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Abstract
In this paper, we propose a novel end-to-end model for multi-focus image fusion based on generative adversarial networks,

termed as ACGAN. In our model, due to the different gradient distribution between the corresponding pixels of two source

images, an adaptive weight block is proposed in our model to determine whether source pixels are focused or not based on

the gradient. Under this guidance, we design a special loss function for forcing the fused image to have the same

distribution as the focused regions in source images. In addition, a generator and a discriminator are trained to form a

stable adversarial relationship. The generator is trained to generate a real-like fused image, which is expected to fool the

discriminator. Correspondingly, the discriminator is trained to distinguish the generated fused image from the ground truth.

Finally, the fused image is very close to ground truth in probability distribution. Qualitative and quantitative experiments

are conducted on publicly available datasets, and the results demonstrate the superiority of our ACGAN over the state-of-

the-art, in terms of both visual effect and objective evaluation metrics.

Keywords Multi-focus image fusion � Adaptive weight block � Generative adversarial networks � End-to-end

1 Introduction

Due to the limitations of optical lenses, it is often difficult

for an imaging device to take an image in which all the

objects are captured in focus [13]. Thus, only the objects

within the depth-of-field (DOF) have sharp appearance in

the photograph while other objects are likely to be blurred.

Multi-focus image fusion is known as a valuable technique

to obtain an all-in-focus image by fusing multiple images

of the same scene taken with different focal settings, which

is beneficial for human or computer operators, and for

further image-processing tasks, e.g., segmentation, feature

extraction and object recognition [15, 18]. Therefore,

multi-focus image fusion has become a significant research

topic in the field of image processing [10].

In the past few decades, many methods for multi-focus

image fusion are continually proposed by researchers, and

these methods can be attributed to two categories: spatial

domain methods and transform domain methods. The

methods based on spatial domain can be further divided

into three groups according to different fusion rules

[2, 9, 10]: pixel-based, block-based, and region-based

fusion methods. Among them, the activity level measure-

ments generally adopt the gradient information as a refer-

ence. In terms of transform domain methods, after the

source images are transferred into other transform domains,

the fusion process is mainly implemented in the trans-

formed domains according to the characteristics of the

domains. The methods based on transform domain includes

discrete wavelet transform (DWT) [30], nonsubsampled

contourlet transform (NSCT) [9], sparse representation

(SR) [28, 33], subspace [29], etc.
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The existing fusion methods present excellent perfor-

mance in some respects. However, there are still some

shortages. First, existing methods often require manual

design of activity level measurements and fusion rules,

which become more complex and inadequate. Second,

generating a decision map is a very common step in the

existing multi-focus fusion methods, which is more likely

to be a classification problem based on sharpness detection.

However, although these methods can correctly classify in

most regions, it is often difficult to accurately determine

the focused and defocused regions well near the boundary

lines.

With the unprecedented success of deep learning, some

deep learning-based fusion methods have been proposed.

We will discuss the detailed exposition of deep learning-

based fusion methods later in Sect. 2.1. These works have

provided new ideas for multi-focus image fusion and

achieved promising performance. Nevertheless, there are

still some aspects need to be improved. On the one hand,

the deep learning framework is generally only applied to a

small part, e.g., feature processing, while the overall fusion

process is still in traditional frameworks. On the other

hand, almost all methods based on deep learning face the

need for post-processing, such as consistency checks and

decision map optimization, which is not end-to-end strictly.

In order to address the above challenges, in this paper,

based on deep learning, we propose a novel end-to-end

model for multi-focus image fusion, termed as a generative

adversarial network with adaptive constraints (ACGAN).

