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Abstract
A recent metaheuristic algorithm, such as Whale optimization algorithm (WOA), was proposed. The idea of proposing this

algorithm belongs to the hunting behavior of the humpback whale. However, WOA suffers from poor performance in the

exploitation phase and stagnates in the local best solution. Grey wolf optimization (GWO) is a very competitive algorithm

comparing to other common metaheuristic algorithms as it has a super performance in the exploitation phase, while it is

tested on unimodal benchmark functions. Therefore, the aim of this paper is to hybridize GWO with WOA to overcome the

problems. GWO can perform well in exploiting optimal solutions. In this paper, a hybridized WOA with GWO which is

called WOAGWO is presented. The proposed hybridized model consists of two steps. Firstly, the hunting mechanism of

GWO is embedded into the WOA exploitation phase with a new condition which is related to GWO. Secondly, a new

technique is added to the exploration phase to improve the solution after each iteration. Experimentations are tested on

three different standard test functions which are called benchmark functions: 23 common functions, 25 CEC2005 func-

tions, and 10 CEC2019 functions. The proposed WOAGWO is also evaluated against original WOA, GWO, and three

other commonly used algorithms. Results show that WOAGWO outperforms other algorithms depending on the Wilcoxon

rank-sum test. Finally, WOAGWO is likewise applied to solve an engineering problem such as pressure vessel design.

Then the results prove that WOAGWO achieves optimum solution which is better than WOA and fitness-dependent

optimizer (FDO).

Keywords Whale optimization algorithm � Grey wolf optimization � Benchmark test functions � Nature-inspired
algorithms � Engineering problem � Solving pressure vessel design

1 Introduction

Optimization is the process to discover an optimum solu-

tion in a feasible time. This area has been very dynamic

since proposing a genetic algorithm (GA) and differential

evolution (DE). Therefore, the number of optimization

problems are increasing and becoming more complex.

Consequently, these problems require better optimization

methods in order to be solved [1]. There might be several

efficient algorithms that can be used to solve a specific

problem. However, we cannot consider naming one of

them as the best before evaluating it against the others on

the problem. As a result, optimization algorithms can be

used to solve different problems effectively [2]. There are

two types of optimization algorithms: randomized and

deterministic. The process of executing deterministic

requires at most one direction toward the solution; other-

wise, it is terminated. However, the randomized or

stochastic technique executes randomly and violates the

deterministic constraints [3, 4]. Overall, stochastic is

classified as heuristic and metaheuristic. Nature-inspired

metaheuristic algorithms can solve real-world problems

and standard mathematical functions efficiently in their
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exploration and exploitation phases. However, balancing

between these two phases is a crucial problem in which

metaheuristic optimizations are suffered from [5].

NP-hard problems have been solved by most recent

metaheuristic algorithms such as job scheduling problem

[6], task assignment problems [7], quadratic assignment

[8], travel salesman person [9], vehicle routing problem

[10], home health care scheduling problem [11] and fre-

quency assignment problem [12]. The most common

algorithms are namely evolutionary algorithm (specifically

GA) [13], particle swarm optimizer (PSO) [14], artificial

bee colony (ABC) [15], whale optimization algorithm

(WOA) [16] and grey wolf optimizer (GWO) [17].

Mirjalili and Lewis proposed WOA in [16]. This meta-

heuristic algorithm is motivated by the humpback whale

hunting mechanism. This algorithm presented significant

results against other metaheuristic algorithms as WOA has

random numbers to balance between its two phases. It has

better exploration capability by using an updating mecha-

nism. It also uses a random search mechanism in order to

change the position for finding optimum solutions. Both

exploration and exploitation execute independently so that

WOA can avoid local optima and obtain better convergence

speed. Despite this mechanism in WOA, other common

metaheuristic algorithms do not have specific operators to

split the exploration and exploitation, so they fallouts into

local optima [16]. WOA has better performance against

PSO, gravitational search algorithm (GSA), DE, and feed-

forward error propagation (FEP) [16]. According to [18],

WOA performs well in terms of convergence time and

balancing between exploration and exploitation.

Despite having efficient performance against common

algorithms, WOA has some drawbacks. For example, using

a randomization mechanism in WOA for complex prob-

lems increases computational time [19]. Convergence and

speed are not efficient in both of the phases because they

depend on a single parameter which is a [20]. WOA results

in poor performance in jumping out from local solutions as

the encircling mechanism is used in the search space [21].

Furthermore, not improving the best solution in a better

way is another issue that is related to the encircling

mechanism [22], and also the WOA exploitation phase

requires improvement in order to obtain better solutions. In

addition, controlling parameters is crucial in order to

improve the performance of the algorithm. It is worth

mentioning that the parameter setting has three categories

according to their strategies. These are determinist, adap-

tive, and self-adaptive control parameters. Each one of

them has an effect on the performance of the algorithm

setting. Consequently, these strategies are useful to be

involved to improve WOA [23].

As a result, WOA has been hybridized with various

algorithms. For example, WOA is integrated with the local

search (LS) strategy in order to tackle the ordering form of

the flow shop-scheduling problem. A swap mutation

operator is also used to diversify the population to improve

performance. Furthermore, WOA could escape from local

optima by adding reverse-inserted operation. Therefore, the

proposed hybrid Whale algorithm (HWA) improved the

performance and the solution quality of WOA due to using

LS [24].

WOA is also hybridized with Colliding Bodies Opti-

mization (CBO) due to improving the solution quality and

convergence rate. In WOA-CBO, whales are divided into

two groups which are explorer and imitator. This division

derived from the original CBO. Explorer is those agents

who are in the range of lower half whale. However, the

upper half is called imitator. Explorer whale changes its

position according to the best solution while the imitator

updates its position depending on the other half of the

whale which is lower [25].

Brain storm optimization (BS) is hybridized with WOA

to tackle the difficulty of stagnation in local optima which

WOA has it. In BS-WOA, the BS update function is added

inside the WOA to update the position of whale based on a

coefficient and search area [26].

PSO is an efficient algorithm in the exploitation phase.

Thus, it is embedded inside WOA for the exploitation

phase while WOA only works in the exploration phase.

Therefore, the hybridized algorithm improved and pro-

duced better results comparing to WOA and PSO [27].

Because of having problems regarding local optima, the

BAT algorithm is used with WOA for the exploration

phase. The result of WOA–BAT showed that WOA–BAT

improved well comparing to WOA and BAT algorithms

[18]. The more detail of WOA modification and

hybridization has been described in [18].

Grey wolf optimization was proposed in 2014 in [17]. It

is a metaheuristic technique which is inspired by the grey

wolves’ behavior. This algorithm shows a competitive

result against other metaheuristic algorithms, for instance,

PSO, DE, GSA, and FEP [28]. It is very competitive in the

exploitation phase compared to others, while it has merit

results in the exploration phase. It is also presented a better

performance in half of the 29 functions due to avoiding

local optima [17].

