore, long-term maintenance

costs can be reduced with adequate predictive maintenance

techniques [18].

In this context, the vibration analysis method is a mature

and applicable alternative for predictive motor mainte-

nance. There are two important steps to implement the fault

diagnosis process: The first is signal processing and the

second is signal classification based on the characteristics

obtained in the previous step. The diagnosis is usually

much more difficult than the detection because different

failures may exhibit similar symptoms and multiple fail-

ures may occur at the same time [22].

Currently, artificial neural networks (ANN) techniques

are attracting attention in studies given their ability to

perform difficult tasks [5, 8, 12, 13], such as vibration

signal diagnosis, quickly and efficiently [14, 23, 25, 26].

Therefore, a neural network can contribute to the speedy

diagnosis of a failure by increasing the efficiency of pre-

dictive maintenance. Nevertheless, to the best of the

authors’ knowledge, very few efforts have been devoted to
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123

Neural Computing and Applications (2020) 32:15171–15189
https://doi.org/10.1007/s00521-020-04868-w(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0003-0811-6334
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-04868-w&amp;domain=pdf
https://doi.org/10.1007/s00521-020-04868-w


the development of ANN-based vibration data of three-

phase motors considering different experimental fault

conditions.

The main objective of this monograph is to analyze the

vibratory behavior of motors subject to different types of

defects and classify them. The specific objectives of this

study are: (i) Defect analysis using techniques such as FFT

(fast Fourier transform), evaluating the amplitude and

operating frequency variations in the studied motor; (ii)

create an artificial neural network capable of classifying

defects in three-phase induction motors; and (iii) encourage

the use of neural networks to assist vibration analysis,

showing the importance of marrying both techniques.

In this paper, a dynamic experimental study of three-

phase motors with different operating conditions is made.

The results show a very good fault classification of these

motors using ANN based on vibration signal data.

Although many studies have been reported on the vibration

analysis of rotating machines, very few have been focused

on the fault classification using different defects types as

presented in this manuscript. The work presented here

assesses the potential of ANN for a fast fault classification

in industry.

More specifically, the major contributions of this article

are summarized as follows: (i) experimental tests evaluat-

ing four different operating conditions in 16 three-phase

motors in terms of their vibratory responses; (ii) extraction

of different statistical data from the vibration signal and

evaluation through analysis of variance (ANOVA); and

(iii) development of an ANN in order to classify the

operating condition and defect.

This manuscript is organized as follows: In Sect. 2, a

general bibliographic review is presented, addressing an

overview of maintenance of the electrical motors in Brazil.

Section 3 shows the background of ANN. In Sect. 4, the

methodological procedure is presented. Section 5 presents the

main results and discussion about the fault classification based

on vibration data. Finally, Sect. 6 draws the conclusions.

2 Theoretical background

2.1 An overview of maintenance in electrical
motors in Brazilian industries

According to Moubray [21] and Fogliatto and Ribeiro [10],

the term maintenance is understood as the action of

repairing or performing services on equipment and sys-

tems. Such actions have the sole purpose of ensuring that

the equipment continues to perform its assigned activities.

Brown [7] defines predictive maintenance as an approach

that compares the tendency of measurements of the ana-

lyzed physical parameters (vibration, noise, temperature)

with the limits established for these parameters, in order to

detect, analyze and correct problems before they lead to

failure of equipment.

From the 1930s, there was the beginning of concern

with the maintenance of equipment. At that time, mainte-

nance was limited only to repairs made after the breakdown

of some equipment, which in most cases were simple and

oversized [17, 21].

After the first and second war, there was an increase in

mechanization and complexity of industrial facilities. With

the large-scale production, there was even more the need to

have greater availability and reliability of equipment. In

this context, the replacement of parts and equipment begins

before a possible breakdown, based on their expected

lifetime [10, 17, 21].

In the mid-1970s, the process of change in organizations

accelerated a change characterized by increased economic

competitiveness. In this scenario, the concern with relia-

bility and availability of equipment increased. Thus, a need

arose for maintenance where possible failures could be

identified before causing production stoppages and thus

arose the maintenance model that seeks ways to foresee a

possible break or stop and make the appropriate planning

of relevant actions [2, 21, 24].

Currently, the concept of maintenance is even broader as

it aims to reduce equipment failure and increase its avail-

ability by reducing the likelihood of failure. Also, the

processes in companies are more mature in concepts like

lean manufacturing, which makes machine reliability and

availability more critical [2, 24].

As discussed, maintenance techniques have evolved

according to the needs of industries. Thus, it is up to each

company’s maintenance staff to select the most cost-ef-

fective type of maintenance for each equipment within the

organization. According to a study by the Brazilian Asso-

ciation of Maintenance and Asset Management [2], the sum

of the corrective and preventive maintenance is 79% of all

maintenances performed, which is a relatively high per-

centage that demonstrates the technological backwardness

of the Brazilian industry in relation to the maintenance of

its assets. Table 1 and Fig. 1 elucidate better Brazilian

maintenance setting.