Due to the different gradient distribution (clear or blurred)

between the corresponding pixels of two source images,

direct fusion will result in the fused image between clarity

and blur, i.e., neutralization, which is not the result we

expect. Therefore, to obtain a clear fused image, an adap-

tive weight block is employed in our model to determine

whether source pixels are focused or not based on the

gradient. Concretely, the focused pixel shares a bigger

gradient, which is selected to be the input of generator to

obtain the fused image. In other words, two score maps are

generated for source images, which serve as the reference

to our specific loss function. In a result, the generator is

forced to generate a fused image that is consistent with the

focused regions in source images. In addition, to make the

fused image more similar to ground truth, a discriminator

network is applied to assess whether the fused image is

indistinguishable from the ground truth. In the stable ad-

versarial process between the generator and discriminator,

more information, e.g., texture details and spatial infor-

mation, can be preserved to meet this high-level goal. In

general, the advantages of our ACGAN are concluded as

follows: First, our method is an end-to-end model without

manually designing complex activity level measurements

and fusion rules, nor does it need any postprocessing.

Second, our method does not need to generate decision

map in the intermediate process, but extracts and recon-

structs pixel information into a fused image in pixel units,

so there is no blurring near the boundary line. Finally, the

adaptive weight block in our method guides the generator

to generate a fused image that is consistent with the

focused regions in source images, which will not suffer

from the neutralization phenomenon.

The major contributions of this paper involve the fol-

lowing three aspects: First, the proposed ACGAN is an

end-to-end deep learning-based method, which gets rid of

manually designing complex activity level measurements

and fusion rules, and does not require any postprocessing.

Second, the adaptive weight block based on gradient is

proposed in our method, guiding the generator to adap-

tively learn the distribution of the focused pixels. Third,

our fused results have good visual effect, which can avoid

the problems of blurring near the boundary line in decision

map-based methods and the neutralization phenomenon in

non-decision map-based methods.

The remainder of this paper is arranged as follows.

Sect. 2 describes some related work, including an overview

of existing deep learning-based fusion methods and a the-

oretical introduction of GANs and LSGAN. In Sect. 3, we

introduce our method, i, e., ACGAN, with the problem

formulation, loss functions and network architectures.

Qualitative and quantitative comparisons and ablation

experiments are performed in Sect. 4. We conclude in

Sect. 5.

2 Related work

In this section, a brief introduction of the existing deep

learning-based image fusion methods is given. Moreover,

we also present a brief explanation of generative adver-

sarial networks (GAN) and an improved network, namely

LSGAN employed in our work.

2.1 Multi-focus image fusion based on deep
learning

The deep learning-based methods are mainly based on

convolutional neural networks (CNN) and GAN. In the

methods based on CNN, Liu et al. [13] applied the con-

volutional neural network to the multi-focus image fusion

task for the first time, and the CNN is used here to classify

focused and defocused regions in order to generating a

decision map for fusion. Du et al. [4] regarded the detection

of decision map as an image segmentation problem

between the focused and defocused regions from source

images, and achieved segmentation through a multi-scale

convolutional neural network. Ma et al. [15] proposed an
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unsupervised encoder-decoder model, termed as SESF-

Fuse. In contrast to previous works, SESF-Fuse analysed

sharp appearance in deep feature instead of original image.

As for the methods based on GAN, Ma et al. [17, 20]

adopted GAN to the image fusion task for the first time,

which is also an unsupervised framework, named Fusion-

GAN. Innovatively, Xu et al. [19, 26] addressed multi-

resolution image fusion problem with an additional dis-

criminator, and established two adversarial games between

a generator and two discriminators to generate a fused

image. Then, Guo et al. [6] proposed FuseGAN for multi-

focus image fusion with least square GAN to enhance the

training stability. In addition, Xu et al. [27, 32] proposed

two frameworks for uniform image fusion, which can

addresses multi-focus, multi-modal and multi-exposure

image fusion.

2.2 Least square GAN

The GAN is first proposed by Goodfellow et al. [5] in 2014,

which is one of the generative models. The generator G and

discriminator D included in the GAN are two adversarial

models, where the generative model G captures the data

distribution and the discriminative model D is used to

determine whether the input is a generated sample or a real

sample. In addition, an adversarial game is established

between G and D. Particularly, the generator aims to

generate a sample to fool the discriminator, while the

discriminator tries to determine whether a sample is from

the real sample or not. Finally, the sample generated by the

generator cannot be distinguished by the discriminator.