Despite the fact of having better performance, GWO has

issues relating to the balance between exploration and

exploitation [29]. It also has a drawback because of having

the inability to solve nonlinear equation systems and

unconstrained optimization problems [30]. It has an effi-

cient updating mechanism. Though, this mechanism can be

improved and enhanced [31]. Initializing grey wolves’

population is randomized in order to diversify the popu-

lation. Still, this practice had a drawback and it was solved

in [32].
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WOA has the following issues [21, 28] which are the

main motivations of hybridizing GWO with WOA in this

paper:

1. WOA suffers from avoiding local optima as it uses

encircling search mechanism.

2. Improving solution in WOA after each iteration is not

sufficient.

3. WOA has low performance in the exploitation phase.

The above problems, which WOA has, motivated

authors for proposing the hybridized algorithm. Conse-

quently, authors have decided to choose a hybridized of

GWO and WOA to produce better performance in the

exploitation phase by GWO, especially when it is evaluated

by unimodal benchmark functions. GWO also has a greater

capability of exploitation by using multimodal benchmark

functions. Thus, this paper aims to propose a hybridized

approach to overcome the WOA problems by using two

effective ways: The first step is saving the best solution for

each iteration, and the second step is comparing each new

solution against the best solution in the exploration phase.

If the result is better than the best solution, the positions of

the agents will get changed; otherwise, they are staying in

the old positions. Adding the GWO hunting mechanism in

the exploitation phase is the second method in order to

enhance the performance of WOA.

The proposed WOAGWO is differentiated from the

above hybridizations of WOA as WOA has not been

hybridized with GWO. This hybridization combines two

techniques (WOA with GWO) and adds a condition to

update positions inside the exploitation phase. The pro-

posed algorithm is also distinguished from WOA and

GWO as a new update method is added to the exploration

phase of WOA. GWO hunting mechanism for updating the

position of the whale is also added to the exploitation

phase. As a result, WOAGWO is a new suggested

hybridization which enhances the performance of WOA.

The structure of our paper is organized as WOA with its

mechanism is presented in Sect. 2 and then WOA modifi-

cations and hybridizations are explained. After that, GWO

modification and hybridization are described in Sect. 3.

Our proposed approach WOAGWO is described in detail in

Sect. 4. In Sect. 5, WOAGWO is evaluated against 23

common benchmark test functions [16], 25 benchmark test

functions from CEC2005, and 10 benchmark functions in

CEC2019. Next, statistical results are presented. Further-

more, it is evaluated against other common algorithms, for

example, DE, ABC, BSO, and WOA. Then, WOAGWO is

presented to solve an engineering problem namely: pres-

sure vessel design problem. Finally, the conclusion with

future works is presented.

2 WOA

A metaheuristic algorithm such as WOA is derived from

whale behavior. Mirjalili and Lewis first developed this

algorithm [16]. It can be said that the school of small fish

that are swimming close to the surface of the water is the

target to be hunted by a humpback whale. The whale is

creating bubbles by shrinking its circle so these circles can

be called 9 shaped paths. This algorithm is divided into two

phases. The exploration is the first phase which includes

the random strategy for searching the prey. Encircling prey

can be done in the second phase with the spiral bubble-net

attack. This phase is also called the exploitation phase. The

following subsections represent details of each phase of

WOA [33].

2.1 Encircling prey and bubble-net attacking
mechanism

In order to begin the hunt, the whale must first locate the

prey. The whale’s position is not optimized. Therefore, the

whale required to change its position to encircle the prey by

using Eqs. (1) and (2).

X
!

iþ 1ð Þ ¼ X~
�
ið Þ � A

!� D~ ð1Þ

D~ ¼ C
!� X~�

ið Þ � X~ ið Þ
�
�
�

�
�
� ð2Þ

where X
!�

ið Þ represents the best position of the whale

which is found so far at iteration i. The current position of

the whale is indicated by X
!

iþ 1ð Þ, the distance between

whale and prey is represented by D~ vector with an absolute

value. Coefficient vectors like C and A are calculated,

respectively:

A~¼ 2 � a~ � r~þ a~ ð3Þ

C~ ¼ 2 � r~ ð4Þ

In both of the two phases, the value of a decreases from

the initial value which is 2–0 until it reaches 0 at the end of

the iterations. The range of the variable r is between 0 and

1 which is a random number. The area of the whale where

near the prey can be controlled by values of A and C

vectors. By assigning values for A~ in the range [- 1 and 1],

the new location of the search agent can be identified

between the current position of the whale and the best

position.

Equation (5) is used to calculate the distance between

the best position X
!�

ið Þ and the current position X, and it is

also used to create a spiral-shaped approach.
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X
!

iþ 1ð Þ ¼ ebk � cos 2pkð Þ � D��!þ X��!
ið Þ ð5Þ

where D� represents the distance between the whale and

prey which is the best solution obtained so far.

D��! ¼ X��!
ið Þ � X

!
ið Þ

�
�
�

�
�
� ð6Þ

where b represents a constant value that identifies the

logarithmic spiral shape and k denotes a random number in

the range [- 1 and 1]. Forming the encircling shrinking

mechanism and spiral-shaped mechanism, each mechanism

has a 50% chance of being chosen through the iterations as

shown in Eq. (7).

X
!

iþ 1ð Þ ¼ X��!� A
!� D~ if p\0:5

ebk � cos 2pkð Þ � D��!þ X��!
ið Þ if p� 0:5

(

ð7Þ

where p is an arbitrary number between [0 and 1].

2.2 Searching for prey

The exploration phase consists of random search tech-

niques instead of updating the position according to the

best position found. This strategy enhances the exploration

phase. Finding prey depends on the techniques of changing

the position of each whale. Therefore, A~ vector is used to

control the whale to move far from the local whale.

Throughout this phase, the position of whales is changing,

and it depends on the random search rather than the best

position. This technique is resulted in performing global

optima and overcoming local optima:

X
!

iþ 1ð Þ ¼ Xrand
��!� A

!� D~ ð8Þ

D~ ¼ C
!� Xrand

��!� X
!�

�
�

�
�
� ð9Þ

where Xrand
��!

is the position of one whale which is randomly

chosen from the whales.

Algorithm 1 represents the WOA pseudocode, and it can

be noted that the population is initialized randomly. Then,

the fitness of each search agent is evaluated. This process

progresses until it reaches the best solution. After that, the

coefficients variables are updated and a random number is

used to update the position of agents using Eqs. (2) and (8)

or Eq. (5).

WOA can guarantee the convergence as it updates the

position according to the best solution obtained. As a

result, WOA may stick in the local optima and because of

decreasing linearly from 2 to 0, a is the main influence to

balance on both phases.