2.2 Maintenance on induction motors

Representing about 90% of all motors used in the world,

three-phase induction motors are widely used due to their

robustness, acceptable performance and low cost. Also,

with the advent of speed and torque control systems

applied to this type of motor, its use in critical processes or

great importance in the industry is common.

An induction motor consists basically of two parts: the

stator and the rotor. The stator is the static part and the
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rotor the moving part. The stator is made up of thin mag-

netic ring-shaped steel plates with internal grooves where

the windings are housed. The rotor is also composed of thin

sheets of magnetic steel and with the longitudinally housed

windings [24].

Figure 2 identifies the percentage associated with the

main components of the motor in the total recorded failures

in the industry [26]. This chart helps to understand the

main causes of failure in three-phase induction motors and,

therefore, will be studied further in the course of this work.

Bearing is a device that allows controlled relative

movement between two or more parts. It serves to replace

the sliding friction between the shaft and bearing surfaces

with a bearing friction. The bearing is basically made up of

two rings that have a track where the rotating elements

rotate, attached to a cage. There are several causes of

bearing failures. In addition to the normal failure process,

that is, the appearance of small cracks below the raceway

surface and bearing elements, there are other external

conditions that cause a reduction in the bearing’s lifetime,

the main ones being [24]:

• Contamination The process of contamination occurs

through small particles of varying hardness and abra-

sive nature which often contaminate the lubrication

winding.

• Corrosion The corrosion process is initiated by the

presence of water, acid, deteriorated lubrication, etc. As

the corrosion process advances, particles are expelled

resulting in the same abrasive action as contamination.

• Improper Lubrication Missing or excess lubrication

causes the bearing elements not to rotate properly in the

oil film, causing heating. This heating deteriorates the

lubricant, accelerating the failure process.

Table 1 Types of maintenance in each sector of Brazil’s industry Adapted from [2]

Sector Corrective (%) Preventive (%) Predictive (%) Others (%)

Sugar and alcohol, food and beverage 42 40 18 0

Aeronautical and automotive 42 48 4 5

Consumer electronics—electric energy 28 44 12 16

Chemical and sanitation 25 50 20 5

Mining and steel 60 23 13 5

Petrochemical oil 47 39 14 0

Pulp and paper and plastic 24 31 31 14

Building and services (EQ and MO) 45 44 5 6

Machinery and equipment—metallurgical 25 48 7 20

Overall average 38 41 14 8

Fig. 1 General average of Brazilian maintenance. Adapted from [2]
Fig. 2 Fault statistics on three-phase induction motors. Adapted from

[26]
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• Installation Problems Failures originated by improper

installation are caused by forcing the bearing against

the shaft or housing, resulting in physical damage to the

bearing. Other common problems generated by incor-

rect installations are: misalignment, shaft deflection,

inner race warp and outer race warp.

In addition, possible rotor breakdowns include the

development of rotor bar fractures, particularly in the

region of short rings. This type of failure is 35% of all

failures in the rotor as shown in Fig. 3.

Based on the above, this study will focus on the use of

vibration analysis techniques, directed to predictive main-

tenance in induction motors. The main faults found in this

type of motor are bearing failures and broken bar, also

stands out the mechanical unbalance, which can most often

be the root cause of another type of failure. Since these

three types of failures are the most common, the failures

will be studied and experienced in this work.

3 Artificial neural networks

The ability to learn by example is an important tool of

human intelligence that arouse researchers in artificial

intelligence, statistics, cognitive science and other related

studies. Algorithms that can inductively learn from exam-

ples have been used to solve real-world problems [1].

The artificial neural networks (ANN) can be defined as a

machine that is designed to model the way in which the

brain performs a particular task or function of interest; the

network is usually implemented using electronic compo-

nents or simulated by digital programming. To achieve

good performance, neural networks employ a massive

interconnection of simple computational cells called neu-

rons or processing units [15].

These systems are composed of several simple units (the

artificial neurons) that are properly linked to achieve

complex behaviors. Behavior is determined by the structure

of the connections (topology) between neurons and the

values of the connections (synaptic weights) [15].

3.1 ANN structure

The ability of humans to perform complex tasks and

especially their ability to learn comes from the parallel and

distributed processing of the brain’s network of neurons.

The neurons in the cortex, the outer layer of the brain, are

responsible for the cognitive. A new experience or learning

can lead to changes in brain structures. Such changes are

realized through a rearrangement of neuron networks,

reinforcing or hindering some synapses [15]. Figure 4 is a

simplification of a model of artificial neuron.

This model consists of three basic elements: a set of n

input connections (X1, X2, …, Xn) characterized by

synaptic weights (Wi1, Wi2, …, Win); an adder to accu-

mulate the input signals and an activation function that

limits the permissible amplitude range of the output signal

(Yi) to a fixed value [9].

The behavior of connections between neurons is simu-

lated by their weights, which may have negative or positive

values, depending on whether the connections are inhibi-

tory or excitatory. The effect of a signal derived from

another neuron is determined by multiplying the value

(intensity) of the received signal by the weight of the

corresponding connection (Xi �Wi). The sum of the values

of all Xi �Wi connections is performed, and the resulting

value is sent to the activation function, which defines the

output (Yi) of the neuron [9].