In the following years after the advent of GAN, many

variants of GAN are proposed [12, 31]. Specifically, in

2017, Mao et al. [22] proposed the least square GAN, i.e.,

LSGAN, to improve the stability of training process. The

sigmoid cross entropy loss function for the discriminator

adopted in the regular GAN may lead to the gradient-

vanishing problem when training. Therefore, the least

squares loss function for the discriminator is introduced in

LSGAN to address the above mentioned problem. The

optimization functions for LSGAN are shown as follows:

min
D

VLSGANðDÞ ¼
1

2
Ex�PdataðxÞ½ðDðxÞ � bÞ2�

þ 1

2
Ez�PzðzÞ½ðDðGðzÞÞ � cÞ2�;

ð1Þ

min
G

VLSGANðGÞ ¼
1

2
Ez�PzðzÞ½ðDðGðzÞÞ � aÞ2�: ð2Þ

where b and c denote the labels for real data and fake data,

respectively, and a is the label that the generator expects the

discriminator to believe for fake data. One of the optimiza-

tion strategies is to set the b� a ¼ 1 and b� c ¼ 2, which

minimizing the v2 divergence between Pdata þ Pg and 2Pg.

The other is to set a ¼ b, which can force the generated

samples to be more similar to the real ones.

3 Proposed method

In this section, with analysis of the characteristics of multi-

focus images, we provide our problem formulation with the

proposed adaptive weight block, the definition and design

of loss functions. At the end of this section, we present the

design of network architecture concretely.

3.1 Problem formulation

Multi-focus images are images with different focused

regions. The essence of multi-focus image fusion is to

extract and integrate the most important information in the

source images, i.e., the focused regions, to a single image.

The focused region can be characterized by the intensity

distribution and texture details. The entire fusion procedure

is shown in Fig. 1.

To extract and integrate the focused regions in source

images, we propose an adaptive weight block, which is

employed to evaluate the sharpness of each pixel based on

the gradient, as presented in Fig. 2. The focused regions

share bigger gradient. Specifically, the pixels with larger

gradient are selected by us as the optimization target at the

corresponding pixel positions of the two source images,

while the smaller ones are abandoned. Therefore, the

specific content loss function designed by us with the

adaptive weight block can adaptively guide the fused

image to approximate the intensity distribution and gradi-

ent distribution of the focused regions from source images

Fig. 1 The fusion procedure of the proposed ACGAN
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at the pixel level. The ablation experiment of the adaptive

weight block is also conducted later in Sect. 4.5.1. In

addition, since the goal of our optimization is based on

each pixel, in order to avoid chromatic aberrations in the

fused image and ensure the overall naturalness of it, we add

the SSIM loss term. Based on the principle of statistics, the

mean of the larger scores in each source image patch is

calculated as the weight of corresponding SSIM loss term.

The effect of SSIM loss term will be verified later in

Sect. 4.5.2. Working with the adaptive weight block on

content loss, our ACGAN can simultaneously achieve the

clear and natural fused image.

To further improve the quality of the fused image and

bring it closer to our ideal ground truth, we add a dis-

criminator to establish an adversarial relationship with the

generator. The generator aims to generate a real-like image

based on our specifically designed content loss to fool its

corresponding discriminator, while the discriminator aims

to distinguish the differences between the generated image

and ground truth. Finally, the discriminator cannot distin-

guish the generated image from ground truth, and the fused

image can reach a higher quality, i, e, richer texture details

and more spatial information. The influence of the addi-

tional discriminator will be analyzed later in Sect. 4.5.3.

3.2 Loss function

The loss function in our work can be divided into the loss

of generator LG and the loss of discriminator LD.

3.2.1 Generator loss

The loss function of generator LG consists of content loss

LGcon
and adversarial loss LGadv

. Due to the instability of

GAN, the introduction of content loss adds a series of

constraints to the generator to achieve the fusion goal,

while the adversarial loss allows the fused image to meet

stricter requirements. LG is defined as follows:

LG ¼ LGcon
þ LGadv

: ð3Þ

Among them, LGcon
includes intensity loss, gradient loss

and SSIM loss, which can be expressed as follows:

LGcon
¼ Lint þ a1Lgrad þ a2LSSIM; ð4Þ

where a1 and a2 are used to control the trade-off, which

will be analyzed later in Sect. 4.5.4.