14704 Neural Computing and Applications (2020) 32:14701–14718

123



2.3 WOA modifications and hybridizations

Different types of modifications have been proposed since

2016. Table 1 illustrates the essential modifications of

WOA. WOA has been hybridized with different meta-

heuristic algorithms. Therefore, Table 2 presents several

WOA hybridizations.

3 Grey wolf optimization

GWO was proposed in [17], which is motivated by the idea

of hunting mechanism and hierarchy level among grey

wolves in wildlife. The grey wolves are classified into four

categories in GWO, namely; alpha (a) wolf leader, beta (b)
helping the leader, delta (d) follows both previous wolves

Table 1 WOA modifications

Modification

name

References Purpose Conclusion

WOA in

neural

networks

[34] WOA is used as an optimizer to control weight and

biases in neural networks

Results presented that neural network by using WOA

performs better compared to the Backpropagation

algorithm

Chaotic

WOA

[35] Chaos was used to control the status of WOA and to

improve the performance of convergence speed, and

achieve a better result

Ten maps were tested in order to develop a chaotic set.

CWOA improved the efficiency of WOA and balances

between exploration and exploitation by using 0.7 as

an initial point

Memetic

WOA

[22] Avoiding local optima is a drawback of WOA.

Therefore, MWOA was proposed in order to prevent

WOA from this problem

MWOA added a chaotic search embedded inside the

exploration phase and creates stability between

exploration and exploitation

ILWOA [36] The decreasing cloud physical machine number was the

aim of improving ILWOA due to the available

bandwidth

ILWOA was tested on 25 mathematical functions and

then the result compared to WOA. The result showed

that ILWOA improved WOA performance

IWOA [37] The control parameter a is linear, so, it cannot work

well with nonlinear problems inside the search

process. Therefore, IWOA used some nonlinear

strategies to overcome this problem

The result showed that IWOA performed well compared

to standard WOA in convergence speed

Table 2 WOA hybridizations

WOA

hybridization

with

References Purpose Conclusion

BAT [28] Improving the exploration of WOA and obtaining a

better solution in the exploitation phase was the

aim of WOA–BAT

The WOA–BAT improved the quality of results

against standard WOA and other algorithms. So,

WOA–BAT outperformed WOA and other

competitive metaheuristic algorithms

Artificial neural

network based

on WOA

[38] Using WOA to overcome the balancing difficulties

related to parameter settings

Results of the neural network based on WOA showed

better performance, which is 9.9% accuracy

PSO [27] The aim of PSO-WOA was to obtain better results

for solving numerical functions that are global

PSO embedded inside the hunting phase and the result

was more efficient compared to the standard WOA

BS (Brain Storm) [39] Privacy is a big challenge in cloud computing, so the

secret key of data was identified by BS-WOA

Results showed that BS-WOA obtained better security

by protecting the confidentiality and effectiveness of

data in the cloud

CBO (colliding

bodies

optimization)

[25] The aim of WOA-CBO was to improve the accuracy

result, reliability and convergence speed

WOA-CBO compared with the standard WOA and

results showed that WOA-CBO performed better

than WOA

MFO [40] Avoiding time-consuming for determining the best

optimal thresholding in multi-threshold was the

aim of WOA-MFO

WOA-MFO was compared with five algorithms. As a

result, WOA-MFO showed a better result in terms of

speed, the best fitness value, and the ANOVA test

LS (Local search) [24] Reducing computational cost and avoiding local

optima

The best result could be achieved quickly by using

various techniques, for example, swamp mutation,

local search strategy, and insert-reversed block
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and omega (x) [17]. Figure 1 shows the grey wolves’

hierarchy.

GWO has a social hierarchy, the first best solution is

alpha (a), then the beta (b), and the third-best solution is

the delta (d). The remaining candidates’ solution is called

omega (x). These wolves (x) follow the other three

wolves, which are above omega (x) in the hierarchy.

3.1 Encircling prey

Grey wolves try to encircle the prey in order to hunt by

using Eqs. (10) and (11).

X
!

iþ 1ð Þ ¼ Xl
!

ið Þ � A
!� D~ ð10Þ

D~ ¼ C
!� Xl! ið Þ � X~ ið Þ
�
�
�

�
�
� ð11Þ

where Xl
!

ið Þ denotes the location of the prey at iteration i.

X
!

iþ 1ð Þ is the location of a grey wolf. A and C are

coefficient vectors, which can be calculated as follows:

A~¼ 2 � a~ � r1!þ a~ ð12Þ

C~ ¼ 2 � r2! ð13Þ

Decreasing a value from 2 to 0 is happening in both

phases until GWO reaches the maximum iteration.

r1
! and r2

! are random numbers in the range of [0,1]. The

area of wolves where near the prey can be controlled by the

values of A and C vectors.

3.2 Hunting

After the encircling mechanism, a grey wolf starts to hunt

the best solution. Despite the fact that the best solution

required to be optimized, so alpha wolf stores the best

solution in each iteration, and it changes if the solution is

improved. The location of the prey can be identified by

beta and delta. Thus, the best solutions are saved by each

type of grey wolves and used to update the position of grey

wolves by using the following equations.

Da
�! ¼ C1

�! � Xa
�!� X~

�
�
�

�
�
�;

Db
�! ¼ C2

�! � Xb
�!� X~

�
�
�

�
�
�;

Dd
�! ¼ C3

�! � Xd
�!� X~

�
�
�

�
�
�

ð14Þ

X1
�! ¼ Xa

�!� A1
�! � Da

�!
; X2
�! ¼ Xb

�!� A2
�! � Db

�!
;

X3
�! ¼ Xd

�!� A3
�! � Dd

�! ð15Þ

X
!

iþ 1ð Þ ¼ X1
�!þ X2

�!þ X3
�!

3
ð16Þ

3.3 Attacking prey (exploitation)

Hunting mechanism can be done by a grey wolf, which

tries to stop the movement of the prey in order to attack

them in this step. This mechanism is done by declining the

value of a. The value of A~ is also reduced by the value a,

and it is in the range of [- 1, 1]. Attacking the prey can be

done by a grey wolf, if A~ is greater than - 1 and less than

1. However, GWO suffers from stagnation in the local

optima and researchers are trying to discover different

mechanisms to solve this problem [17].

3.4 Search for prey (exploration)

Alpha, beta, and delta influence the searching mechanism.

These three categories are different from each other. Thus,

they require a mathematical equation to converge and attack

the prey. So, the value ofA~ is between- 1 and 1, if the value is

greater than 1 or less than- 1, the search agents are forced to

diverge from the prey. In addition, if A~ greater than 1, then the

search agent tries to find better prey. C~ is another component

factor, which influences the exploration phase in GWO.