In a simplified form, one artificial neural network can be

seen as a graph where the nodes are neurons and the links

are the function of synapses, as shown in Fig. 5.

In an ANN’s full structure, the main parameters of the

network are: the number of neuron layers, the number of

neurons per layer, the types of connections between neu-

rons and the degree of connectivity between neurons.

3.2 The learning process

The learning process of an ANN requires examples of real

(or simulated/numerical) data. The interaction between

data and an ANN is given by learning paradigms [19]. Two

basic classes of learning paradigms can be considered:

supervised learning and unsupervised learning [15].

• Supervised learning In this type of learning, examples

are presented for the network and the network responseFig. 3 Three-phase induction motors rotor failure statistics. Adapted

from [24]
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is evaluated against the desired response. The differ-

ence between the two responses, known as the error

signal, is used to adjust the synaptic weights of the

network. This procedure is performed step by step until

the network responds correctly within a statistical sense

[15].

• Unsupervised learning In this type of learning, the

learning algorithms don’t want the knowledge of the

desired outputs, that is, not using examples of input and

output to be learned by the network. The ANN self-

organizing [15].

For a good ANN configuration, you should define a

model that is not too rigid to not faithfully model the data,

but, on the other hand, not so flexible as to model the noise

in the data.

3.3 Choose criteria for ANN

This is not a general rule, but below are parameters that

help in choosing the structure of the ANN.

3.3.1 Number of hidden layers

After study, it was observed that a large number of hidden

layers is not recommended, as each time the average error

during training is used to update the weights of the

immediately preceding layer, it becomes less accurate.

Only the output layer has a more accurate sense of the error

made by the network. The last hidden layer receives an

estimate of the error and the second to last hidden layer

receives an estimate of the estimate, and so on. Empirical

testing does not show great advantages in using two or

more hidden layers for minor problems. Therefore, for

most problems only one hidden layer is used and at most

two, for example, in case of function approximation

problems [7].

3.3.2 Number of neurons in hidden layer

Its definition is empirical, but care must be taken not to use

too many units leading the network to memorize training

data (overfitting) rather than extracting the general char-

acteristics that will allow a good generalization. On the

other hand, using a few units of neurons can force the

Fig. 4 Simplified representation

of an artificial neuron

Fig. 5 Simplified representation

of the artificial neural network
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network to spend a lot of time trying to find an optimal

representation [7].

There are some proposals on how to determine the

number of neurons in the hidden layers of an ANN and the

most used are:

• Define the number of neurons according to the input

and output layers of the network, for example, the

arithmetic mean between input size and output size

[19].

• Use the number of synapses ten times less than the

number of training patterns. If the number of patterns is

much larger than the number of synapses, the network

does not converge during training [7].

3.3.3 Learning rate and momentum

A very low learning rate makes learning the network very

slow, and if it is too high it causes training swings and

prevents convergence. Usually its value ranges between 0.1

and 1.0. Some programs have this adaptive value, so

choosing an initial value is not a problem. However, for

some programs this value is fixed and should not be too

high [7].

In addition, backpropagation learning can be speeded up

by using correct values of momentum. The value of the

learning rate can also influence whether the network

achieves a stable solution. If the learning rate value is too

large, then the weight changes no longer approximate a

gradient descent procedure.

As a matter of facts, using the largest learning rate

possible without triggering oscillation is desirable. This

would offer the most rapid learning and the least amount of

time spent waiting at the computer for the network to train.

One method that has been proposed is a slight modification

of the backpropagation algorithm so that it includes a

momentum term.

3.3.4 Training dynamics

The training dynamics can be divided into two main fronts:

• By default: Weights are updated after each training

pattern has been submitted. The order of pattern

presentation can be reorganized to speed up training [7].

• By batch: Weights are updated after all training

standards have been submitted to the net. This

technique is more stable and training is less influenced

by the order in which patterns are presented to the

network. But it becomes slow if the pattern set is large

and redundant. Although requiring more memory

compared to training by default, this type of training

is more stable though slower [7].

3.3.5 Training stop criteria

The training stop criteria can be defined in many ways, for

example:

• By number of seasons: This is the number of times the

pattern set is presented to the network. Too many

seasons can cause the network to lose its generalizing

power. But a very small number of times may not reach

its performance [7].

• By error: Training state is terminated after the mean

square error falls below a predefined value (e.g., 10-6).

This value should be adjusted according to the perfor-

mance of the network result. It is important to note that

a small value does not necessarily imply good gener-

alization [7].

• Validation: Training is interrupted every n epochs and a

network error estimation is performed on the test

dataset. From the moment, the measured error in the

test set goes up, the training is terminated. Thus, we

seek to know the exact moment when the network

begins to lose generalization [7].

4 Experimental methodology

This section will discuss all the details and methods used to

perform the controlled vibration experiment. In summary,

there are motors with four known different operating

conditions and a classification is realized through vibration

signal analysis.