The adaptive weight block acts on the intensity loss Lint

and gradient loss Lgrad, which guides the generator to

generate a fused image that is consistent with the focused

regions in pixel level. Concretely, the Lint can guide the

fused image to have the same intensity distribution as the

focused regions in source images, which is presented as

follows:

Lint ¼
1

HW

X

i

X

j

ðS1i;j �minðS1i;j ; S2i;jÞÞ

� ðIfi;j � I1i;jÞ
2 þ ðS2i;j �minðS1i;j ; S2i;jÞÞ

� ðIfi;j � I2i;jÞ
2;

ð5Þ

where H and W mean the height and width of the source

images, i.e., I1 and I2, and the fused image, i.e., If . In

particular, Sð�Þ is the score map generated by the adaptive

weight block based on the gradient, whose size is also

H �W . i and j mean the pixel in the i-th row and the j-th

column. The minðS1i;j ; S2i;jÞ means the minimum gradient

score of the corresponding pixel in the source images.

Similarly, the Lgrad is employed to guide the fused

image to have the same gradient distribution, i.e., texture

details, as the focused regions in source images. Lgrad is

formalized as follows:

Lgrad ¼
1

HW

X

i

X

j

ðS1i;j �minðS1i;j ; S2i;jÞÞ

� ðrIfi;j �rI1i;jÞ
2 þ ðS2i;j �minðS1i;j ; S2i;jÞÞ

� ðrIfi;j �rI2i;jÞ
2:

ð6Þ

On this basis, we employ the SSIM loss term to avoid

chromatic aberrations in the fused image and ensure the

overall naturalness of it. It is worth noting that, for each

overall source image, structural information with a larger

average gradient is preserved. Specifically, the LSSIM is

defined as follows:

Fig. 2 The source images and corresponding gradient maps. From left to right: source image 1, source image 2, the gradient map of source image

1, and the gradient map of source image 2
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LSSIM ¼ 1

HW

X

i

X

j

ðS1i;j �minðS1i;j ; S2i;jÞÞ

� ð1� SSIMIf ;I1Þ þ ðS2i;j �minðS1i;j ; S2i;jÞÞ
� ð1� SSIMIf ;I2Þ;

ð7Þ

where SSIM stands for structural similarity and is an

indicator for measuring the similarity between the source

images and the fused image. The larger the SSIM, the more

similar the structure of the fused image is to the source

image. Mathematically, SSIM is defined as follows:

SSIMX;F ¼
X

x;f

2lxlf þ C1

l2x þ l2f þ C1

� 2rxrf þ C2

r2x þ r2f þ C2

� rxf þ C3

rxrf þ C3

;

ð8Þ

where the three items on the right hand reflect the com-

parisons of brightness, contrast and structural, respectively.

x and f express the image patches in source image X and

fused image F. l denotes the mean value, while r denotes

the standard deviation/covariance.

The adversarial loss of the generator LGadv
is used to

force the fused image to achieve a higher quality, which is

formalized as follows:

LGadv
¼ 1

N

XN

n¼1

�
DðInf Þ � aÞ2; ð9Þ

where N denotes the number of fused image, and we

employ a as the probability label that the generator expects

the discriminator to judge the fused image.

3.2.2 Discriminator loss

The discriminator in ACGAN plays a role of discriminat-

ing between the ground truth and the generated fused

image. The adversarial loss of discriminator can calculate

the least square loss to identify whether the distribution in

fused image is unrealistic, and encourage the fused image

to match the realistic distribution. The discriminator loss

LD is defined as follows:

LD ¼ 1

N

XN

n¼1

½DðInf Þ � b�2 þ ½DðIngÞ � c�2; ð10Þ

where b is the random label of the fused image, which is

expected to be small enough, while c is the random label

of ground truth, which is expected to be large enough, as

the fused image is expected to be judged by discriminator

as fake data, while the ground truth is expected to be real

data.