Fig. 1 Grey wolves’ hierarchy
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Overall, the random population is created in the GWO

algorithm. Alpha, beta, and delta assume the location of the

prey. Then, the candidate solution distance is updated.

After that, a is reduced from 2 to 0 to balance between both

of the phases. Next, the search agents go away from

attacking the prey, if A~[ 1. If A~\ 1, then, they go forward

the prey. Finally, the GWO has reached a satisfactory result

and is terminated. Algorithm 2 describes the detail of the

GWO Algorithm.

3.5 GWO modifications and hybridizations

Many types of research have been done by researchers to

modify and hybridize GWO. Therefore, paper [41]

described both modifications and the hybridization of

GWO in detail. However, Tables 3 and 4 briefly mentioned

several crucial modifications and hybridizations of GWO

in order to know that GWO has not been hybridized with

WOA.

Table 3 GWO modifications

GWO

modifications

References Purpose Conclusion

Modified

GWO

[42] MGWO was proposed to tune recurrent neural network

parameters, which then used for classifying students’

performance

As a result, MGWO could find the best solution than

other competitive models. MGWO has a greater

impact to improve the result of a recurrent neural

network

Chaotic

GWO

[43] Increasing the convergence speed was the purpose of

this modification by adding different chaotic methods

Ten chaotic maps were used and the best one was

chosen in order to use it with GWO. Therefore, the

results showed that CGWO improved standard GWO

and it was better than other algorithms

Binary GWO [44] There are different large-scale problems. Unite

commitment problem was one of those problems that

could be solved by using BGWO

BGWO was used to solve the unite commitment

problem. Then, it was compared to the standard GWO

and a variety of binary algorithms. The result showed

that BGWO outperformed well compare to them

Intelligent

GWO

[45] The aim of IGWO was at solving different problems in

companies, which sale power in the energy market.

Companies using different strategies to increase their

profit but they have difficulties in predicting the

information about the future energy price

IGWO was tested on 22 benchmark functions. IGWO

was compared with GWO, Oppositional GWO, and

PSO. IGWO results showed superior compared to the

other algorithms

GWO [46] GWO was proposed to design the modular neural

network architecture. The aim of this work was to

improve the performance of the human recognition

system

Results are compared to GA and Firefly Algorithm

(FA). The GWO outperforms well compared to GA

and FA

Power GWO [47] GWO was used to solve complex optimization problems

based on Power local optimization approach, which

was essential for clustering

PGWO was tested on seven benchmark functions and

tested on nine data sets for clustering. Results showed

that PGWO performed well against the most recent

algorithms
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4 Our approach: WOAGWO

Based on the previous sections about WOA and GWO, the

proposed approach is explained in this section by com-

bining WOA and GWO to enhance the performance of

WOA in terms of efficiency in exploitation phase to obtain

better solutions.

In general, the standard WOA can perform well in

finding the best solution. However, refining the optimum

solution in each iteration is not sufficient. Therefore, WOA

is hybridized with GWO in order to improve the perfor-

mance of WOA. The hybridized algorithm is called

WOAGWO. As a result, the standard WOA is hybridized

by adding two sections. Firstly, we added a condition

inside the exploitation phase in WOA for improving the

hunting mechanism. According to Eq. (16), A1, A2, and A3

have a greater impact on exploitation performance.

Therefore, a new condition is added to the standard

exploitation phase of WOA for avoiding local optima

where each A is less than 1 or greater than - 1. Secondly,

we adapted Eqs. (14), (15) and (16). And we used them

inside the condition that was added to the exploitation

phase which includes A1, A2, and A3. Finally, another new

condition is added to the exploration phase to make the

current solution move toward the best solution. It also

avoids the whale to change to a position that is not better

than the previous position.

The differences between WOAGWO and WOA are

Eqs. (14), (15) and (16) which are added to the exploitation

of WOA. A new mechanism is added inside the exploration

phase to improve the solution. Therefore, this condition

with equations of GWO improves the hunting mechanism

of WOA. It also improves the best solution after each

iteration and generates better performance regarding local

optima. Furthermore, using the condition inside the

exploration phase improves the searching capability as it

improves the quality of the solution if it exists.

WOAGWO is started by initializing the population size

of the search agents (which includes both whales and

wolves). Then, the population goes through a process to

amend the agents if they go beyond the search space.

Therefore, the fitness function is calculated. If fitness is less

than the Alpha_score (Best_Score, then Alpha_score is

equal to fitness. After that, these variables are updated: a,

A, C, L, and p. Then a random number is generated.

Table 4 GWO hybridizations

GWO

hybridizations

with

References Purpose Conclusion

Dragonfly

(DA)

[48] The renewable energy system has some problems, such

as voltage deviation, power loss, and decreasing fuel

cost. Therefore, the aim of this approach was to solve

these problems

The result of the hybridized approach showed that it

was faster and improved its performance when the

IEEE 30 bus system was used to test

Recurrent

neural

network

[42] The learning experience and forecasting outcome of the

student’s results was the aim of this hybridization

Results proved that the hybridized system improved the

forecasting task in terms of accuracy compared to

other models

Long Short

Term

Memory

(LSTM)

[49] The recurrent neural network has some drawbacks

related to accuracy, convergence speed. In this work,

the GWO was used to train the LSTM recurrent

neural network

Simulation results presented that GWO can improve

the performance of the recurrent neural networks by

training the LSTM recurrent neural networks

Fireworks

Algorithm

(FWA)

[50] The aim of this hybridization was to combine the two

most efficient algorithms, which have been inspired

by physics and nature

The FWA-GWO was tested on 22 benchmarks

functions and then compared to FWA and GWO.

Results showed that FWA-GWO outperformed the

other two standard algorithms

Flower

Pollination

Algorithm

(FPA)

[51] Hybridizing both algorithms to have a better solution in

solving real-world applications was the aim of this

hybridization

The hybridized approach was verified on 6 benchmark

functions and then compared against PSO, FPA, and

GWO. So, GWO-FPA showed superiority in its

performance

Sine Cosine

Algorithm

(SCA)

[52] To improve the quality solution of GWO, GWO was

hybridized with SCA

The results were compared with standard GWO, SCA,

WOA, ALO, and PSO. It can be said that GWO-SCA

performed well in solving test functions and solving

real-world problems

GA [53] Solving the economic dispatch problems was the aim of

this approach

GWO was hybridized with a crossover and mutation

mechanism for improving the performance. The

results showed equality in some cases and better

results in others
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If the random number is less than 0,5, then it goes to

another condition which is if (/A/\ 1). If this condition is

true, then the new position is calculated using Eq. 1. As a

result, if the new position is better than the old position,

then the old position is updated. However, if (/A/ C 1),

then the new position is found using Eq. 2. Like the pre-

vious condition, the new position fitness is compared to the

old fitness. If it is better than the old one, then the position

is updated.