In order to create and analyze the motor defects (fault

condition), two approaches have been adopted. For the

initial vibration response analysis, the experimental design

was based on the design of experiments (DOE) method-

ology, which is a statistical technique capable of modeling

and optimizing experiments. This technique is a technique

consolidated in the literature [3, 4, 20]. The first involves

the use of the motors until their failure, where the entire

process is monitored and changes in time can be analyzed.

As it is a lengthy process, failure is usually accelerated. In

the second approach, defects are artificially created, so it is

possible to compare with machines under normal operating

conditions. In this study, the second approach is adopted

considering induced faults.

4.1 Experimental setup

All tests were conducted at PS solutions. The bench com-

prises eight-motor used AC induction of 0.5 CV directly

coupled to a 6-blade fan (Fig. 6). Motor nameplate data are

in Table 2.
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Each pair of motor has a known operating condition,

where:

• Normal refers to the motors in its full operating

condition.

• Hole Bearing refers to the motor that has its bearing

drilled to simulate defects such as cracks and/or

deformations in the bearing (Fig. 7c).

• Broken Bar refers to a broken bar in the squirrel cage

rotor. In large motors, this structure is welded and may

break because it is a weak point (Fig. 7b).

• Mechanical Unbalance refers to an unbalance created

through a bolt and a nut made in the center of one of the

fan blades (Fig. 7a).

The vibration measurement was performed with a uni-

axial accelerometer IMI (Fig. 8). The sensor has a fre-

quency range of ± 3 dB (0.5 to 10,000 Hz), measuring

range of ± 50 g (± 490 m/s), cross-sensitivity of\ 7%,

sensitivity of 100 mV/g [10.2 mV/(m/s2)] and resonant

frequency in the order of 25 kHz. These characteristics

make the sensor suitable for the monitored vibration

intensity and frequency levels, since the motor mass is

much larger than the accelerometer and the monitored

vibration frequencies are low.

The accelerometer is fixed to the motor housing on the

bearing bracket by means of a threaded previously installed

(Fig. 8). In this position, the vibration signal is measured in

the radial direction of the motor shaft.

4.2 Vibration signal and conversion system

The acquisition of the vibration signal is made by the

system Preditor�, system developed and manufactured by

PS Solutions. The Preditor� allows 24-bit sampling at a

rate of 46,875 samples per second. The sampling time is

approximately 6 s. The signal conversion is done by the

software developed by PS solutions that comes with the

Preditor� itself. It can display both the vibration signal and

Fig. 6 Motor marathon

Table 2 Marathon motor plate data

f = 60 Hz f = 50 Hz

Power (HP) 0.5 0.33

Rotation (rpm) 3450 2850

Voltage (V) 208–230/460 190/380

Amperage (A) 2.1–2.2/1.1 2.0/1.0

Service factor 1.15 1.15

Fig. 7 Three different fault conditions: a unbalancing, b broken bar and c bearing
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export to a text file. In this work, we chose the option to

export to text file due to the need to process the signal in

the software MATLAB�.

The conditions during the experiment are simple: The

motor is mains powered at 60 Hz, without frequency

inverter or any kind of speed and torque control. This is

done to simulate an actual operating condition and provides

a stable condition for measurement. The vibration of each

motor was measured individually so that there is no

Fig. 8 IMI accelerometer and

accelerometer coupling

Motor #1 Motor #2 Motor #3

Motor #4

(for ANN 

validation)

Normal

Unbalancing

Broken bar

Bearing

Fig. 9 Scheme of 16 motors, divided into four different operating conditions and four datasets: three for the ANN training and one for validation
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interference from one motor to another. Each motor was

measured twice, totaling 16 vibration signals (Fig. 9).

4.3 Neural network architecture

For the best possible results, it is extremely important to

choose the style of neural network that best fits the type of

problem. A wrong choice at this stage will likely result in

failure to use the neural network. The software through the

toolbox Neural Network ToolboxTM offers four different

options of ANN, as follows: fitting, pattern recognition,

clustering and time series. For the problem at hand, pattern

recognition was chosen as the neural network style. It has

also been chosen a feed-forward neural network. In this

work, twelve vibration signals will be used for network

training and the remaining four vibration signals for testing

and validation of the neural network.

The choice of number of hidden layers depends on the

complexity of the problem studied. For the problem at

hand, the neural network will only classify the data based

on the patterns reported in the training. Therefore, a high

number of hidden layers are not required. Thus, only one

hidden layer was chosen for neural network. The activation

function of the hidden layer is a sigmoidal type. The ANN

structure is intimately linked to used datasets, and in this

study, a total of [20,4] neurons was chosen in the hidden

layer.

Input and target data are organized into two matrices.