3.3 Network architecture

3.3.1 Generator architecture

The network architecture of generator is illustrated in

Fig. 3. The design of our generator draws on the idea of the

pseudo-siamese network. For two different source images,

we use different parameters to extract different features

with two branches, which is suitable for processing source

images with different focused regions. Adequate informa-

tion exchange is the biggest characteristics in our genera-

tor, which is reflected in the following three parts.

First, the information exchange on each branch as shown

in red, green and purple arrows: Similar to DenseNet [22],

each layer is established a short direct connection with

other layers in a feed-forward fashion. Avoiding vanishing

gradients, strengthening feature propagation and reducing

the number of parameters are the main advantages of this

design. In particular, the convolution kernel of the first

convolutional layer is 5� 5, while the others in the next

three convolutional layers are 3� 3. Second, the infor-

mation exchange between branches as shown in blue

arrows: The information between branches is also

exchanged by concatenating and convolution, which can be

seen as ‘‘pre-fusion’’. Third, the final fusion: the outputs of

two branches are concatenating together, which is the input

of the last convolutional layer. The output of the last

convolutional layer with the kernal size of 1� 1 is the

fused image. It is worth noting that throughout the process

we use ‘‘SAME’’ as the padding mode to keep the size of

the feature map consistent with source images.

3.3.2 Discriminator architecture

The discriminator is designed to establish an adversarial

relationship with the generator. Particularly, it aims to

distinguish the generated images from the ground truth,

which is illustrated in Fig. 4. There are four convolution

layers with the kernal size of 3� 3 and one linear layer

with the kernal size of 1� 1 in the discriminator. The leaky

ReLU activation function is employed in all four convo-

lution layers with the stride of 2. We use the last linear

layer to acquire the probability scalar.

4 Experimental results and analysis

In this section, we validate the effectiveness of our

ACGAN by comparing it with several state-of-the-art

methods on publicly available datasets. Not only the

qualitative comparisons but also the quantitative compar-

isons are implemented in our work. We also conduct the

Neural Computing and Applications (2020) 32:15119–15129 15123
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ablation experiments of the adaptive weight block, the

SSIM loss term, and the discriminator. Moreover, the

analysis of a1 and a2 is also performed.

4.1 Experimental settings

The dataset we train our network is from a public dataset

website1. In order to verify the generalization ability of our

model, we test our network in different public multi-focus

image datasets, i.e., Lytro dataset [23] and some standard

images for multi-focus image fusion2. The image pairs

have been accurately aligned, and image registration

techniques are required for unaligned images [16, 21].

When training, the expansion strategy of tailoring and

decomposition is employed in our work to get a larger data

set, and the training set is cropped to 23, 714 groups of size

60� 60 with two source images and one ground truth in

each group. We employ 30 image pairs from the two

datasets for testing.

The detailed training procedure is summarized in Alg. 1.

We train the generator and discriminator iteratively to

establish an adversarial relationship. Among them, our

total number of epoch is m, it takes n steps to train each

epoch, the number of training generator is x times of the

number of training discriminator, and the batch size is set

as k. Concretely, m, x and k is set to 20, 2 and 32,

respectively. The n is the ratio between the whole number

of patches and batch size. We update all parameters by

AdamOptimizer in our ACGAN. Moreover, we set a1 ¼ 3

and a2 ¼ 10 in Eq. (4).

In addition, the images in training data are grayscale

images with single channel, while the images in testing

data are color images with RGB channels. In order to fuse

the images in testing data with the trained model, YCbCr

color space is employed in our work. Y channel (luminance

channel) can represent structural details and the brightness

variation, which is devoted to participating in fusion. Cb

and Cr channels are chrominance channels, which should

not be changed. Finally, the fused image is transferred back

to RGB color space with Cb and Cr channels to acquire the

final result.

4.2 Comparative methods and evaluation
metrics

We select five state-of-the-art methods to evaluate our

ACGAN on publicly available datasets, including, GFDF

[24], DSIFT [14], S-A [11], CNN [13] and SESF [15]. In

order to have a comprehensive assessment. CNN and SESF

are methods based on deep learning, while others are tra-

ditional methods, and GFDF, DSIFT, CNN and SESF are

methods based on the decision map.