On the other hand, if the random value is greater than or

equal to 1, then the new condition is counted which is

if((A1[- 1 || A1\ 1). If these conditions are true, then

the Alpha_position, Beta_position, and Delta_position are

calculated using Eq. 15. Consequently, the new position is

calculated by Eq. 16.

After the above steps, the new position requires check-

ing either it is beyond the search space or not. If they are

out of the feasible space, then the position is amended

depending on the limitation. As a result, a new fitness value

is calculated, and finally, the best fitness value is returned.

WOAGWO pseudocode and flowchart are presented in

Algorithm 3 and Fig. 2.

5 Experimental result and discussion

WOAGWO algorithm is implemented and evaluated

against 23 benchmark functions [28], 25 benchmark func-

tions from CEC2005, and 10 benchmark functions from

CEC2019. The following subsections describe benchmark

functions, experimental setup, evaluation criteria, statistical

results, and evaluations of WOAGWO against other

metaheuristic algorithms.

5.1 Benchmark functions

Three various benchmark functions are conducted in order

to verify our proposed WOAGWO. The first benchmark

function is 23 functions. Then, the CEC2005 benchmark

function is used. These are 25 functions of CEC2005. The

third part of the benchmark functions is CEC2019. These

functions include multimodal functions, unimodal func-

tions, expanded multimodal functions, and hybrid compo-

sition functions. These benchmark test functions can be

seen in [28].
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5.2 Experimental setup

The code is implemented by using MATLAB R2017b on

Windows 10. The first population is initialized randomly in

order to have a better and accurate result. Table 5 shows

parameter initialization for implementation.

5.3 Evaluation criteria

Different ways are used for evaluating WOAGWO. The

next is the evaluation points:

1. Presenting average and standard deviation.

2. Comparing WOAGWO with WOA.

3. Comparing WOAGWO with GWO.

4. Comparing WOAGWO with other metaheuristic algo-

rithms (DE, ABC, BSO, and WOA).

5. Creating a box and whisker plot for comparison of

WOA, GWO, and WOAGWO.

5.4 WOAGWO versus WOA

The performance of WOAGWO can be evaluated using

these functions. Functions f1–f7 are called unimodal

functions, which have a single solution. As a result, the

WOAGWO exploitation capability can be evaluated by

using these unimodal functions. Table 6 shows that

WOAGWO has better exploitation capability compared to

the standard WOA in all seven functions.

In other functions, such as f8–f23, which are multimodal

functions and they are useful to assess our proposed

algorithm in terms of exploration. Table 6 shows that

WOAGWO outperforms in 13 out of 16 multimodal

Fig. 2 WOAGWO flowchart
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functions. As a result, it can be said that WOAGWO

improves the performance of WOA in exploration.

Nonetheless, the WOAGWO algorithm has the same result

as WOA for function 16. Conversely, WOA performs well

in both functions f16 and f17.

CEC2005 benchmark function also used to evaluate the

WOAGWO algorithm. Table 7 illustrates that WOAGWO

exploitation performance is better than WOA in f2, f3, f3,

f4, and f5. However, WOA performs well only in f1. To

evaluate exploration capability, f6–f12 is used. As a result,

WOAGWO performs well in all functions except f7, which

has the same result as WOA. Despite having worse results

in 4 functions compared to WOA, WOAGWO performs

well in 10 out of 14 functions. Overall, we can say that

WOAGWO improves WOA in exploration and exploita-

tion in 19 functions, WOA is better in four functions, and

they are the same in one function.

WOAGWO also compared with GWO in Table 7 shows

that WOAGWO performs better than GWO in 4 out of 5

unimodal functions. However, WOAGWOA exploration

performance improves only in 4 multimodal functions.

WOAGWO is also better than WOA in 9 functions. In

general, WOAGWO is efficient in 16 functions while

GWO is better than WOAGWO in 8 functions and they are

the same in f7.

Overall, WOAGWO has better functionality in 14

benchmark functions compared to WOA and GWO. It has

the same result as WOA and GWO in 1 function. However,

GWO has a better result in 7 functions while WOA per-

forms well only in 3 test functions.

CEC2019 is also used to test WOAGWO and com-

pared it with WOA and GWO. Table 8 and Fig. 3 show

that WOAGWO is better than WOA in seven functions,

such as f1, f2, f4, f5, f7, f8, and f9 and it has the same

Table 5 Parameter initialization
Number Parameters Times Algorithms

1 Population size 30 WOAGWO, WOA, and GWO

2 Maximum iteration 500

3 Run time for each function 30

Table 6 Comparison of

WOAGWO with WOA
F WOA WOAGWO GWO

Avg SD Avg SD Avg SD

1 1.2E-74 5.9431E-74 0 0 1.94E-27 3.2433E-27

2 2.37E-51 8.8634E-51 1.29E2210 0 7.4743E-17 4.4536E-17

3 50,945 14,806.2448 0 0 9.2636E-06 1.6703E-05

4 52.426 24.6188925 1.29E2213 0 8.4924E-07 9.4388E-07

5 28.02927 5.04953113 1.20E208 2.9005E-08 27.037 0.8268246

6 0.4356 0.20393211 1.80E211 2.5159E-11 0.772 0.35489112

7 0.0026 0.00202219 2.08E204 0.00015661 0.0021 0.0010843

8 - 10,424 2699.73123 - 1.26E?04 5.4772E-05 - 5834.2 1166.4211

9 1.89E-15 1.0477E-14 0 0 3.2605 3.79275955

10 4.8E-15 2.3118E-15 8.88E216 4.0117E-31 1.0629E-13 2.1811E-14

11 0.011 0.04289421 0 0 0.0043 0.00768593

12 0.02 0.00971086 3.93E212 9.5317E-12 0.0431 0.01889672

13 0.5672 0.29065488 5.07E211 9.101E-11 0.6543 0.24743806

14 3.258 3.18587253 0.998 4.5168E-16 4.5917 3.94839187

15 0.000566 0.00036856 3.14E204 2.7985E-05 0.0038 0.00740239

16 - 1.0316 0.18834353 - 1.0316 6.7752E-16 - 1.0316 6.6613E-16

17 0.3979 0.07264355 0.398 0.00050379 0.3979 4.2687E-06

18 3 0.54771826 3.0001 0.00012058 3 5.9628E-05

19 - 3.856 0.70595763 - 3.8612 0.00248348 - 3.8613 0.00270342

20 - 3.225 0.61610521 - 3.2677 0.06883349 - 3.2435 0.08792772

21 - 8.746 2.94478365 - 10.1532 3.6134E-15 - 10.1516 0.0009222

22 - 7.6138 3.30341493 - 10.4028 9.0336E-15 - 10.401 0.00152396

23 - 6.7571 3.90115355 - 10.5363 0 - 10.3545 0.97046316

Best results are represented in bold
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result as WOA in f3. However, WOA is better in f6 and

f10.