The inputs matrix is formed by vectors that contain the

vibration signal data of the first 3 measurement sets, and

the targets matrix is also formed by target vectors (T),

where T = [Normal, Broken Bar, Bearing, Mechanical

Unbalance]. If T = [1 0 0 0], we have the normal operating

condition, if T = [0 1 0 0], we have a broken bar condition,

if T = [0 0 1 0], we have if the bearing failure condition

and if T = [0 0 0 1], then there is the mechanical unbalance

condition. Equation 1 best exemplifies the targets matrix

used for neural network training. As stated in previous

sections, backpropagation learning can be speeded up by

using correct values of momentum. In this study, a

momentum value of 0.90 was used.

output O½ � ¼ ONf g OBBf g OBef g OUf g½ �

¼

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

2
664

3
775 ð1Þ

where: {O-N} = {1 0 0 0}T, {O-BB} = {0 1 0 0}T,

{O-Be} = {0 0 1 0}T, {O-U} = {0 0 0 1}T are the output for

the conditions normal, broken bar, bearing and unbalance,

respectively.

A first attempt was to use the FFT of vibration signals as

input to the neural network, but this deal was prohibitive

given the excessive number of data, about 260 thousand

points per signal, these excess data confused the neural

network and the same that failed to come up with a con-

verged solution. Thus, a different approach to the inputs

had to be adopted, and this solution should extract from the

‘‘pure’’ signal information that characterizes it in a con-

densed way. After a literature review on the subject, we

came to the conclusion that using statistical parameters to

extract signal key information is the best way to solve the

problem.

According to Patel and Upadhyay [22] and Gaud et al. [11],

the best statistical parameters to characterize motor damage

through the vibration signal are: RMS, Peak, Skewness,

Kurtosis, Mean and Crest Factor.

Root Mean Square (RMS)

The RMS is defined as the square root of the mean of the

sum of squares of the sampled signal. Its formula is given

by Eq. 2.

I1 ¼ RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

ak � �að Þ2
vuut ð2Þ

where N = number of samples k = sample index ak = in-

dex sample k and a = mean of samples

Peak

The Peak marks the largest value found in the vibration

signal. It is calculated by her Eq. 3.

I2 ¼ Peak ¼ maxðakÞ ð3Þ

Skewness

This is the third-order moment over your average. This

measures the asymmetry of the data distribution. Its for-

mula is given by Eq. 4.

I3 ¼ Skewness ¼ 1

N

XN
i¼1

xi � l
r

h i2
ð4Þ

where i = sample index a, xi = the index, l = mean of

samples and r = standard variation of samples

Kurtosis

It is the fourth-order moment normalized by the square of

variance of a signal. It is a measure that characterizes the

‘‘flattening’’ of the normal curve. It is calculated by her

Eq. 5.

I4 ¼ Kurtosis ¼
1
N

PN
k¼1

ak � �að Þ4

a4RMS

ð5Þ

Mean (l)
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These are the average values of a signal in the time domain.

It indicates the central tendency of this database. Its for-

mula is given by Eq. 6.

I5 ¼ Mean ¼ l ¼
P

ak
N

ð6Þ

Crest factor (CF)

The Crest factor indicates how extreme the peaks are in a

waveform. It is calculated by her Eq. 7.

I6 ¼ Crest Factor ¼ apeak
aRMS

ð7Þ

In short, the created neural network collects the pure

vibration signal data, extracts the important information

from these signals through the six equations mentioned

above. With these results and targets defined, the neural

network will place weights on the equations to better rank

them among the four possible targets.

5 Results

5.1 Results of vibration analyses

In this section, we discuss the results obtained by vibration

analysis. It will be made to analyze for a dataset, that is, a

motor vibration signal in the condition typical one bearing

bore with vibration signal, a vibration signal of the

mechanical unbalance and vibration signal of the broken

bar.

Figure 10 shows the acceleration vibration signals

acquired under all four motors operating conditions for the

first motor group. It can be seen that the signal itself is very

similar, except that the amplitude is higher at bearing fault

and lower at normal operating condition.

By analyzing the amplitude of the vibration signals over

time, it is clear that the amplitude of the bearing signal is

large (i.e., highest amplitude level) compared to the normal

motor signal, confirming the sensitivity and effectiveness

(Intentionally left blank)

(a) Normal (b) Unbalancing

(c) Broken bar (d) Bearing fault 

Fig. 10 Time domain vibration

signal for the four operating

conditions of the electric motor
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of vibration analysis for bearing fault detection. For the

mechanical unbalance and broken bars, there is a consid-

erable increase in the amplitude of vibration, but only with

the signal in time cannot be concluded whether the vibra-

tion is adequate or not to detect the failure.

In addition, Fig. 10 shows vibration signals acquired

with a high sampling frequency, having more than 200

thousand points. Using a data vector of this size would be

prohibitive in neural network training. An alternative is to

analyze the vibration response in the time domain. Fig-

ure 11 shows the frequency domain response for the four

operating conditions. It can be concluded that the inserted

defects did not change the motor operating frequency

(* 59.8 Hz).