In order to have a more accurate evaluation of the

experimental results. we utilize six metrics to evaluate the

fusion results, including, sum of the correlations of dif-

ferences (SCD) [1], visual information fidelity (VIF) [8],

correlation coefficient (CC) [3], QAB=F , which measure

between fused image and source images, and entropy (EN)

[25], standard deviation (SD) [25], which measure the

fused image itself.
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1 https://sites.google.com/view/durgaprasadbavirisetti/datasets.
2 https://www.mathworks.com/matlabcentral/fileexchange/45992-

standard-images-for-multifocus-image-fusion.
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4.3 Qualitative comparisons

The intuitive results on four typical image pairs are shown

in Fig. 5. Our ACGAN not only performs well on the

overall image but also in local details, especially for the

boundary of focused and defocused regions. As can be seen

in the enlarged regions in the red boxes in the above two

groups of results, the results of GFDF, DSIFT, CNN and

SESF that are all based on decision map cannot accurately

retain details near the junction of focused and defocused

regions, and lose details due to misclassification, e.g., the

pip on the ceiling and details between fingers. On the

contrary, our ACGAN can accurately preserve the details

in the focused regions. In addition, as for the remaining

comparative method that are not based on the decision

map, such as S-A, it suffers from the neutralization phe-

nomenon and blurring near the boundary line, e.g., the

details between the fingers in the upper right group, the

edge of the hat in the bottom left group and the building

behind the monkey in the bottom right group. By com-

parison, our ACGAN can preserve them better.

4.4 Quantitative comparisons

The quantitative comparisons of our ACGAN with the

competitors on the 30 image pairs in the dataset are also

reported, which is summarized in Fig. 6. As can be seen

from the statistical results, our ACGAN can achieve the

largest mean values on all six metrics. These results

demonstrate that our method has the greatest correlation

with source images and the best contrast, and the edge

information can be preserved to the greatest extent. In

addition, our method can perform the best visual effect.

In order to verify the convenience of our method, the

mean and standard deviation of running time for our

ACGAN and the competitors are presented in Table 1,

where the methods, i.e., SESF and our ACGAN are tested

on GPU RTX 2080Ti, while other methods are tested on

CPU i7-8750H (The testing environments of the competi-

tors are consistent with the original paper). Clearly, our

ACGAN can also perform comparable efficiency.

4.5 Ablation experiments

4.5.1 Adaptive weight block analysis

The adaptive weight block is employed in our model to

guide the generator to adaptively learn the distribution of

the focused pixels, avoiding the neutralization phe-

nomenon. In order to show the effect of the adaptive

weight block, we perform the following comparative

experiments: (a) The adaptive weight block is not

employed. (b) The adaptive weight block is employed. The

experimental settings of two comparative experiments are

the same and the results are shown in the Fig. 7. By

comparison, The fused result without the adaptive weight

block suffers from the neutralization phenomenon, while

the fused result with the adaptive weight block can present

Fig. 5 Qualitative results on the Lytro dataset. In each group, the first

column are the source images; the second column are the results of

GFDF (2019) and CNN (2017); the third column are the results of

DSIFT (2015) and SESF (2019), and the fourth column are the results

of S-A (2018) and our ACGAN

Neural Computing and Applications (2020) 32:15119–15129 15125
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the focused regions well. As a result, it proves that the

adaptive weight block can avoid the neutralization phe-

nomenon well.

4.5.2 SSIM loss term analysis

In order to make the fused image more similar to the

focused regions in the source image, including the color

distribution and overall naturalness, the SSIM loss term is

introduced to address the above issues. The effect of the

SSIM loss term is verified by the following comparative

experiments: (c) The SSIM loss term is not employed.

(d) The SSIM loss term is employed. The experimental

settings of two comparative experiments are the same and

the results are shown in the Fig. 8. The fused image with

the SSIM loss term employed has almost the same color

distribution as the focused area in the source image. On the

other hand, the fused image without the SSIM loss term

suffers from the chromatic aberrations with darker color,

whose overall naturalness is also worse than the other one.