Comparison of WOAGWO against GWO is shown in

Table 8. WOAGWO performs well in five functions; they

have the same result in both functions (f2, f8). However,

GWO is better than WOAGWO in 3 functions.

Overall, WOAGWO is better than WOA and GWO in 5

multimodal benchmark functions and two functions have

the same results. WOA is better than WOAGWO in 2

functions. Finally, GWO is better than WOA and

WOAGWO in 1 function.

Table 7 WOA, WOAGWO,

and GWO comparison results

on CEC2005

F WOA WOAGWO GWO

Avg SD Avg SD Avg SD

1 1.64E207 3.26E-07 90.8169 125.6311 7.54E?01 125.2783

2 1.24E?04 3.93E?03 528.9248 677.455 572.4044 838.9729

3 5.32E?06 5.61E?06 2.09E?06 2308557 2.16E?06 5,018,469

4 2.10E?04 8.64E?03 1.29E 1 03 1406.165 1.37E?03 1394.573

5 3.56E?03 3.15E?03 619.1757 1145.875 805.3676 1911.879

6 6.75E?05 2.68E?05 6.57E?05 1,963,062 5.66E?05 1,975,092

7 1.27E 1 03 6.3685 1.27E?03 0.136957 1.27E?03 0.088189

8 20.414 0.0984 20.2854 0.148188 20.4805 0.096684

9 44.5728 17.454 16.7816 9.367935 17.0284 9.166468

10 71.1216 20.5328 28.5578 14.38448 25.2281 13.05085

11 9.12 1.4296 4.682 1.856523 4.2209 1.113957

12 1.62E?04 1.85E?04 3.88E?03 4017.933 4.32E ? 03 6233.134

13 4.1037 1.8862 1.6063 0.891403 1.6297 0.717426

14 3.9046 0.2729 3.3739 0.336788 3.1787 0.530905

15 20.6418 28.8754 19.0478 25.45496 20.648 28.87942

16 48.4241 96.6469 55.5494 51.0079 35.949 46.76869

17 44.4717 76.5331 62.6943 44.52695 44.3661 51.65567

18 293.6006 140.8512 47.2492 85.71267 274.6266 123.9029

19 300.7357 116.2018 200.0032 0.002584 300.0013 58.72239

20 193.3517 172.063 160.0176 81.33856 319.5926 57.3539

21 266.855 182.8915 332.0461 170.8737 345.2527 183.325

22 290.3025 120.8642 254.049 55.26927 260.003 81.36783

23 225.9111 223.3001 481.6775 140.5439 484.306 187.9177

24 200 5.65E-07 167.9354 43.36581 200.0002 0.000205

25 197.9812 5.65E-07 111.08 12.35356 106.2192 10.39683

Best results are represented in bold

Table 8 WOA, WOAGWO,

and GWO comparison results

on CEC2019

F WOA WOAGWO GWO

Avg SD Avg SD Avg SD

1 2.10E?10 3.57E?10 4.76E?04 5186.077 2.13E?08 3.07E?08

2 1.84E?01 1.61E-02 18.3441 0.000472 1.83E?01 0.000304

3 1.37E?01 7.23E-15 13.7024 1.83E-05 1.37E?01 1.922208

4 3.48E?02 1.72E?02 253.6765 538.7369 3.01E?02 686.8153

5 3.03E?00 4.86E-01 2.4257 0.262064 2.43E?00 0.251607

6 1.03E?01 1.39E?00 11.3655 1.641948 1.19E?01 0.730745

7 6.14E?02 2.98E?02 587.6149 348.9018 5.35E?02 292.0204

8 6.03E?00 5.66E-01 5.587 1.022585 5.40E?00 0.993956

9 5.93E?00 6.85E-01 5.6705 0.880983 1.47E?01 49.95142

10 2.13E?01 1.35E-01 21.5576 0.092245 2.15E?01 0.068513

Best results are represented in bold
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5.5 Statistical test

In order to show that the results are either significant or not

in Tables 6, 7, and 8, the Wilcoxon rank-sum test is used to

find the p values for all benchmark test functions. The

results of the Wilcoxon rank-sum test are shown in

Table 9. The p value found for all the benchmark functions

Fig. 3 Box and Whisker plot of

WOA, GWO, and WOAGWO

on CEC2019
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and for each of the above-mentioned tables. The p value

obtained between WOA versus WOAGWO.

Table 9 shows that WOAGWO obtained significant

results against WOA in all unimodal and multimodal

functions except functions 9 and 11 for the first column,

which is 23 function results. However, WOAGWO does

not have significant value in 6 functions while it is com-

pared to WOA.

By obtaining the p value from comparing WOAGWO

against WOA, Table 9 shows that WOAGWO has signif-

icant results in 13 functions out of 25 functions from

CEC2005.

In addition, WOAGWO shows that the p value of

CEC2019 test functions, it can be seen from Table 9 that

WOAGWO obtained a significant result in 6 out of 10

functions against WOA.

The reasons behind these results as shown in Table 9 are

WOA has a crucial technique to update the whale position

in the exploration phase. GWO has very effective perfor-

mance when it is used inside WOAGWO for the

exploitation. GWO has a great impact on improving the

performance of WOAGWO over WOA and GWO since

Beta and Delta types of wolves save the best solutions.

These solutions are used to update the position of the whale

inside the WOAGWO. The other reason is that decreasing

the value of a in the range of [- 1, 1] increases the

capability of whales to attain the best solution in each

iteration. These reasons have a significant impact on

WOAGWO over the original WOA and GWO when tested

on 23 classical benchmark functions, CEC2005, and

CEC2019 functions.

5.6 Comparing WOAGWO with hybrid
and metaheuristic algorithms

WOAGWO as the hybrid algorithm is compared with the

WOA–BAT algorithm by using the CEC2019 test func-

tions. The results of WOA–BAT is obtained from [18].

Table 10 presents that WOAGWO performs well in 6 out

of 10 functions. This means that using GWO hunting

techniques in the exploitation phase of WOA is the reason

behind the achieved result. Though, WOA–BAT had

improved WOA. But, WOAGWO achieves the best results.

It is believed that WOAGWO performance better than

WOA–BAT.

In addition, different metaheuristic results are presented

in this section, which is obtained from CEC2005. These

results are taken from various optimization algorithms,

such as DE, ABC, BSO, WOA, and WOAGWO. Table 11

illustrates that each algorithm is better than other algo-

rithms in a different number of functions out of 25 func-

tions. The following points represent the conduct of each

algorithm on the number of functions:

• GA does not achieve the best results.

• DE obtained the best results in 3 functions out of 25.