Analyzing the frequency spectrum, it can be seen that

the motor operating frequency is close to 60 Hz, that is, all

defects are in the early stage and are not about to cause the

motor to stop as a whole. Additional analysis revealed that

new amplitude peaks, at 547.9 Hz and 236.6 Hz, for the

bearing and unbalancing signals. These peaks reinforce the

effectiveness of bearing fault detection and the effective-

ness of mechanical unbalance fault analysis, given that

they have the same peaks in all signals. For the broken bar

signal there is no frequency peak, so to prove the effec-

tiveness of vibration analysis to detect this type of failure

another type of transform should be used or simply

vibration is not the most appropriate method.

5.2 Fault condition effects on the vibration
responses

As mentioned earlier, the pure vibration signal is incon-

venient when treated as input to the neural network. For

this, we chose to extract information from this signal

(vector) that could add more information quality and sen-

sitivity due to the evaluated failure. Figure 12 shows as an

example the six responses (inputs I1 to I6) evaluated, which

are statistical information of the signal.

In order to verify the behavior of the response distri-

butions and the central tendency for each type of analysis, a

(a) Normal (b) Unbalancing

(c) Broken bar (d) Bearing fault

Fig. 11 Frequency spectrum of

motors in each operating

condition
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boxplot was created, as shown in Fig. 13. This graph

allows to verify the descriptive statistics information,

where it is possible to verify that the values for mean

showed the lowest variability for all failure modes. The

RMS data present low-data discrepancy, analyzing indi-

vidually, but with different averages, mainly for the bear-

ing model. In skewness, the average values are very close;

however, the bearing model presented a higher level of

dispersion, compared to the others in this type of analysis.

For the analyses of Kurtosis and Crest Factor, a similar

behavior was verified in the average values; however, the

latter presented greater variability in the data distributions.

Finally, checking the peak analysis has low variability for

broken bar and normal modes, followed by greater vari-

ability (especially in the first quartile) for unbalance failure

mode. In addition, in this analysis it is possible to verify a

distribution behavior that indicates a high variability in

bearing mode, inferring a higher instability compared to

other modes, both of the same type of analysis as in the

others. It is important to highlight that none of the modes in

all analyzes presented outlier values.

Equally important, after verifying the variability of the

fault condition for each type of analysis, the relationship

between the response and the respective predictors can also

be evaluated. For this, one can use the main effects graphs,

considering a confidence interval (CI) of 95%, illustrated in

Fig. 14. It is possible to verify that Fig. 14a and b shows

behavior main effects, where the broken bar failure mode is

related to the lowest condition analyzed for both cases and

closest to the ideal condition, which is called normal. In the

skewness analysis (Fig. 14c), bearing failure mode has a

high value for the condition, but with behavior closer to the

normal condition. The same is verified for mean analysis

(Fig. 14e), but with higher values found for these condi-

tions. Regarding Fig. 14d, it can be inferred that the main

effect for Kurtosis analysis indicates that the Unbalance

failure mode exhibited the same behavior as the normal

condition. Finally, Fig. 14f indicates a distinct behavior,

where bearing and unbalance failure modes behave closer

to normal condition; however, one of them is related to the

higher value, while another is related to a lower value than

the ideal condition, respectively. It is important to notice

that according to Table 7 (‘‘Appendix’’), only the respon-

ses RSM, Peak and Kurtosis present a level of significance

of the main effect considering an interval of 95%. How-

ever, this does not restrict its inclusion in the proposed

method. It just indicates that it is not possible to reach

conclusions regarding the main effects.

5.3 ANN’s results

This section describes the results obtained by the artificial

neural network in two parts: The first presents the results

obtained with the training of the neural network, mainly in

the form of graphs. The second presents the validation and

testing of the neural network. A summary of the neural

network can be seen in Fig. 15.

As stated earlier, the ‘‘pure’’ vibration signal is pro-

hibitive to the neural network. Thus, statistical data were

used to extract important information to characterize a

vibration signal. Table 3 is the result of RMS, Peak,

Skewness, Kurtosis, Mean and Crest Factor for the 12

signals used for neural network feeding.

Fig. 12 Data extracted from the time domain vibration signal
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5.3.1 ANN training results

Network performance is measured by the mean square

error. Figure 16 shows the evolution of the network during

training. Epoch in this case means the amount of iterations

performed by the neural network. The mean square error

(MSE) results translate the network performance function.

It measures the network’s performance according to the

mean of squared errors. The MSE algorithm is an example

of supervised training, in which the learning rule is pro-

vided with a set of examples of desired network behavior

and can be calculated as shown in Eq. 8.

MSE ¼ 1

Q

XQ

k¼1

e kð Þ2 ¼ 1

Q

XQ

k¼1

t kð Þ � a kð Þ½ �2 ð8Þ

where t is the corresponding target output and a is the

network output. As each input is applied to the network, the

network output is compared to the target. The error (e) is

calculated as the difference between the target output and

the network output. The goal is to minimize the average of

the sum of these errors [6].

In addition, the confusion matrix shows the amounts of

correct and incorrect classifications. The correct ratings are

the green frames in the diagonal matrix; the red frames are

the incorrect ratings.