Table 1 The mean and standard

deviation of running time in

different methods. (unit:

second)

Methods GFDF [7] DSIFT [14] S-A [11] CNN [13] SESF [15] ACGAN

Mean 0.2816 5.8540 0.2435 116.9590 0.3396 0.0421

STD 0.1251 3.5241 0.1032 54.3958 0.2245 0.0221

Fig. 7 Ablation experiment of the adaptive weight block. From left to right: source image 1, source image 2, the fused result without adaptive

weight block and the result with adaptive weight block
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Therefore, it can be concluded that the SSIM loss term has

a positive impact on the fused image.

4.5.3 Discriminator analysis

We use the discriminator to establish a stable adversarial

relationship with the generator, forcing the fused image to

be more similar to ground truth, i.e., the focused regions in

source images. In order to show the effect of the discrim-

inator. The following comparative experiments are per-

formed: (e) The discriminator is not employed. (f) The

discriminator is employed. The experimental settings of

two comparative experiments are the same and the results

are shown in the Fig. 9. The result with the discriminator is

more similar to the focused regions in the source image. In

contrast, the result without the discriminator suffers from

more blurred details. It can be seen that the discriminator

plays an important role in the fusion process.

4.5.4 Parameter analysis

In our work, Lint and Lgrad are employed to guide the fused

image to have the same intensity and gradient distribution

as the focused regions in source images, and the LSSIM is

used to avoid chromatic aberrations in the fused image and

ensure the overall naturalness of it based on Lint and Lgrad.

Therefore, in order to obtain the optimal values of a1 and

a2, we first analyze a1 without LSSIM. We select 5 values

(0.3, 1.5, 3, 4.5 and 6) for a1, and determine the optimal

value of a1 by comparing the results of quantitative com-

parison, which is summarized in Fig. 10. As can be seen

from the statistical results, when a1 ¼ 3, the results of the

quantitative comparison are optimal overall. Therefore,

parameter a1 is determined to be set to 3.

Next, based on a1 ¼ 3, we add the LSSIM loss term for a

higher fusion quality. Similarly, we also select 5 values (1,

5, 10, 15 and 20) for a2, and determine the optimal value of

a2 by comparing the quantitative comparison results, which

is summarized in Fig. 11. As can be seen from the statis-

tical results, when a2 ¼ 10, the results of the quantitative

comparison are optimal overall. Therefore, parameter a2 is
determined to be set to 10.

5 Conclusion and future work

In this paper, we propose a new end-to-end model for

multi-focus image fusion based on generative adversarial

networks, termed as ACGAN. Our ACGAN overcomes the

difficulty of neutralization phenomenon and blurring near

the boundary line with an adaptive weight block. In addi-

tion, an adversarial relationship between the generator and

discriminator is established to generate the fused images of

higher quality. For qualitative experiments, our ACGAN

not only performs well on the overall image but also in

local details, especially for the boundary of focused and

Fig. 8 Ablation experiment of the SSIM loss term. From left to right: source image 1, source image 2, the fused result without SSIM loss term

and the result with SSIM loss term

Fig. 9 Ablation experiment of the discriminator. From left to right: source image 1, source image 2, the fused result without discriminator and the

result with discriminator
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defocused regions. Quantitative experiments verify that our

method performs better than the existing state-of-the-art

methods on six widely used metrics.

There may be potential limitation in our work, and our

method is not based on decision map. In the existing

methods based on decision map, the pixels of the fused
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shown in red and suboptimal values in blue (color figure online)
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Fig. 11 Quantitative comparison of different a2 values. Means of metrics for different a2 values are shown in the legends. Optimal values are

shown in red and suboptimal values in blue (color figure online)
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image are completely consistent with the pixels of the

source images. In contrast, the pixels in our fused image

are obtained by learning the pixels in the focused regions in

the source images. Although it can overcome the problem

of blurring near the boundary line in the existing decision

map-based methods and present good visual effect, it is

difficult for the pixels in our fused image to be completely

the same as the pixels in the focused regions in the source

images. Therefore, in our future work, we will be com-

mitted to solving the problem of blurring near the boundary

line based on decision map.
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