Table 9 p Value of WOAGWO against WOA for 23 benchmark

functions, CEC2005, CEC2019

F 23 Functions CEC2005 CEC2019

1 0 1 0

2 0 0 0

3 0 1.92E209 1

4 0 0 3.1E214

5 0 2.57E208 0

6 0 0.099275 1

7 0 0.999957 0.263969

8 0 2.55E209 0.017695

9 1 0 0.032394

10 0.001612662 0 1

11 1 0

12 0 5.86E209

13 0 0

14 0.080371993 0

15 0 1

16 1 1

17 1 1

18 1 1.73E208

19 1.19485E207 0.013997

20 1.15567E208 0.583317

21 0 1

22 0 0.964067

23 0 1

24 1

25 0.163099

Best results are represented in bold

Table 10 Comparison results of WOA_BAT and WOAGWO using

CEC2019

F WOA–BAT WOAGWO

Avg SD Avg SD

1 7.60E?07 4.16E?08 4.76E?04 5186.077

2 1.75E?01 1.21E-01 18.3441 0.000472

3 1.27E?01 9.53E-04 13.7024 1.83E-05

4 2.12E?03 1.01E?03 253.6765 538.7369

5 2.44E?00 6.67E-01 2.4257 0.262064

6 1.11E?01 1.55E?00 11.3655 1.641948

7 6.06E?02 3.90E?02 587.6149 348.9018

8 5.72E?00 7.18E-01 5.587 1.022585

9 2.28E?01 4.92E?01 5.6705 0.880983

10 2.12E?01 2.26E-01 21.5576 0.092245

Best results are represented in bold
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• BSO attained well in 9 out of 25 functions.

• WOA takes the best results in 4 out of 25 functions.

• WOAGWO achieves the best results in 9 out of 25

functions.

As a result, each WOAGWO and BSO achieves best

results in 9 out of 25 functions. Therefore, WOAGWO and

BSO are better than the other three algorithms in 9

benchmark functions. WOAGOW is better than other

algorithms in 2 unimodal functions and it is better in 7

hybrid benchmark functions. As a result, WOAGWO has

sufficient capability of balancing between exploration and

exploitation. In addition, WOA performs well in 4-hybrid

benchmark functions. WOAGWO improves the perfor-

mance of WOA from 4 to 9 functions in balancing

exploration and exploitation.

However, BSO is better than the other algorithms in

three unimodal functions, which means that BSO performs

well in exploitation capability. BSO is also performed well

in three multimodal functions. Therefore, the exploration

performance of BSO is worse compared to WOAGWO.

DE has the third rank in comparison with the other

algorithms in Table 11. It performs well in 2 unimodal

functions and multimodal functions. However, ABC results

have worse results compared to others. Finally, it can be

said that WOAGWO is better than BSO, WOA, ABC, and

DE in balancing between exploitation and exploration.

Overall, it can be said that WOAGWO is very com-

petitive against DE, ABC, BSO, and WOA. WOAGWO

performs well in 9 functions while BSO is better in 9

functions as well. Therefore, WOAGWO could improve

the performance of WOA from 4 functions to 9 functions

because of adding a conditioning technique inside the

exploration phase to improve solution quality and adding

the second condition inside the exploitation phase, which

focuses on the A value, improves the exploitation capa-

bility of WOAGWO. Furthermore, adapting Eqs. (14),

(15), (16) and (17) improves the performance of WOA as

can be seen in Table 11, which shows that WOA is better

than BSO only in 4 functions.