(a) RMS (b) Peak

(c) Skewness (d) Kurtosis

(e) Mean (f) Crest Factor
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Fig. 13 Boxplot for all the six evaluated input data for sixteen motors
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The confusion matrix, C, can be derived from the outer

product of the transpose of the target matrix, T and the

output matrix, Y, as shown in Eq. 9 [16].

C ¼ TTY =

Pm
k¼1

tk1yk1
Pm
k¼1

tk1yk2 � � �
Pm
k¼1

tk1ykc

Pm
k¼1

tk2yk1
Pm
k¼1

tk2yk2
Pm
k¼1

tk2ykc

..

. . .
. ..

.

Pm
k¼1

tkcyk1
Pm
k¼1

tkcyk2
Pm
k¼1

tkcykc

2
6666666664

3
7777777775

ð9Þ

If the neural network has been well trained, the per-

centage of misclassifications is very small, otherwise it is

recommended to change the number of neurons in the

hidden layer or even add another hidden layer. Figure 17

shows the neural network’s confusion matrix. The neural

network classified all data correctly, which reinforces that

the adopted parameters were correct.

The receiver operating characteristic (ROC) shows the

relationship between true positive and false positive. ROC

characteristic is a metric used to check the quality of

classifiers.

(a) RMS (b) Peak

(c) Skewness (d) Kurtosis

(e) Mean (f) Crest Factor
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Fig. 14 Mean of the main effects for all the six evaluated input data for sixteen motors
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The ROC curve is a performance measurement for

classification problem at various thresholds settings and

also represents degree or measure of separability. It tells

how much model is capable of distinguishing between

classes. The ROC curve is plotted with true positive rate

(TPR) (Eq. 10) against the false positive rate (FPR)

(Eq. 11).

TPR ¼ TP

TPþ FN
ð10Þ

FPR ¼ FP

TNþ FP
ð11Þ

where TP is the true positives, FN false negatives and FP

are the false positives.

The best classifiers will have a line from bottom left to

top left and top left to top right. Figure 18 shows the ROC

neural network created. From this curve, it is clear that the

neural network has classified all data correctly, with no

false positives.

The error histogram (error histogram) shows the error

between the target value and the value found by the neural

network after training. The more concentrated the his-

togram is near zero error (consider scale), the better the

neural network is trained. Figure 19 shows the error his-

togram of the trained neural network.

Fig. 15 Artificial neural network architecture considering 6 input, 20/4 neurons in hidden layer and 1 output

Table 3 Neural network inputs

for the training stage

considering three dataset

Condition RMS Peak Skewness Kurtosis Mean Crest factor

Normal (M1) 0.173 0.7372 - 0.0019 2.5793 0.0145 4.2622

Normal (M2) 0.1717 0.7078 0.0186 2.5078 0.0156 4.1225

Normal (M3) 0.1725 0.664 - 0.0056 2.6042 0.0129 3,8487

Broken bar (M1) 0.3217 1.1703 - 0.0433 2.2784 0.0131 3.6372

Broken bar (M2) 0.3437 1.1931 - 0.1787 2.039 0.0145 3.4715

Broken bar (M3) 0.3191 1,2002 - 0.0392 2.2738 0.0126 3.7608

Bearing (M1) 2.6521 13,6032 0.2983 4,2641 0.0131 5,1292

Bearing (M2) 2.5098 8.9542 - 0.1926 2.9662 0.0162 3.5677

Bearing (M3) 2669 12,367 0.3289 4.2058 0.0132 4.582

Unbalance (M1) 0.7937 2,4119 0.1628 2,4491 0.0167 3.0389

Unbalance (M2) 0.6333 2.5835 0.0694 2.6419 0.0127 4.0793

Unbalance (M3) 0.7558 3.0452 0.1292 2,4598 0.0121 4.0292
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5.3.2 ANN test and validation

To perform the validation of the ANN was used the four

remaining vibration signals with previously stated. These

data are unknown to the neural network, so it will be

possible to assess whether the Neural Network is really

well trained. To validate the neural network, tests were

performed, one to determine if the neural network is con-

sistent with itself and another to assess if it can classify the

four operating conditions correctly. In the first test, the

neural network was feed with four equal vibration signals

(Table 4) from a motor under normal condition and the

ANN was able to correctly and coherently classify the

motor operating condition. In the second test, the neural

network was fed with four different vibration signals

(mechanical, normal, broken bar, bearing). The results are

presented in Table 5.

Also, for this test, the neural network was able to cor-

rectly classify the motor operating condition. A final test

was also performed to validate that the network will not

misclassify a signal of an operating condition for which it

has not been trained. In fact, good ANN classification

results are not expected when using data outside the

training phase. On the other hand, in the particular problem

Fig. 16 Best training perfomance

Fig. 17 Confusion matrix

Fig. 18 Reciver operating characteristic (ROC)

Fig. 19 Error histogram
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of this study, the vibration response in the time domain for

electrical unbalance (Fig. 10c) is very similar to the case of

the broken bar (Fig. 20a). This type of situation could

generate a false positive classification, that is, if the ANN is

not properly trained, it would classify the electrical

unbalance condition as a broken bar.