Table 11 ABC, DE, BSO, WOA, and WOAGWO comparison results on CEC2005

F ABC DE BSO WOA WOAGWO

Avg SD Avg SD Avg SD Avg SD Avg SD

1 2.20E-02 4.08E-02 1.79E-04 1.31E-04 - 4.50E?02 3.50E-14 8.83E?00 3.26E-07 9.08E?01 125.6311

2 2.73E?04 4.05E?03 2.12E?02 9.29E?01 - 4.48E?02 9.36E-01 1.09E?04 3.93E?03 5.29E?02 677.455

3 1.22E?08 2.90E?07 6.28E?06 2.09E?06 2.04E?06 7.23E?05 3.02E?06 5.61E?06 2.09E?06 2,308,557

4 3.38E?04 4.49E?03 1.15E?03 7.23E?02 2.78E?04 8.05E?03 1.83E?04 8.64E?03 1.29E?03 1406.165

5 8.30E?03 8.00E?02 5.63E?02 2.84E?02 4.70E?03 1.22E?03 2.87E ? 03 3.15E?03 6.19E?02 1145.875

6 3.65E?05 2.58E?05 3.94E?01 2.98E?01 1.26E ? 03 9.48E?02 1.39E?05 2.68E?05 6.57E?05 1,963,062

7 4.89E?03 2.88E ? 01 4.70E?03 9.01E-11 6.25E?02 3.25E?02 1.27E?03 6.3685 1.27E?03 0.136957

8 2.10E ? 01 6.86E-02 2.10E?01 7.75E-02 - 1.20E?02 9.90E-02 2.03E?01 0.0984 2.03E?01 0.148188

9 2.10E?02 1.35E?01 1.46E?02 2.87E?01 - 2.86E?02 1.27E?01 4.22E?01 17.454 1.68E?01 9.367935

10 2.46E?02 9.04E?00 2.15E?02 1.13E?01 - 2.93E?02 8.79E?00 6.23E?01 20.5328 2.86E?01 14.38448

11 4.05E ? 01 1.37E?00 4.04E?01 1.35E?00 1.10E?02 2.51E?00 8.87E?00 1.4296 4.68E?00 1.856523

12 4.02E?05 5.17E?04 1.82E?04 1.19E?04 2.84E?04 1.99E?04 1.60E?04 1.85E?04 3.88E 1 03 4017.933

13 2.31E?01 1.45E?00 1.79E?01 1.49E?00 - 1.26E?02 1.05E?00 4.42E?00 1.8862 1.61E?00 0.891403

14 1.36E?01 1.34E-01 1.37E?01 1.32E-01 - 2.87E102 3.78E-01 3.92E?00 0.2729 3.37E?00 0.336788

15 3.06E?02 5.76E?00 2.70E?02 9.66E?01 5.43E?02 7.94E?01 2.19E?01 28.8754 1.90E101 25.45496

16 2.63E?02 9.94E?00 2.54E?02 4.05E?01 2.87E?02 1.34E?02 3.35E101 96.6469 5.55E?01 51.0079

17 2.86E?02 1.72E?01 2.81E?02 4.62E?01 3.10E?02 1.57E?02 2.29E101 76.5331 6.27E?01 44.52695

18 9.60E?02 5.84E?00 9.06E?02 7.56E-01 9.17E?02 1.36E?00 2.94E?02 140.8512 4.72E101 85.71267

19 9.63E?02 7.72E?00 9.06E?02 8.12E-01 9.16E?02 1.07E?00 2.77E?02 116.2018 2.00E102 0.002584

20 9.60E?02 6.53E?00 9.06E?02 4.04E-01 9.16E?02 1.36E?00 2.07E?02 172.063 1.60E102 81.33856

21 5.10E?02 3.45E?00 5.59E?02 1.79E?02 9.27E?02 1.37E?02 2.23E102 182.8915 3.32E?02 170.8737

22 1.08E?03 2.19E?01 8.77E?02 1.04E?01 1.21E?03 1.99E?01 3.31E?02 120.8642 2.54E102 55.26927

23 5.49E?02 2.56E?01 5.91E?02 1.72E?02 9.48E?02 1.38E?02 2.54E102 223.3001 4.82E?02 140.5439

24 2.00E?02 3.48E-02 9.20E?02 1.70E?02 4.67E?02 6.23E?00 2.00E?02 5.65E-07 1.68E102 43.36581

25 1.51E?03 8.75E?00 1.64E?03 3.33E?00 1.88E?03 4.44E?00 1.37E?02 5.65E-07 1.11E102 12.35356

Best results are represented in bold
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5.7 WOAGWO for solving pressure vessel design
problem

Pressure Vessel design is a classical engineering problem.

The main goal of this problem is to optimize the cost of

three sections of the cylindrical pressure vessel. Those

sections should be minimized, which are forming, material

and welding. The head of the vessel has hemispherical

shape while the end of both sides of the vessel is crapped.

This problem has four variables to optimize. These vari-

ables are shell thickness Ts, head thickness Th, inner radius

R, cylindrical length section without counting the head L.

Therefore, this problem has four constraints that can be

optimized. The following equations describe the con-

straints of the problem.

n ¼ 1; 2; 3; 4

x~¼ x1x2x3x4½ � ¼ TsThRL½ �;
f x~ð Þ ¼ 0:6224x1x3x4 þ 1:7781x2x

2
3 þ 3:1661x21x4

þ 19:84x21x3;

ð17Þ

Variable limitation

0� x1 � 99;

0� x2 � 99;

10� x3 � 200;

10� x4 � 200;

These are subjected to

g1 x~ð Þ ¼ �x1 þ 0:0193x3 � 0 ð18Þ
g2 x~ð Þ ¼ �x3 þ 0:00954x3 � 0 ð19Þ

g3 x~ð Þ ¼ �px23x4 �
4

3
px33 þ 1; 296; 000� 0 ð20Þ

g4 x~ð Þ ¼ x4 þ 240� 0 ð21Þ

WOA achieved the best results for solving the problem

[16]. Therefore, the authors used three metaheuristic

algorithms to solve the problem, for example, WOA,

WOAGWO, and FDO [54]. Table 12 shows that

WOAGWO outperforms well compared to WOA and FDO.

WOAGWO achieved results that are better than the other

two algorithms. WOAGWO obtained these results 1.63,

1.43, 67.07, 10 for Ts; Th;R and L respectively.

6 Conclusion

To sum up, both WOA and GWO along with their modi-

fications and hybridizations were presented. WOA and

GWO with their limitations were highlighted. WOA and

GWO with their algorithmic details were described in

detail. The new approach ‘‘WOAGWO’’ was presented.

The experimental results were explained to assess the

performance of WOAGWO.

Several experiments were conducted to evaluate

WOAGWO. WOAGWO was tested on 23 benchmark test

functions to assess its performance in both exploitation and

exploration. WOAGWO showed its superiority in 20 out of

23 functions compared to WOA and GWO. WOA and

WOAGWO have the same result in 1 function, and WOA

has slightly better than WOAGWO in 2 functions.

In addition, CEC2005 benchmark functions were used to

evaluate WOAGWO. As a result, WOAGWO performed

well in 14 functions. Though, it had the same result with

WOA in 1 function. Nonetheless, WOA was better than

WOAGWO in the other 3 functions. In spite of having a

better overall result, WOAGWO was better than GWO in

only 14 functions out of 25.

Furthermore, WOAGWO was evaluated by the

CEC2019 benchmark function, and then results were

compared to WOA and GWO. Consequently, WOAGWO

had the same result with WOA in 1 function while it had

better results in 7 functions. However, WOA performance

was better than WOAGWO in 2 functions. WOAGWO was

also compared to GWO, the results showed that

WOAGWO was superior to GWO in 5 functions. They

were also the same in 2 functions. In the face of having

these results, GWO worked well in 3 functions.

Wilcoxon rank-sum test was used to evaluate the

WOAGWO statistically, WOAGWO obtained significant

results in 17 out of 23 benchmark functions. It was also

tested on CEC2005 functions, so it achieved a better result

in 13 functions. Furthermore, it had 6 significant results out

of 10 by using CEC2019 test functions.

Then, WOAGWO was compared with DE, ABC, BSO,

and WOA. Like WOAGWO, BSO was better in 9 bench-

mark functions. WOA was competitive in 4 functions. In

addition, DE had a third rank in comparison. As a result,

WOAGWO performance improved exploration capability.

Overall, it can be said that WOAGWO improved the

Table 12 Comparison WOA,

WOAGWO, and FDO for

pressure vessel design

WOA WOAGWO FDO

Avg. SD Avg. SD Avg. SD

1.36E?04 12,671.54 1.32E?04 2536.893 5.33E?04 47,583.22
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solution quality after each iteration, and it avoids local

optima.

Finally, WOAGWO was used to solve a real-world

problem in the field of engineering. The problem was

pressure vessel design which was solved by WOAGWO,

WOA, and FDO. WOAGWO attained an optimum solution

that was better than WOA and FDO.

Generally, WOAGWO improved the WOA standard and

could improve solutions for those problems that were

related to poor performance and dwindling into local

optima in the exploration phase. WOAGWO produced

significant results in almost all unimodal and multimodal

functions. WOAGWO produced better results in the

benchmark test functions because of the two techniques

that were included in WOAGWO. Using the condition

which was added inside the exploration phase to avoid

whales to move to positions which were not better than the

previous positions and also to improve the exploration

performance. Embedding conditions, related to a value and

adapting four GWO equations in the exploitation phase of

WOA, forced the whales to have better results. Improving

the performance of WOAGWO over WOA also belonged

to the exploitation ability of beta and delta wolves to save

the best solutions and decreased a value that tried to stop

the movement of the prey in order to hunt it by the whales.

Another reason behind this improvement was that a new

condition was added to the exploration phase for updating

the whale.

Finally, the following potential research work can be

conducted in the future:

1. Solving real-world problems such as medical problems

and other engineering problems.

2. Hybridizing different techniques to improve the current

results.

3. Implementing chaotic maps on the proposed hybridiza-

tion for further enhancement.
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