Thus, the same motor was taken with an unknown fault

in the network, in this case an electrical unbalance condi-

tion, caused by a short circuit in one of the turns of the

motor. The electrical fault (unbalance) was carried out by

means of a cut in the internal turns of the motor, which

certainly causes deterioration in the operation of the motor.

This signal was also processed equally to all previous

signals and fed to the neural network. The result is pre-

sented in Table 6. Equation 8 shows the output result of

neural network fed with vibration signal of electric

unbalance.

output O½ � ¼

0

0:8858
0:1060
0:0082

8>><
>>:

9>>=
>>;

ð8Þ

For the signal of electrical unbalance, it was clear that

the network could not classify the signal as another con-

dition, since no value has come relatively close to 1. Thus,

it is concluded that the neural network is not biased

allowing a robust classification.

The results of the vibration analysis prove the effec-

tiveness of this method to detect faults in electric motors,

mainly faults of mechanical origin. In this case, the defects

were already known, but if they are not, by analyzing

vibration, bearing, mechanical unbalance defects are easily

identified by analyzing their FFT’s. The broken bar defect

is already a little more difficult to detect since its amplitude

is not as large as the other defects.

(a) (b)

Fig. 20 Electrical unbalance

fault a time response and

b frequency domain

Table 6 Electrical unbalance

inputs
Input RMS Peak Skewness Kurtosis Mean Crest factor

New motor M5 0.2975 1.1658 - 0.5685 3.8514 0.0021 3.9180

Table 4 Neural network inputs

for the validation stage

considering the last dataset of

motors #4

Condition RMS Peak Skewness Kurtosis Mean Crest factor

Normal (M4) 0.1718 0.6818 0.0267 2.5417 0.0139 3.9670

Broken Bar (M4) 0.3744 1.0175 - 0.1543 2.0290 0.0129 2.9261

Bearing (M4) 2.5166 9.7325 - 0.1967 2.9224 0.0143 3.8673

Unbalance (M4) 0.0610 2.4163 0.0696 2.6382 0.0129 3.9569

Table 5 Rating validation

Defect type Unbalance Normal Broken bar Bearing

Target [T] 0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

Output [O] 0.0000 0.9998 0.0000 0.0000

0.0000 0.0000 1.0000 0.0001

0.0000 0.0000 0.0000 0.9999

1.0000 0.0002 0.0000 0.0000

Bold values are indicate the output vector
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The results of the neural network were extremely sat-

isfactory. Compared to others studies that also used ANN

for similar purposes [11, 22, 26], the neural network cre-

ated showed a lower error and better performance. There-

fore, a high reliability neural network was created in the

classification of defects of the studied electric motor.

6 Conclusions

This work presented an application of artificial neural

networks aimed at classifying the operating conditions of a

three-phase induction motor. The use of a neural network

associated with vibration analysis was studied and verified

through an experiment.

This study is also relevant to the industry. Leading

companies are increasingly concerned with adapting to the

‘‘new industrial revolution,’’ that is, industry 4.0. Predictive

maintenance through vibration analysis with the aid of

neural networks is a technique that fits perfectly in this

context.

For the operating conditions used, the vibration signal

was sensitive enough to differentiate between different

conditions. However, not all defects can be satisfactorily

differentiated through the vibration signal, which makes it

important to add other methods such as chain or lubricant

oil analysis to assist in detecting as many faults as possible.

Finally, it is highlight good results obtained with the

artificial neural network for classifying operating condi-

tions of an induction motor. All the methodology used

proved to be efficient and can be used in future studies.

As a suggestion, there is an increased use of the neural

network to analyze not only the vibration signal, but also

other types of signals such as electric current and voltage to

extend the range of operating conditions that can be

detected.

Another proposal is the creation of a software based on

the presented methodology that can perform measurements

remotely and online. Since many devices have complicated

access or need constant monitoring. Finally, more efficient

transforms than FFT can be used to extract more infor-

mation from the vibration signal. Recent studies are suc-

ceeding to use the transformed wavelet and Hilbert-Huang

transform to analyze the vibration signal.
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Appendix: Analysis of variance of the main
effects

See Table 7.

Table 7 Analysis of variance of

the motor response
Source DF Adj SS Adj MS F value P value

RSM Condition 3 15.0113 5.00376 1144.66 0.000

Error 12 0.0525 0.00437

Total 15 15.0637

Skewness Condition 3 0.09703 0.03234 1.38 0.297

Error 12 0.28159 0.02347

Total 15 0.37862

Mean Condition 3 0.000003 0.000001 0.41 0.747

Error 12 0.000025 0.000002

Total 15 0.000028

Peak Condition 3 289.06 96.354 79.08 0.000

Error 12 14.62 1.218

Total 15 303.68

Kurtosis Condition 3 4.525 1.5083 10.24 0.001

Error 12 1.767 0.1472

Total 15 6.292

Crest factor Condition 3 1.562 0.5206 2.29 0.130

Error 12 2.726 0.2272

Total 15 4.288
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